что делают с радиоактивными отходами
Переработка отработанного ядерного топлива
Переработка ОЯТ (отработанного ядерного топлива) — это явление далеко не новое. Что уж там, на заре атомной промышленности переработка ОЯТ была одним из ключевых этапов производства. Правда, использовалась она не в мирных целях, а для наработки оружейного плутония в рамках Манхэттенского проекта. Дело в том, что плутоний является побочным продуктом работы ядерного реактора с ураном в качестве топлива. После реактора отработанное топливо направлялось на переработку с целью выделения из него фракций плутония.
Современная переработка ОЯТ преследует несколько иные цели:
снижение общего количества РАО;
повторное использование некоторых элементов ОЯТ;
снижение использования природного урана;
При этом возникает закономерный вопрос: если всё так замечательно, почему некоторые страны не занимаются переработкой и причисляют ОЯТ к радиоактивным отходам? На это имеется две причины:
переработка ОЯТ — это хоть и благородное занятие, но всё же довольно опасное как для окружающей среды, так и для людей;
Если вторая причина носит скорее историко-политический характер и имеет мало общего с атомной энергетикой, то первая ставит под вопрос обоснованность переработки ОЯТ с учетом рисков радиационного заражения. На сегодняшний всего 4 страны имеют промышленные радиохимические предприятия, необходимые для переработки ОЯТ. Одна их этих стран — Россия. На примере российской атомной промышленности рассмотрим процесс переработки ОЯТ, риски и методы их минимизации, а также какие проблемы решает и может решить переработка.
Ядерное топливо
Желтый кек
ТВЭЛ
Твэл представляет собой металлическую трубку и служит для отвода тепла и герметизации делящегося материала. В качестве основы для твэла используется цирконий или нержавеющая сталь, в зависимости от реактора и условий внутри него. Для удобства, твэлы объединяют между собой в тепловыделяющую сборку — ТВС. Именно ТВС попадет в активную зону реактора и выйдет из него.
ТВС
ОЯТ: жизнь после реактора
изношенные твэлы и ТВС;
значительное, но всё же неполное выгорание уран-235;
накопившиеся в результате ядерной реакции трансурановые элементы, в том числе изотопы плутония, радиоактивные осколки деления ядер;
Первое, что ожидает ОЯТ — это бассейн выдержки. Сейчас проводить какие-либо манипуляции с ОЯТ попросту невозможно, поэтому оно отправляется в специальное хранилище прямо на станции. Через несколько лет активность спадет и ОЯТ можно будет вывезти со станции.
Бассейн выдержки
Дальнейшая судьба ОЯТ зависит от того, на каком реакторе оно работало. Оно отправится либо на переработку на ПО «Маяк» либо на длительное хранение на Горно-Химический комбинат. Топливо для некоторых реакторов не перерабатывается и сразу направляется в ГХК.
Переезд
Вне зависимости от пункта назначения, хотелось бы, чтобы всё доехало в целости и сохранности. При перевозках различных радиоактивных материалов происходили аварии, но с ОЯТ подобных инцидентов не происходило (надеемся, и не произойдет). С целью перевозок ОЯТ и других радиоактивных материалов была основана компания «Атомспецтранс».
В России, как и других странах, большинство перевозок ОЯТ осуществляется с помощью железнодорожного транспорта. Он считается наиболее безопасным. Автомобильные перевозки подвержены террористической угрозе и обычно ограничиваются маршрутом «от хранилища до жд станции». Транспортировка по морю применяется только в том случае, если ОЯТ нельзя доставить по суше. И самый нежелательный способ перевезти ОЯТ — это авиаперевозки. Они влетают в копеечку, а последствия от возможной аварии намного выше, чем при наземных перевозках Самолетом ОЯТ вывозят только в самых крайних случаях. Например, из-за войны в Персидском заливе в 90-х годах Россия вывозила из Ирана ОЯТ местного исследовательского реактора.
Разумеется, как к транспорту, так и к ОЯТ применяются повышенные требования безопасности. Радиоактивные материалы помещают в специальный контейнер — транспортный упаковочный комплект. Он защищает ОЯТ от физических повреждений извне, а окружающую среду от радиации.
