что такое dbi для антенны
Коэффициент усиления антенны
Коэффициент усиления антенны – это тот самый момент, который может поставить в тупик даже самых продвинутых инженеров, специалистов в области радиочастотных технологий. Даже в законодательстве указано, что «Эффективная излучаемая мощность не превышает…», что опирается на мощность, подводимую ко входу антенны, помноженную на коэффициент усиления антенны. Считается, что в момент проявления коэффициента усиления антенна сама внутри себя магическим образом создает некую энергию. К несчастью, это не так. Если вы посмотрите на антенну, то увидите, что основной материал, из которого она сделана это золото, серебро, медь – эти материалы подходят лучше всего, затем идет алюминий. Сами по себе эти материалы не могут создавать энергию внутри себя.
Прежде чем начать что-то объяснять, сначала необходимо дать определение некоторым терминам, для более доходчивого объяснения, что же такое коэффициент усиления антенны.
децибел (дБ): единица измерения затуханий, служит для выражения коэффициента усиления. Коэффициент усиления имеет положительное значение, затухание – отрицательное, вычисляется по формуле:
10* log ( P на выходе/ P на входе)
Коэффициент усиления антенны: относительное увеличение излучения в пиковый момент, величина которого, выраженная в дБ, выше эталонного, в этом случае штатная антенна, антенна диполь в половину длины волны (как в случае с двухполюсными антеннами), которой измеряются все прочие антенны. Используемое обозначение известно как 0дБд (0 децибел относительно диполя). Таким образом, антенна с эффективной излучаемой мощностью в два раза выше входной мощности будет иметь коэффициент усиления 10* log (2/1) = 3дБд
Диаграмма направленности: графическое представление зависимости интенсивности излучения от угла направления антенны от перпендикуляра. Обычно график имеет круглый вид, интенсивность обозначена расстоянием от центра относительно соответствующего угла.
Все диаграммы направленности, которые показаны на этой странице, составлены для антенн с вертикально установленными элементами антенны, вид дан со стороны (т.е. под прямым углом к антенне), как показано на изображении рядом.
Угол излучения: Существует общепринятое мнение, что ширина диаграммы направленности антенны – это угол между двумя точками (в той же плоскости) между которыми излучение происходит в «половину мощности», т.е. на 3дБ меньше максимального излучения. Другие цифры, кроме 3дБ, не позволят улучшить репутацию антенны, поскольку в этом случае возникнет ощущение, что антенна имеет более широкую/узкую ширину диаграммы направленности антенны, а серьезный инженер не стал бы доверять такой конструкции.
Зона уверенного приема: Такая физико-геологическая зона, в которой принимается сигнал, обычно описывается как расстояние по радиусу от места, где расположена антенна.
Для начала давайте сначала возьмем в качестве эталона антенну диполь в половину длины волны и «поместим» ее свободно в пространстве (т.е. не будем учитывать все, что находится рядом, например крепление и т.п., которые могли бы влиять на антенну). Диаграмма направленности такой антенны обычно называется «пончик», она проиллюстрирована ниже на рисунке.
Поскольку материал не может создавать мощность, то единственной альтернативой является концентрация бесполезно израсходованной энергии, например той, которая идет в направление неба, и направление ее по нужному направлению в горизонтальной плоскости. Результат виден на соседнем рисунке. Форма излучения изменилась таким образом, что та энергия, которая расходилась в стороны, теперь сконцентрирована для усиления средней половины. В результате мощность излучаемой энергии удваивается в требуемом направлении, коэффициент усиления – 3дБ.
Такая концентрация энергии может быть усилена еще более, от 6дБ (в 4 раза) до 9 дБ (в 8 раз). Диаграммы видны на рисунках ниже.
Теперь ясно, для того чтобы у антенны появился коэффициент усиления, нужно всего лишь сконцентрировать ее излучение (т.е. изменить «пончик» на диаграмме до формы тонкой «лепешки»), сделав, таким образом, излучение более интенсивным вдоль горизонтальной плоскости. Антенны с излучением по всем направлениям и коэффициентом усиления выше 9дБ непрактичны в с илу того, что концентрация энергии напрямую связана с длиной (с длинах волны) антенны. Однако, есть еще один метод концентрации излучения, который позволяет направить излучение только в одном направлении.
