что такое 3 штрих конец и 5 штрих конец
Что такое 3 штрих конец и 5 штрих конец
Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).
Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
Генетический код (иРНК)
основание
основание
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда; второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
Схема решения задачи включает:
1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смысловая):
2. Нуклеотидная последовательность антикодона УГА (по условию третий триплет) соответствует кодону на иРНК УЦА;
1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
На ДНК с 3′ конца строится тРНК с 5′ — конца.
2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
Пояснение к строению ДНК в условии:
Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК. Молекула ДНК спирально закручена вокруг своей оси. На один виток ДНК приходится приблизительно 10 пар оснований.
Смысловая цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию.
Транскрибируемая (антисмысловая) цепь по сути является копией смысловой цепи ДНК. Служит матрицей для синтеза иРНК (информацию о первичной структуре белка), тРНК, рРНК, регуляторной РНК.
2. Нуклеотиды, которые образуют цепи НК, в свою очередь, состоят из трех частей – углевода (в нуклеотидах ДНК – это дезоксирибоза, а в нуклеотидах РНК – рибоза), остатка фосфорной кислоты и одного из азотистых оснований (в ДНК – А, Т, Г или Ц; в РНК – А, У, Г или Ц).
3. Дезоксирибоза (входящая в состав ДНК) и рибоза (входящая в состав нуклеотидов РНК ) – это пентозы, т.е. пятиуглеродные моносахариды. В биохимии и молекулярной биологии для удобства описания связей принято нумеровать углероды в составе молекулы.
4. Два нуклеотида в цепи ДНК соединяются друг с другом с помощью остатков фосфорной кислоты. В формировании этой связи (фосфодиэфирной) опосредовано участвуют 3-й углерод пентозы одного нуклеотида и 5-й углерод пентозы другого (соседнего) нуклеотида. А на концах всей цепи молекулы НК остаются нуклеотиды с углеродами, незадействованными в образовании связей между нуклеотидами (назовем эти углероды условно свободными) – на одном конце молекулы ДНК остается нуклеотид со сводным 3-м углеродом (это и будет 3`-конец НК), а на другом — расположен нуклеотид со сводным 5-м углеродом (это будет, соответственно, 5`-конец НК).
5. Таким образом, у цепей молекулы ДНК, а также у всех видов РНК, есть два конца – 3` и 5`. При этом у двухцепочечной ДНК ориентация двух цепей относительно друг друга в составе молекулы различная: у одной цепи ДНК 3`-конец расположен слева, а 5`-конец – справа, а у другой – наоборот. Такое расположение называется антипараллельным.
6. Еще важное дополнение: одна полинуклеотидная цепь в составе ДНК называется кодирующей, или смысловой, с неё не считывается информация, т.е. она не транскрибируемая, а другая цепь ДНК — матричная — является матрицей (образцом), на основании которого и синтезируется РНК (или иРНК, или тРНК, или рРНК), т.е. именно с матричной цепи ДНК считывается информация, и она является транскрибируемой.
Обращаем ваше внимание, что РНК синтезируется на матричной цепи ДНК антипараллельно, т.е. если матричная цепь ДНК ориентирована от 3` к 5`-концу, то получаемая на основании ее молекула РНК будет ориентирована наоборот, от 5`-конца к 3`-концу.
А теперь разберемся с тРНК
2. В центральной части цепи тРНК, а в свернутом виде – в составе центральной петли, находится антикодон – три нуклеотида (триплет), который определяет конкретную и единственную аминокислоту, которую будет транспортировать данная тРНК.
3. Чтобы определить какую аминокислоту будет переносить тРНК, нужно сначала антикодон этой тРНК перевести в соответствующий (комплементарный) ему кодон иРНК. Но тут возникает проблема: как правильно ориентировать молекулы тРНК и иРНК? Немного позже ответим на этот вопрос.
4. Когда транспортная РНК участвует в синтезе белка, доставляя определенную аминокислоту к месту синтеза, она связывается с соответствующим её антикодону (по принципу комплементарности) кодоном на информационной РНК. А здесь особое внимание! тРНК присоединяется к иРНК антипараллельно, т.е. иРНК расположена в ориентации от 5`-конца к 3`-концу (только так, потому что считывание информации с иРНК при биосинтезе белка всегда начинается с 5`-конца), а тРНК ориентирована наоборот, в направлении от 3`-конца к 5`-концу. Т.е. кодон и антикодон – антипараллельны!