ТУК-109Т для ОЯТ РБМК-1000
Для перевозок используются специальные виды транспорта. Например, существуют разные типы вагонов под транспортировку ОЯТ того или иного реактора. И, разумеется, любая перевозка ОЯТ не обходится без охраны и обученного персонала.
Вагон для перевозки ОЯТ
Итак, ОЯТ добралось на переработку на ПО «Маяк». Что дальше?
Переработка
Несмотря на то, что ОЯТ своё «отработало», в нем присутствуют полезные элементы:
В процессе работы реактора уран-235 сгорает не полностью, а частично. В зависимости от реактора, доля урана-235 в ОЯТ может оказаться больше, чем в природном.
Всё остальное(детали конструкции, такие твэлы и ТВС, продукты деления и т.п.) — это радиоактивные отходы и их дальнейшая судьба не связана с переработкой.
Основная загвоздка переработки заключается в твэлах. Герметизация твэла необходима для того, чтобы оставить самые радиоактивные и долгоживущие продукты деления в замкнутом пространстве и не допустить их распространения. При переработке герметизация нарушается и возникают дополнительные риски, которые можно исключить или по крайней мере снизить при должном уровне технологий.
Дальнейшее применение
Уран, получаемый из ОЯТ, называется регенерированным. Он используется уже несколько десятилетий и география его применения выходит за границы 4-х стран с радиохимической промышленностью. Однако выделить существенные экономические и ресурсные плюсы такого применения сложно.
Помимо регенерированного урана, переработка может предложить новые виды топлива, например, РЕМИКС-топливо. Концепция следующая: после переработки ОЯТ, добавлять некоторое количество обогащенного урана к выделенной уран-плутониевой фракции. В данном топливе в качестве делящегося материала выступает как уран, так и плутоний.
Наиболее перспективное направление переработки связано с реакторами на быстрых нейтронах. Такие реакторы с топливом на основе плутония обладают важной особенностью: количество нейтронов, освобождающихся в ходе цепной реакции, намного выше, чем в урановых реакторах. Появляется возможность использовать их не только для поддержания цепной реакции основного материала, но и для чего-то ещё. Например, для наработки плутония из урана-238. При этом, количество нового плутония может превышать количество сгоревшего в активной зоне плутония. Такой реактор называется реактором-размножителем, и отношение нового плутония к сгоревшему может достигать 1,3-1,4. Это позволит полноценно использовать не только уран-235, но и уран-238, которого в природе намного больше.
Дата-центр ITSOFT — размещение и аренда серверов и стоек в двух дата-центрах в Москве. UPTIME 100%. Размещение GPU-ферм и ASIC-майнеров, аренда GPU-серверов, лицензии связи, SSL-сертификаты, администрирование серверов и поддержка сайтов.
Вторая жизнь урана: что делают в современном мире с отработанным ядерным топливом
Атомная энергетика — одна из самых экологичных с точки зрения выбросов углекислого газа: за 1 кВт⋅ч атомные электростанции выбрасывают всего 12 г СO2. Для сравнения, у природного газа этот показатель составляет 490 г/кВт⋅ч, а у угля — 820 г/кВт⋅ч. Однако атомных электростанций до сих пор не слишком много — в первую очередь, потому что вопрос, что делать с отработанным ядерным топливом, остается нерешенным. Общественное восприятие, часто основанное на мифах, заключается в том, что мы понятия не имеем, что делать с ядерными отходами. «Хайтек» рассказывает, какие технологии утилизации ядерного топлива существуют, какие страны хранят такие отходы и как избегают утечек — таких, как на Фукусиме и в Чернобыле.
Читайте «Хайтек» в
Почему атомная энергетика экологична?
По сравнению с электрогенерирующими установками, работающими на ископаемых или возобновляемых видах топлива, атомные электростанции имеют очень легкий углеродный след. Например, при сжигании биомассы выделяется 230 г CO2 за кВт⋅ч, при добыче электричества с помощью гидростанций — 24 г CO2 за кВт⋅ч, и только 12 г CO2 за кВт⋅ч при добыче электричества на атомной станции.
Какое отработанное топливо подлежит переработке?
Существующие на данный момент 440 ядерных энергетических реакторов, работающих по всему миру, производят примерно 10 500 т отработанного топлива в год. Во время производства энергии потребляется только приблизительно 5% урана, а также генерируются побочные продукты, такие как плутоний. Как и оставшийся уран, плутоний подлежит переработке.