Если рефлектор помещен рядом с антенной диполь, то вся энергия, которая бы направлялась в направлении рефлектора, теперь отражается назад в направлении антенны диполь. Таким образом, вся энергия теперь сконцентрирована только в одной полусфере, в результате излучаемая энергия удваивается в данном направлении, коэффициент усиления – 3дБ.
Дальнейшая концентрация энергии, может быть получена с помощью использования «директоров (направителей)» и, опять же, делая угол все меньше и меньше, фокусируя всю энергию в одном направлении. Таким образом достигается более высокий коэффициент усиления. Обычно достигается коэффициент усиления в 20 дБ. Эффективный угол такой антенны мал (обычно ± 10 градусов)
В случае с антеннами с направленным излучением, нужно знать еще одну величину.
Даже сплошной кусок металла в качестве рефлектора не сможет полностью изолировать от заднего излучения по причине дифракции. Досадно, но самые кончики металла станут причиной того, что сигнал будет поворачиваться на углах рефлектора в обратном направлении (или, в случае приема, от задней части по направлению к антенне диполь).
Коэффициент такого обратного излучения антенны определяется относительно переднего (требуемого) направления антенны и обычно выражается в дБ.
В заключение:
Антенны вовсе не производят сами собой неким магическим образом энергию, они всего лишь концентрируют излучаемую радиочастотную энергию в узком направлении таким образом, что возникает ощущение, будто из антенны в требуемое направление выходит больше мощности.
Насколько видно из вышеописанного, коэффициент усиления также является «потерей». Чем выше коэффициент усиления антенны, тем менее угол ее полезного использования. От внимания многих ускользает тот факт, что энергия была «украдена» у прочих направлений, а затем навязана излучению в требуемом направлении.
Что такое коэффициент усиления антенны: ответ Wi-Fi-Гида
Всем привет! Я не буду вас грузить сложными понятиями, а также формулами. Те люди, которые их знают, на эту статью точно не попадут. Я постараюсь приблизительно представить в вашей голове, что же такое коэффициент усиления антенны. Во второй главе я расскажу, как можно усилить Wi-Fi или мобильный интернет (3G, 4G), так же как можно ловить или передавать интернет на многие километры. Если у вас останутся вопросы после прочтения статьи, то пишите в комментариях.
Разбор
Давайте начнем с самого начала. Все эти антенны нужны для излучения радиоволн. Что же такое радиоволны? – это электромагнитное излучение. Её используют почти везде – мобильна связь 3G, 4G, 5G, LTE, Wi-Fi, спутниковый интернет, радио и т.д.
Свет является такой же волной, только имеет более высокую частоту. Давайте представим себе, что у нас есть лампочка. Мы возьмем эту лампочку и прикрутим её в большой комнате. Если включить эту лампочку, то свет начнет светить во все стороны. Так как комната большая, то большая часть углов будут еле-еле подсвечены или будут полностью погружены во мрак.
Теперь мы возьмем, и с одной стороны лампочки установим специальный отражатель с зеркальной поверхностью. Теперь лампа начнет светить только в одну сторону – пучок света стал сильнее и может осветить даже более темные участки и углы. Если отражатель сделать уже по отношению к выходному свету, то пучок станет также уже, а расстояние, на которое сможет пройти свет без серьезного затухания, станет выше. Но с других сторон, где свету преграждает стенки отражателя – везде будет тьма. На таком принципе работаю все фонарики.
А теперь мы подобрались к простому определению. Коэффициент усиления (КУ) антенны – это способность антенны концентрировать сигнал в определенном направлении, при этом возможность как принимать, так и передавать сигнал.
Рассчитывается как отношение мощности, которая необходима, чтобы создать напряжение антенны в концентрированном направлении, к мощности, которая нужна была бы (в теории), чтобы подвести к эталонной антенне для создания такой же напряженности поля в той же точке.
Пока ничего не понятно? Смотрите, эталонная антенна – это та антенна, которая как наша лампочка распространяет радиоволны во все стороны. А вот реальная антенна – это как раз та самая лампочка с отражателем, которая концентрирует сигнал в определенный пучок.
Посмотрите на рисунок выше. КУ – это как раз размер того самого пучка. Чем выше КУ, тем сам пучок имеет меньший угол, но более высокую длину или, если быть точнее, дальность распространения. КУ антенны измеряется в децибелах (дБ, дБи, дБд). В характеристиках роутера, а также у 3G/4G или Wi-Fi антенн обычно используется показатель dBi (или дБи).