5. Теперь можем ответить на вопрос: как размещать (ориентировать) молекулы тРНК и иРНК, чтобы определить атикодон и кодон?
6. Но и тут нас ждет проблема: в молекулярной биологии антикодон пишут и в ориентации 3`-5`, и в ориентации 5’-3’ (как, например, указано в ответе задания демоверсии 2020). С кодонами проще: их записывают только в ориентации 5’-3’ – именно так всегда ориентированы кодоны в таблице генетического кода.
7. Какой выход: антикодон записываем исходя из ориентации самой тРНК в задаче: либо 3’-5’, либо 5’-3’. А вот кодон должен быть всегда 5’-3’. При определении кодона учитываем, что он антипараллелен антикодону.
Вернемся к заданиям 2019 и 2020
2. В задании 2019 года (без указания 3` и 5`-концов) по умолчанию предполагалось, что молекула тРНК всегда ориентирована в направлении 3`-5`, поэтому по ее изначально правильно ориентированному антикодону по принципу комплементарности сразу находим кодон иРНК (и он будет в правильном 5`-3` направлении), а по нему находим аминокислоту.
ВЫВОД: если в вариантах КИМ-ов 2020 встретятся подобные задания формата 2019 года, решаем их так же, как и раньше.
3. В задании 2020 года (с указанием 3` и 5`-концов) антикодон записываем в том направлении, как он получается в задаче. А кодон записываем только в направлении 5`-3`, кодон определяем, учитывая его антипараллельность антикодону:
a. В случае, если тРНК и ее антикодон указаны в направлении 3`-5`, как и в предыдущие годы, сразу же определяем по этому антикодону кодон иРНК.
б. А в случае, если тРНК и ее антикодон записаны наоборот, в направлении 5`-3`, как в задаче 2020, сначала переворачиваем антикодон в направлении 3`-5`, и уже по нему определяем кодон. При этом в ответах записываем и антикодон, и кодон в одном направлении 5`-3`, т.е. в такой записи они не будут выглядеть комплементарными.
И последнее, какие, на наш взгляд, еще «сюрпризы» можно ожидать на ЕГЭ-2020
3. При решении таких задач нужно помнить:
a) что у полученной в результате транскрипции иРНК направление будет антипараллельно цепи матричной цепи ДНК;
б) для того, чтобы синтезировать белок (фрагмент полипептида) по иРНК, нужно обязательно чтобы она была ориентирована в направлении 5`-3` (только в таком направлении транслируются белки). Если в задаче иРНК получилась в направлении 3`-5`, перед синтезом белка ее нужно перевернуть (записать нуклеотидную последовательность в обратном порядке).
На сайте ФИПИ опубликован демонстрационный вариант КИМ-2020 по биологии http://fipi.ru/ege-i-gve-11/demoversii-specifikacii-kodifikatory В основном он составлен по заданиям прошлых лет.
Но сравните задания линии 27 демонстрационных вариантов 2019 г. и 2020 г. На первый взгляд, матричные цепи ДНК, которые нужно использовать для решения, в двух однотипных заданиях одинаковы: ГЦТТЦЦАЦТГТТАЦА. Отличия в условиях лишь в том, что в задании-2020 у этой молекулы указаны 3’ и 5’-концы и еще дополнительно (сверху) указана вторая (кодирующая) цепь ДНК.
Но такое небольшое уточнение в условии задания кардинально поменяло ответ. Сравним эталонные ответы этих двух заданий. Нуклеотидные последовательности участков тРНК и их антикодоны в ответах заданий 2019 и 2020 одинаковые, а кодоны и аминокислоты — разные.
Составители ФИПИ, к сожалению, вышли за рамки школьной программы. В школьных учебниках разных линий базового и профильного уровня нет достаточной информации, необходимой для решения задачи в редакции 2020 года.
Нуклеиновые кислоты
Урок 12. Общая биология 10 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Нуклеиновые кислоты»
Нуклеиновые кислоты получили своё название исходя из места их наибольшей концентрации. В ядрах клеток их наибольшее количество. Ядро — от латинского «нуклеус». Поэтому и кислоты называют нуклеиновыми.
Помимо ядра, нуклеиновые кислоты также обнаружены в цитоплазме, митохондриях и пластидах.
Нуклеиновые кислоты состоят из мономеров нуклеотидов. А нуклеотиды состоят из фосфорной группы, пятиуглеродного сахара (пентозы) и азотистого основания.