В тепловом реакторе нейтроны, которые формируются довольно быстро, замедляются за счет взаимодействия с соседними атомами с низким атомным весом, такими как водород в воде, которая протекает через активную зону реактора. Все, кроме двух из 440 действующих коммерческих ядерных реакторов, являются тепловыми, и большинство из них используют воду как для замедления нейтронов, так и для передачи тепла, которое возникает в процессе распада, в электрические генераторы. Большинство этих тепловых систем — то, что инженеры называют легководными реакторами.
В атомных реакторах используются два изотопа урана — менее распространенный уран-235 и более распространенный уран-238. Обычные реакторы в основном расщепляют уран-235 для выработки энергии, а уран-238 в чистом виде часто считается бесполезным. Так, когда в стандартном реакторе заканчивается уран-235 — это происходит примерно через три года после начала использования, — его дозаправляют, даже если в нем еще много урана 238.
Когда сотрудники АЭС удаляют отработанное топливо, в нем остается около 95% от его первоначальной энергии — другими словами, используется только 5% его энергии. Только около одной десятой добытой урановой руды превращается в топливо в процессе обогащения (во время которого концентрация урана-235 значительно увеличивается), поэтому для выработки электроэнергии используется менее одной сотой от общего энергосодержания материала.
Большую часть (около 94%) отработанного ядерного топлива составляет уран-238, который не делится. Этот компонент является лишь слегка радиоактивным (по сравнению с другими продуктами распада — цезием-137 и стронцием-90) и, будучи отделен от продуктов деления и остальной части материала в отработанном топливе, может быть легко сохранен для будущего использования на слабо защищенных объектах.
Уран-238 также называют расщепляющимся, потому что он иногда распадается при попадании быстрого нейтрона. Он еще называется фертильным, потому что, когда атом урана-238 поглощает нейтрон без расщепления, то превращается в плутоний-239, который, как и уран-235, является делящимся и может поддерживать цепную реакцию. Он и подлежит переработке.
Ядерное топливо представляет собой герметичный контейнер из сплавов циркония или стали, в который помещены таблетки с ураном. Когда топливо переходит в разряд отработанного, его извлекают из реактора и путем химического разделения сортируют на бесполезные элементы и вещества, которые можно использовать повторно.
Пиропереработка основана на гальванизации — использовании электричества для сбора на проводящем металлическом электроде металла, извлеченного в виде ионов из химической ванны. Этот процесс проводится при очень высоких температурах.
Как с ядерным топливом поступают разные страны?
К настоящему времени по всему миру переработано около 100 тыс. т (из 290 тыс. т произведенного) отработанного топлива коммерческих энергетических реакторов. Годовая мощность переработки в настоящее время составляет около 5 тыс. т в год.
В частности, переработкой ядерных отходов занимаются Великобритания, Россия и Япония — их коммерческая перерабатывающая мощность составляет 600, 400 и 800 т в год соответственно. Ожидается, что в период с 2010 по 2030 годы в мире будет произведено около 400 тыс. т отработанного ядерного топлива, в том числе 60 тыс. т в Северной Америке и 69 тыс. т в Европе.
Процесс рециркуляции во Франции выглядит так: отработанный уран с электростанций отправляется на два перерабатывающих завода — UP-2 и UP-3, расположенных на мысе Ла Аг. Там в течение трех лет он находится в деминерализованной воде, после чего отделяется для переработки в оксидное топливо.
Ядерные отходы, которые не подлежат переработке, помещаются в специальные резервуары из стекла цилиндрической формы. В будущем правительство планирует построить глубокое подземное хранилище для этих отходов.
Заводы для переработки ядерного топлива также существуют в Великобритании (Thorp) и Японии (предприятия в Роккасе-Мура и Токае-Мура).
Как обстоят дела в России?
Сейчас в России работают десять стационарных атомных электростанций и одна плавучая — «Академик Ломоносов». Годовая выработка энергии атомными электростанциями в России, по данным Росатома, составляет 204,275 млрд кВт⋅ч — это около 18,7% всей электроэнергии, производимой в стране. В госкорпорации отмечают, что этого достаточно, чтобы обеспечивать электричеством Москву и Московскую область примерно в течение двух лет.