Посмотрите на картинку ниже. Как понятно из картинки, чем больше параметр dBi, тем дальше летит радиоволна. Но тут также нужно учитывать, что сам размер пучка становится меньше.
Именно поэтому дома у роутера устанавливают всенаправленные антенны с dBi от 3 до 5, чтобы не приходилось ходить с телефоном и ловить этот самый пучок. Но если вы хотите передать интернет с вай-фай на несколько километров по мосту, то уже используют устройства с большим показателем КУ – от 15 dBi и больше.
Как улучшить сигнал и усилить антенну?
Смотря для чего вы хотите это сделать. Для домашнего Wi-Fi можно сделать отдельную всенаправленную антенну. Особенно это помогает, если антенки у маршрутизатора внутренние. Второй вариант, если вы хотите построить вай-фай мост.
Что такое Wi-Fi мост? Представим ситуацию, что вы живете в частном доме. А ваш брат через пару километров в многоэтажке. Все провайдеры вам отказывают проводить интернет. 3G/4G не ловит, и тогда на помощь может прийти Wi-Fi мост. Ваш брат покупает (или делает сам) Wi-Fi пушку, которая подключена к его роутеру. Вы делаете или покупаете аналогичное устройство.
Обе эти Wi-Fi пушки из-за большого КУ должны быть направлены точно друг на друга. Вспоминаем, чем больше КУ, тем дальше летит радиоволна, но имеет меньший размер луча. Вот таким вот образом можно передать вай-фай с интернетом по мосту на несколько километров.
Если же вы хотите усилить мобильный сигнал, то все делается примерно аналогично. Покупаем или делаем узконаправленную антенну с высоким КУ. Направляем её на вышку. Антенну можно подключить к повторителю дома. Опять же есть как самодельные варианты, так и покупные. О тех и других я уже подробно писал тут.
Формула
Видео
Если еще остались вопросы, то можете посмотреть полезное видео ниже или обратиться ко мне в комментариях.
Что такое усиление антенны простыми словами
У радиоволны есть ещё одна характеристика: поляризация, но о ней расскажем позднее.
— свет распространяется прямолинейно;
— если на пути луча света поставить большую преграду, то образуется тень;
— если на пути луча света поставить преграды, которые меньше длины волны или сравнимы с ней, то свет, претерпев некоторые изменения, пройдёт дальше;
— стекло ослабляет яркость света, иногда очень сильно;
— если на пути солнечного света поставить увеличительное стекло, то в его фокусе получится яркая ослепительная точка, которая может зажечь дерево.
Радиоволны имеют большую длину волны, чем свет, но от этого законы их распространения не меняются. В технике используются радиоволны различных частот (длин волн):
— телевидение: 50-600 МГц (6-0,5 м)
— мобильная связь GSM900: 900 МГц (33 см);
— мобильная связь GSM1800: 1800 МГц (17 см);
— 3G интернет: 2000 МГц (15 см);
— Wi-Fi: 2450 МГц (12 см) и 5750 МГц (5 см).
Радиоволны распространяются прямолинейно, так же как и свет.
Если на пути радиоволн, представленных в таблице, поставить преграду размером порядка одного метра, то волна не ослабнет. Здесь можно провести аналогию с волнами на море: большая волна не ослабнет из-за находящегося в воде человека, а большой корабль не даст волнам пройти.
Если же на пути радиоволны будет большое препятствие, например, многоэтажный дом, то оно значительно уменьшит сигнал, вплоть до полного его ослабления.
Оконное стекло также ослабляет радиоволны.
Спутниковая тарелка действует подобно увеличительному стеклу: собирает сигнал с большой площади и концентрирует в одной точке. И наоборот, сигнал исходит из одной точки, а тарелка собирает его и преобразует в узкий направленный пучок.
Любая антенна будет одинаково хорошо работать как на приём, так и на передачу сигнала в пределах своего рабочего диапазона частот. Поэтому для простоты в дальнейшем мы будем говорить только про приём или только про передачу.
Коэффициент усиления антенны характеризует способность антенны концентрировать сигнал в каком-либо определённом направлении. Приведём аналогию: представим, что в тёмной комнате у вас горит слабая 1 Вт лампочка. Вы сможете увидеть лишь контуры предметов в этой комнате, а дальние углы останутся тёмными. Теперь у вас в руках есть ещё небольшое зеркало. Оно отражает часть света от лампочки, и одна половина комнаты освещена в два раза лучше, но другая половина скрыта в тени от зеркальца. В третьем случае поместим эту лампочку в отражатель от фонарика: получится пятно яркого света размером с ладонь. При помощи этого фонаря вы сможете осветить самый дальний угол комнаты. Но ничего, кроме этого пятна света вы не увидите. Таким образом, во всех случаях лампочка оставалась одна и та же. Мы использовали различные отражатели, меняя концентрацию светового луча в определённом направлении.
Абсолютно так же это происходит и у антенн. На самом деле антенны не усиливают, а концентрируют сигнал в одном или нескольких направлениях, и термин «коэффициент усиления» не должен вводить вас в заблуждение.
Коэффициент усиления измеряется в децибелах (дБ). Это логарифмическая величина и введена она для упрощения математических расчетов. Коэффициент усиления сравнивает мощность изотропного излучателя (одинокой лампочки без зеркал в примере) и мощность данной антенны. Для перевода отношения мощностей в децибелы необходимо воспользоваться следующей таблицей.
Усиление, разы | 10000 | 100 | 10 | 4 | 2 | 1,26 | 1 | 0,79 | 0,5 | 0,25 | 0,1 | 0,01 | 0,0001 |
Усиление, дБ | 40 | 20 | 10 | 6 | 3 | 1 | 0 | -1 | -3 | -6 | -10 | -20 | -40 |
Например, если одна антенна имеет Ку=10 дБ, вторая имеет Ку=13 дБ, то вторая антенна мощнее первой в два раза.
Из двух антенн с одинаковым коэффициентом усиления и сходной конструкции меньшие размеры будет иметь антенна, предназначенная для приёма волн меньшей длины волны. Например, WiFi антенна усилением 20 дБ на частоту 5500 МГц имеет размер 18х18 см, а антенна усилением тоже 20 дБ, но на частоту 1800МГц, имеет размеры 60х60 см.
Поляризация радиоволны — это явление направленного колебания векторов напряженности электрического или магнитного полей. Поляризация может быть линейной (в направлении, перпендикулярном направлению распространения волны), круговой (правой либо левой, в зависимости от направления вращения вектора индукции) или эллиптической (промежуточный случай между круговой и линейной поляризациями). В наземной связи в основном используется только линейная поляризация.
О децибелах для радиоинженеров
Узнайте о децибелах и их вариациях в контексте радиочастотного проектирования и тестирования.
Радиотехника, как и все научные дисциплины и подразделы, включает в себя довольно много специализированной терминологии. Одним из наиболее важных слов, которые вам понадобятся при работе в мире радиочастот, является «дБ» (и некоторые его варианты). Если вы глубоко закрепились в проектировании радиочастотных систем, то можете обнаружить, что слово «дБ» становится вам таким же знакомым, как и ваше собственное имя.
Как вы, наверное, знаете, дБ означает децибел. Это логарифмическая единица, которая обеспечивает удобный способ работы с отношениями, такими как отношение между амплитудами входного и выходного сигналов.
Отношение напряжений сигналов на выходе и входе усилителя
Мы не будем описывать общую информацию о децибелах, потому что она уже доступна на этой странице учебника «Основы электроники и схемотехники». Вместо этого мы сосредоточимся на практических аспектах децибелов в конкретном контексте радиочастотных систем.
Относительный, не абсолютный
Легко забыть, что дБ является относительной единицей. Вы не можете сказать: «Выходная мощность составляет 10 дБ».
Напряжение является абсолютной величиной, потому что мы всегда говорим о разности потенциалов между двумя точками; обычно мы имеем в виду потенциал одного узла относительно узла земли 0 В. Ток также является абсолютной величиной, поскольку единица измерения (ампер) включает в себя определенное количество заряда в течение определенного количества времени. Децибел, напротив, это единица измерения, которая включает в себя логарифм отношения между двумя числами. Ярким примером является коэффициент усиления усилителя: если мощность входного сигнала равна 1 Вт, а мощность выходного сигнала равна 5 Вт, мы имеем коэффициент 5:
\[10 \log_ <10>\left( < P_<вых>\over P_ <вх>> \right) = 10 \log_ <10>(5) \approx 7 дБ\]
Таким образом, этот усилитель обеспечивает усиление по мощности 7 дБ, то есть соотношение между мощностью выходного сигнала и мощностью входного сигнала может быть выражено как 7 дБ.