В России уже накоплено около 20 тыс. т собственного отработанного ядерного топлива — при перерабатывающей коммерческой мощности в 400 т в год. Единственным предприятием, на котором ведется переработка отработанных ядерных отходов, является РТ-1 на ПО «Маяк» — предприятии в закрытом городе Озерск в Челябинской области.
Второе предприятие РТ-2, в горно-химическом комбинате в Красноярском крае, долгое время находилось в стадии замороженного строительства. На нем планировали организовать хранение отработанного ядерного топлива реакторов АЭС, его переработку и производство нового ядерного топлива для реакторов на быстрых нейтронах. В 2018 году на РТ-2 провели тестовую переработку отработанного ядерного топлива с нескольких российских АЭС.
Срок службы существующих тепловых реакторов в России (к этому типу принадлежат восемь из десяти стационарных АЭС) в ближайшем будущем завершится. Если их заменят быстрыми реакторами, отработанные ядерные отходы станет проще и безопаснее перерабатывать, потребность в добыче новой урановой руды, запасы которой ограничены, почти исчезнет. А благодаря рециркуляции топлива использовать существующие запасы можно будет еще очень долго.
Почему атомная энергетика безопасна?
В истории гражданской ядерной энергетики произошло три крупных аварии на реакторах — на АЭС, расположенных на острове Три-Майл, в Чернобыле и Фукусиме. Это единственные крупные аварии, произошедшие за более чем 17 тыс. совокупных реакторных лет промышленной эксплуатации атомной энергии в 33 странах.
С 1990-х годов новые реакторы строятся по международным правилам — при проектировании АЭС инженеры стремятся к большей стандартизации конструкции, а объекты находятся под надзором регулирующих органов.
Стандартизация предполагает принятие положения по безопасности, которое планирует строительство нескольких физических барьеров между активной зоной реактора и окружающей средой, а также несколько систем безопасности, которые дублируют друг друга. Это позволит избежать человеческой ошибки. Сейчас системы безопасности составляют около четверти капитальных затрат на строительство реакторов.
Атомная энергетика сможет удовлетворить долгосрочные потребности человечества в энергии при условии крайне низкого влияния на окружающую среду. Однако для продолжения широкомасштабного устойчивого производства атомной энергии поставки ядерного топлива должны продолжаться в течение длительного времени. В условиях ограниченных запасов ископаемого топлива перспективы производства атомной энергии и переработки ядерного топлива выглядит очень привлекательными.
Способы переработки радиоактивных отходов — как утилизируют РАО
Радиоактивные (ядерные) отходы (РАО) – загрязнённые радиацией вещества и предметы, которые невозможно использовать в дальнейшем. В зависимости от происхождения, отходы могут быть в трёх формах: газ, жидкость или твердый материал. Источники ядерного мусора разнообразны: АЭС, научные лаборатории, природные объекты. Происхождение РАО, их агрегатное состояние, степень активности и многие другие факторы влияют на то, как утилизируют радиоактивные отходы.
Зачем обрабатывают радиоактивные отходы
Чтобы избежать вреда для экологии, были выработаны способы и правила обработки отходов. Переработка ядерных отходов – прерогатива государственных организаций.
Принципы МАГАТЭ по утилизации РАО
Международное агентство по атомной энергии сформулировало несколько принципов утилизации радиоактивных отходов и обращения с ними, согласно которым:
Утилизация РАО в зависимости от их активности
Ядерные отходы обладают разной степенью активности, в связи с чем их делят на:
При выборе способа для утилизации ядерных отходов учитывают степень их активности. Низкоактивные РАО представляют наименьшую опасность, поэтому их проще утилизировать. Подобные материалы можно хранить в специальных контейнерах и спустя несколько десятков лет уничтожить, как и любой другой мусор.
Захоронения переработанного материала организуют в сейсмически безопасных районах. Землетрясения могут разрушить хранилища и спровоцировать экологическую катастрофу.
Высокоактивные РАО несут наибольшую угрозу для будущих поколений. Уничтожить такой тип отходов невозможно, они сохраняют повышенную активность в течение тысячелетий. Единственный способ сделать подобные материалы менее опасными – повторно использовать их, выжать максимум пользы, тем самым уменьшив объем РАО, и остеклить бесполезный остаток.
Способы дезактивации радиоактивных отходов
Всевозможные виды утилизации помогают снизить радиационный фон, но не сводят его к нулю. Для снижения активности радионуклидов применяют различные способы дезактивации.