Почему дБ?
Конечно, можно было бы проектировать и тестировать радиочастотные системы без использования дБ, но на практике дБ используются везде. Одно из преимуществ заключается в том, что шкала дБ позволяет выражать очень большие отношения без использования очень больших чисел: усиление по мощности в 1 000 000 раз составляет всего 60 дБ. Кроме того, при использовании дБ легко вычисляется общий коэффициент усиления или потерь в цепи прохождения сигнала, поскольку отдельные значения в дБ просто складываются (тогда как, если бы мы работали с обычными отношениями, нам потребовалось бы умножение).
Еще одно преимущество – это то, что мы знаем из нашего опыта работы с фильтрами. Радиочастотные системы вращаются вокруг частот и различных способов генерации, управления или воздействия на эти частоты с помощью компонентов и паразитных элементов схемы. Шкала в дБ в подобном контексте удобна, потому что графики частотных характеристик интуитивно понятны и визуально информативны, когда ось частот использует логарифмический масштаб, а ось амплитуды использует шкалу в дБ.
Диаграмма Боде, показывающая амплитудно-частотные характеристики различных полосовых фильтров
Когда дБ абсолютны?
Мы установили, что дБ является отношением и, следовательно, не может описывать абсолютные значения мощности и амплитуды сигнала. Однако было бы неудобно постоянно переключаться между значениями в дБ и не в дБ, и, возможно, именно поэтому радиоинженеры ввели единицу измерения дБм (dBm).
Мы можем избежать проблемы «только отношение», просто создав новую единицу измерения, которая всегда будет содержать опорное значение. В случае дБм опорное значение равно 1 мВт. Таким образом, если у нас есть сигнал 5 мВт, и мы хотим оставаться в области дБ, мы можем выразить мощность этого сигнала как 7дБм:
\[10 \log_ <10>\left( < 5 мВт \over 1 мВт >\right) = 10 \log_ <10>(5) \approx 7 дБм\]
Вы определенно хотите ознакомиться с концепцией дБм. Это стандартная единица, используемая в реальной разработке радиочастотных систем, и она очень удобна, когда вы, например, вычисляете энергетический баланс линии связи, поскольку усиления и потери, выраженные в дБ, могут просто складываться и вычитаться из выходной мощности, выраженной в дБм.
Существует также единица дБВт (dBW); в качестве опорного значения она использует 1 Вт вместо 1 мВт. В настоящее время большинство радиоинженеров работает с относительно маломощными системами, и это, вероятно, объясняет, почему дБм встречается чаще.
Больше вариаций дБ
Две других единицы измерения, основанных на дБ, – это дБн (dBc) и дБи (dBi).
Вместо фиксированного значения, такого как 1 мВт, дБн (dBc) использует в качестве опорного сигнала уровень несущей сигнала. Например, фазовый шум (смотрите второй раздел данной главы) выражается в единицах дБн/Гц (dBc/Hz); первая часть этой единицы измерения указывает, что мощность фазового шума на определенной частоте измеряется относительно мощности несущей (в этом случае «несущая» относится к мощности сигнала на номинальной частоте).
Идеализированная точечная антенна принимает определенное количество энергии от схемы передатчика и равномерно излучает ее во всех направлениях. Считается, что эти «изотропные» антенны имеют нулевой коэффициент усиления и нулевые потери.
Однако, другие антенны могут быть сконструированы таким образом, чтобы концентрировать излучаемую энергию в определенных направлениях, и в этом смысле антенна может иметь «усиление». Антенна на самом деле не добавляет мощности к сигналу, но эффективно увеличивает переданную мощность путем концентрации электромагнитного излучения в соответствии с направлением системы связи (очевидно, что более практично, когда разработчик антенны знает пространственную взаимосвязь между передатчиком и приемником).
Здесь вы можете увидеть неравномерное распределение излучаемой энергии, которая приводит к усилению в прямом направлении (т.е., 0°)
Единица измерения дБи (dBi) позволяет производителям антенн указывать «коэффициент усиления», который использует популярную шкалу дБ. Как всегда, когда мы работаем с дБ, нам необходимо отношение, а в случае с дБи (dBi) коэффициент усиления антенны выражается через опорное усиление изотропной антенны.
Некоторые антенны (например, те, которые сопровождаются параболическим зеркалом, «тарелкой») имеют значительный коэффициент усиления, и поэтому они могут внести нетривиальный вклад в расстояние и производительность радиочастотной системы.
Простые антенны для раций, ISM-диапазонов и др. приложений. Максимально просто о сложном. Часть 1. Теория
Оглавление
>>> Часть 1. Теория. Простыми словами о сложных материях.
Часть 2. Обзор существующих решений.
Часть 3. Простые практические конструкции своими руками.
Введение
Поводом для написания этой статьи стали предыдущие статьи автора, посвящённые постройки Meshtatic-радиочата на LoRa-модемах:
Часть 5 планировалась как тема по антеннам в приложении к построению Meshtastic-сети, но объём рассматриваемых вопросов и написанного материала оказался гораздо больше, чем хватило бы на одну статью, потому автор решил вынести антенны в отдельное направление.
Кроме того, общаясь в профессиональных и около/радиолюбительских кругах, автор заметил, что антенная тематика неоднократно всплывает в ходе решения большого количества вопросов, касающихся как обычной нелицензируемой радиосвязи посредствам дешёвых раций, так и создания простых радиомодемных устройств ISM-диапазона 433МГц/868МГц. И, как оказывается, большинство людей или не обладает какими-либо знаниями в антенном направлении или они очень сильно поверхностны.
Во-первых – отсутствием элементарной теоретической базы в антенной области, пользуются Китайцы, продавая огромное количество контрафакта антенной тематики;
Во-вторых, сильно падает качество и дальность связи, независимо от того связываетесь ли вы голосом или пытаетесь подружить между собой два или более радиомодемов.
По интернету гуляет огромное количество довольно сложного материала, касающихся теории антенн. Сейчас доступно большое количество учебников и методических материалов. В свободном доступе присутствуют программные решения для моделирования антенн. Но, как показывают наблюдение и практика – учебники непрофессионалам освоить практически нереально, с формулами особенно, моделирование антенн доступно только лишь профессионалам. Публика вынуждена тратить деньги, перебирая антенны с Aliexpress или делясь между собой конструкциями антенн из прошлого века, которые или работают плохо или совсем не работают, или работают там, где люди используют их не по назначению. Простое изложение сложной антенной теории, так сказать, «для гуманитариев» и остальной непрофессиональной публики и подавно отсутствует.
Автор решил взять на себя смелость и попытался максимально просто описать базовые понятия по антенной теории и составил универсальные рекомендациями при выборе антенны для большинства простых задач. Благодаря этим знаниям вам больше не навешают лапши на уши ушлые продавцы с Aliexpress и упрощается хождение по просторам Aliexpress в надежде найти правильную антенну.
Ещё одним фактором, послужившим стимулом к написанию статьи стало появление большого количества приборного инструментария для замеров характеристик антенн и не только. Если, буквально 10 лет назад, непрофессионалы могли только философствовать на тему антенн. Строить догадки, о том рассказали им правду о дальности связи или в очередной раз баек нарассказывали, то сегодня, имея небольшой багаж базовых знаний по антенной теории и обзаведясь недорогим прибором для измерения антенных характеристик, вы легко сможете проверить антенну. Ну а дальность связи сможете оценить сами, когда все элементы цепочки сделаны и гарантированно работают правильно.
И последнее, автор статьи предполагает, что заинтересованный в антенной теории человек, для понимания нижеописанного, обладает базовыми математическими знаниями и базовыми понятиями в области радиотехники, такими как децибел (дБ), длина волны, частота, и подобными…
Основные определения и аспекты
В антенной, как и в любой другой тематике существует несколько базовых определений, характеризующих работу любых антенн:
Диаграмма направленности (ДН)
По наблюдениям автора, в данных вопросах столько легенд, домыслов и спекуляций, что стоит обратить на это пристальное внимание.
Автор умышленно для непрофессионалов опускает довольно сложную и пространную теорию работы антенн с тысячами сложных формул. Для начинающих или не профильных по профессии коллег она будет излишня, а если есть интерес, то по интернету вы найдёте огромное количество учебно-методических материалов на тему теории антенн. Коснёмся только самых важных моментов, которые важно знать и понимать при дальнейшем рассмотрении, описании и выборе любых антенн.