Механический
Заражённые элементы физически удаляются из почвы, с поверхности металла и других мест. Для этого объект обдувают потоком воздуха, обливают водой или чистят абразивным материалом.
Химический
При химической дезактивации используются различные реагенты. Радионуклиды выщелачивают с помощью карбоната натрия, азотной кислоты или других химических соединений.
Физико-химический
В этом способе сочетаются термическое воздействие и обработка химическими реагентами. Часто он используется для дезактивации жидких РАО. В раствор добавляется сорбент, в результате реакции образуется осадок, который разными путями удаляется и отправляется на хранение.
Методы переработки и утилизации РАО
Любой радиоактивный мусор подлежит переработке и утилизации. Переработка требуется, чтобы изменить состояние и объем РАО и сделать их более удобными и безопасными для дальнейшего захоронения. В зависимости от агрегатного состояния и степени радиоактивности, выбирается один или несколько методов.
Сжигание
В специально сконструированных печах можно уничтожать облученные ткани, древесину, резиновые изделия, бумагу и картон. Метод подходит только для низкоактивных отходов.
Прессование (уплотнение)
Если заражённый объект довольно крупный, его отправляют под многотонный пресс. Уплотнённый предмет занимает меньше места, что позволяет уменьшить площадь могильников.
Цементирование
Контейнеры с ядерными отходами заливаются бетоном с особыми химикатами, которые защищают захоронение от проникновения воды.
Переплавка
Для реализации этого метода используют индукционные и электродуговые печи. Заражённые радиацией металлы плавят, очищая от радиоизотопов.
Битумирование
Такой метод подходит для переработки и хранения жидких радиоактивных отходов (ЖРО). Опасные жидкости упаривают, в результате чего образуются соли, которые впоследствии смешивают с расплавленным битумом. Получившиеся битумные компаунды заливают в упаковку или хранилища.
Остекловывание (витрификация)
Вредные вещества помещают в углубления в скалах и заливают расплавленным боросиликатным стеклом.
Соосаждение и коагуляция
Химические методы обработки жидких РАО. В загрязнённую радиоизотопами воду добавляют специальные химикаты, которые захватывают заряженные частицы и осаждаются вместе с ними. Образовавшийся осадок отстаивают или отфильтровывают.
Ионообмен
Для чистки сбросных вод применяют установки с ионообменными фильтрами. Заложенные на определенную глубину ионообменные смолы впитывают находящиеся в воде ионы, в том числе радиоактивные. Как только количество ионов в смоле превышает допустимый уровень, фильтры отправляются на регенерацию.
Выпаривание
Загрязненный раствор поступает в выпарную установку, нагревается до 98°C и начинает испаряться. Пройдя через сложную систему конденсаторов, доупаривателей и фильтров, вода очищается от радиоактивных изотопов. Конденсат собирается на хранение.
Фильтрация
Новая методика фильтрации была изобретена академиком Виктором Петриком. Наноуглеродная установка позволяет очищать от радионуклидов целые водоемы, превращая ядовитую воду в питьевую.
Адсорбция
Адсорбцией называется процесс, при котором поверхность жидкости или твердого тела (адсорбента) притягивает и впитывает молекулы газа или веществ из раствора. В качестве адсорбента могут выступать ионные кристаллы.
Химическое поглощение
При химической обработке особые реагенты поглощают излучение и снижают активность радионуклидов.
Захоронение
Радиоактивный мусор запечатывают в герметичные металлические ёмкости из нержавеющей стали и свинца и помещают на дно водоемов или под землю в так называемые могильники. В большинстве случаев захоронения устраивают вдали от городов и других населенных пунктов.
Разные методики дезактивации, переработки и утилизации РАО отличаются эффективностью. Пока ни одна технология не добилась идеальных результатов, поэтому учёные всего мира продолжают поиски лучших способов обезопасить планету от ядерных отходов.
Отходы 5 класса опасности — перечень и способы утилизации
Виды отходов производства и методы переработки промышленного мусора
Понятие обезвреживания отходов и методы нейтрализации их опасности
Классификация особо опасных отходов и правила обращения с ними
Классификация отходов 1-5 класса опасности — перечень и таблица
Транспортировка отходов 1-4 класса — что это, порядок вывоза