Важное примечание: следует отметить, что антенна – устройство реверсивное и имеет одинаковые характеристики как при приёме, так и при передаче. Т.е. если говорится об усилении на приём, то это же определение верно и для передачи.
Коэффициент усиления антенны, выражаемый в dBi – это усиление, выраженное в децибелах относительно антенны в виде этакого «сферического коня в вакууме», т.е. изотропного бесконечно малого излучателя в вакууме, т.н. точечный источник излучения. Для нас это просто абстрактная цифра, как бы полный 0 в точке начала отсчёта усиления.
Сферический конь в вакууме
Ближайший приблизительный аналог в нашем материальном мире, от которого принято отсчитывать усиление – это ¼ волновой излучатель над идеально проводящей поверхностью. Т.к. ¼ волновой излучатель имеет конечную длину, бОльшую, чем от бесконечно малого источника, то значит, он тоже имеет своё небольшое усиление – примерно 1.8дБ. Такой моделью практически никто не пользуется, но это, чисто для представления.
Коэффициент усиления антенны, выражаемый в dBd – это усиление, относительно простейшей дипольной антенны. В свою очередь, соотношение усиления между идеальной изотропной антенной и идеальным полуволновым диполем составляет 2,15дБ. Т.е. усиление антенны 0dBd =2.15dBi, соответственно антенна с усилением 3dBd = 5.15dBi Усиление в dBd применяется обычно для описания направленных свойств антенн и некоторых других типов антенн, описание которых пока пропустим для простоты.
В вопросе усиления, как мы часто можем видеть в разнообразных рекламных проспектах по антеннам, особенно китайского происхождения, широкое поле для манипуляций и обмана несведущего пользователя. Продавцы в погоне за прибылью и выставлении своих антенн в более выгодном свете, чем у конкурентов, часто умышленно забывают дописать буковку «i», бывает не пишут вообще слова dB или просто нагло рисуют какие-то заоблачные цифры, не соответствующие даже приблизительно реальным характеристикам их изделия.
На практике, в 98% случаев, понятие «усиление антенны» носит условный и весьма приблизительный характер. Этот параметр в последнее время, чаще всего, берётся из математической модели, по которым строится антенна. Математическое моделирование продвинулось так далеко, что уже стало возможным построить электромагнитную модель поля в объёме и просчитать распространение поля на заданное расстояние в любой среде.
Измерениями реального усиления антенн занимаются специализированные лаборатории для военных и других ведомственных служб.
КПД антенны
Диаграмма направленности (ДН)
Когда мы говорили про изотропный бесконечно малый излучатель в виде маленькой лампочки, то обратили внимание, что в любой точке пространства от этой лампочки есть свет, уровень света везде вокруг постоянен, но сила света слаба. Если с одной из сторон от лампочки поставить отражающую поверхность, то сила света в какой-то области в стороне отражателя упадёт, а в противоположной, наоборот увеличится. Так мы создали диаграмму направленности источника излучения. Т.е. энергия, которая раньше равномерно уходила в любую точку пространства теперь меняет направление в отражателе и идёт вся в одну сторону.
В антенной технике ДН образуется за счёт фазового сложения/вычитания волн в каждой точке пространства. Для простой вертикальной ¼ волновой или дипольной антенны, энергия вокруг антенны распространяется по кругу, потому в вертикальной плоскости ДН получается круговой. Если рассматривать распространение радиоволн в горизонтальной плоскости, то получается восьмёрка. В объёмном представлении – это ТОР.
Для многоэлементных антенн происходит сложное многофазное переотражение от разного количества элементов – в результате которого ДН излучения/или приёма приобретают форму сложной узкой кардиоиды.
Хорошее описание ДН представлено в статье «Теория радиоволн: антенны» в 2012 году.
Полный импеданс и резонанс
Полный импеданс описывается на одной частоте точкой или кривой в полосе частот. Для понятного представления о характеристике полного импеданса используется «Диаграмма Смита».
Для удобства представления, диаграмма нормируется (относительно чего она строится) к точке резонанса, где антенна (или иное устройство) имеет активное сопротивление 50 Ом – это центр диаграммы. Короткое замыкание на ней представляется в виде точки слева – 0 Ом, а обрыв в цепи – в точке справа – бесконечный импеданс.
Если вы внимательно следите за мыслью, то можете догадаться, что резонанс всегда находится на горизонтальной линии. Значение реактивного импеданса в зависимости от характера отображается выше или ниже горизонтальной линии.
Направление изменения импеданса на диаграмме Смита
КСВ (он же КСВН, он же SWR) и согласование антенны
Теперь, когда мы узнали, чем характеризуются основные параметры антенны сразу становится понятно откуда берутся иные, вероятно часто слышимые раньше определения.
КСВ антенны – Коэффициент Стоячей Волны (по Напряжению) (англ. standing wave ratio) – это параметр, характеризующий состояние согласования антенны с приёмно-передающим устройством, к которому антенна подключена. Если входной/выходной импеданс устройства настроен условно на 50 Ом, и настроенная в резонанс антенна имеет 50 Ом эквивалентного активного сопротивления, то рассогласование отсутствует, и вся энергия перетекает из передатчика в антенну, а затем в пространство или из пространства в антенну, а затем в приёмник без потерь. В таком случае говорят, что КСВ=1. Если импеданс антенны отличается от 50 Ом в ту или иную сторону и/или имеет реактивную составляющую в своём импедансе, то наступает рассогласование. Энергия частично отражается от антенны (при передаче) или от приёмника (при приёме) и суммарное количество энергии, излучённое в пространство или принятое приёмником, уменьшается. Степень рассогласования характеризуется повышением уровня КСВ.
Для простоты понимания, автор умышленно не приводит в статье даже не сильно сложные формулы. Если вы хотите более подробно понять как считается КСВ, то отправляемся к учебникам.
На практике, всё что вам достаточно знать – это приемлемым уровнем рассогласования антенны при приёме является КСВ Пример измерения КСВ автомобильной антенны
Когда в цепи «передатчик – антенна» появляется дополнительный элемент – переносчик энергии – коаксиальный кабель, то он тоже должен быть максимально согласован по импедансу, как с антенной, так и с приёмно-передающим устройством. Точно так же, если на места стыка «устройство-кабель» или «кабель-антенна» присутствует разность импедансов, то наступает рассогласование в общей цепи и происходят потери энергии. По этой причине делают коаксиальные кабели стандартных импедансов 50 и 75 Ом. Кроме того, в коаксиальном кабеле присутствуют потери при переносе энергии в материале. Чем кабель толще и короче, тем потерь в нём меньше.
Обратные потери (коэффициент отражения – reflection coefficient)
Этот параметр не очень часто можно услышать в около/радиолюбительской среде, но он часто применяется профессионалами связистами. Этот коэффициент показывает какое количество энергии отразилось от антенны обратно в кабель. Выражается в Децибелах с обратным знаком. Таким образом видно, при неидеальном согласовании, чем больше энергии ушло в антенну на излучение, тем меньше её отразилось обратно. Применительно к антенне этот параметр практически никогда не описывается, но при наличии прибора для измерения антенных характеристик конкретно по этому параметру хорошо видно качество работы антенны. Даже не по параметру КСВ, а именно по обратным потерям. Смотрим скрин прибора:
Типовой график КСВ и Обратных потерь
Фиолетовым цветом у нас показан параметр обратных потерь, а синим цветом – КСВ антенны. Если смотреть по графику КСВ, то в полосе частот 430-450МГц антенна вроде бы работает хорошо, но по графику обратных потерь видно, что лучше всего антенна работает в довольно небольшой полосе от центральной частоты 440МГц. Ещё более показательным становится график, когда антенна сверхширокополосная, когда она имеет более-менее низкий но не постоянный уровень КСВ в очень широкой полосе, но точки идеального согласования у неё неизвестны.
Пример графика КСВ и Обратных потерь в широкой полосе
Полезные ссылки по теме и источники откуда была взята графика:
Собственные наработки автора.
Теперь, когда у вас есть основные базовые понятия по антеннам, вы можете критично выбирать любые антенны для любых приложений: будь то антенны для ТВ, для портативной радиостанции или для Meshtastic-модема.
В следующей статье, будут рассмотрены примеры замеров разных антенн для диапазона 433МГц и 868МГц и предложены универсальные рекомендации по выбору антенн.
P.S. Автор не претендует на истину в последней инстанции; Если вы профессионал и/или глубокий теоретик в области антенной техники и обнаружили в статье какие-либо неточности, сообщите об этом автору в личку.
Часть 1 >>>>>>>>>>>> Часть 2. Обзор существующих решений.