Остаток фосфорной кислоты, связанный с пятым атомом С (углерода) в пентозе,
может соединятся ковалентной связью с гидроксильной группой возле третьего атома С (углерода) другого нуклеотида.
На одном конце нуклеотидной цепочки располагается фосфат, он связан с пятым атомом пентозы. Этот конец называют (пять штрих) конец.
На другом конце около третьего атома пентозы остаётся не связанная с фосфатом ОН
группа — это (три штрих) конец.
При соединении двух нуклеотидов между углеродом остатка сахара одного нуклеотида и остатком фосфорной кислоты другого возникает сложноэфирная связь. Таким образом, остатки сахаров двух нуклеотидов оказываются связаны фосфодиэфирными мостиками.
Возникновение фосфодиэфирных мостиков между 3′ и 5’— углеродами остатков сахаров может происходить многократно. В результате образуются неразветвленные полинуклеотидные цепи.
В зависимости от углеводного компонента нуклеотидов различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).
Название кислот обусловлено тем, что молекула РНК содержит рибозу, а ДНК содержит дезоксирибозу.
Таким образом, нуклеиновые кислоты различаются по составу и строению молекул, а также по выполняемым в клетке функциям.
Молекулы ДНК — это полимеры, мономерами которых являются дезоксирибонуклеотиды, образованные:
· остатком пятиуглеродного сахара — дезоксирибозы;
· остатком фосфорной кислоты;
и остатком одного из азотистых оснований.
Азотистые основания, которые являются производными пурина, называют пуриновыми. К ним относят аденин и гуанин.
Азотистые основания, которые являются производными пиримидина, называют пиримидиновыми. К ним относят цитозин, тимин.
Азотистые основания определяют названия соответствующих нуклеотидов: адениловый, гуаниловый, тимидиловый и цитидиловый.
Структура молекулы ДНК
Она состоит из двух спирально закрученных полинуклеотидных цепей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью.
Внешняя сторона спиральной молекулы образована чередующимися остатками дезоксирибозы и фосфатными группами. Азотистые основания находятся внутри спирали.
Структура спирали такова, что входящие в её состав полинуклеотидные цепи могут быть разделены только после раскручивания спирали.
Диаметр двойной спирали ДНК составляет 2 нм, шаг общей спирали, на который приходится 10 пар нуклеотидов, — 3,4 нм.
Между аденином и тимином всегда возникают две, а между гуанином и цитозином — три водородные связи.
В связи с этим обнаруживается важная закономерность: против аденина одной цепи всегда располагается тимин другой цепи, против гуанина — цитозин и наоборот.
Таким образом, пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными (пространственное взаимное соответствие), или комплементарными (от лат. complementum — дополнение).
Комплементарностью называют способность нуклеотидов к избирательному соединению друг с другом.
Комплементарность обеспечивается взаимодополнением пространственных конфигураций молекул азотистых оснований; а также количеством водородных связей, возникающих между азотистыми основаниями.
Состав молекулы ДНК был известен задолго до открытия её структуры. В 1950 году американский биохимик Эрвин Чаргафф, обследовав огромное количество образцов тканей и органов различных организмов, выявил следующующие закономерности, названные впоследствии правилами Чаргаффа.
Первое правило. Количество адениловых нуклеотидов в молекуле ДНК равно количеству тимидиловых, а количество гуаниловых — количеству цитидиловых.
Второе правило. Количество пуриновых азотистых оснований равно количеству пиримидиновых.
Третье правило Чаргаффа. Суммарное количество адениловых и цитидиловых нуклеотидов равно суммарному количеству тимидиловых и гуаниловых нуклеотидов, что следует из первого правила.
Джеймс Дью́и Уо́тсон и Фрэнсис Крик воспользовались этим правилом при построении модели молекулы ДНК. В 1953 году учёными была предложена трёхмерная модель пространственного строения молекулы ДНК в виде двойной спирали. За свои исследования они были удостоены Нобелевской премии.
Последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой, поэтому две цепи молекулы ДНК комплементарны друг другу.
Зная последовательность расположения нуклеотидов в одной цепи ДНК по принципу комплементарности, можно установить нуклеотиды другой цепи.
Фрагмент одной цепи ДНК имеет следующий состав: А—А—Г—Г—Ц—Ц—Ц—Т—Т—. Используя принцип комплементарности, достроим вторую цепь.
Репликация молекулы ДНК
Репликация — это сложный процесс самоудвоения молекулы ДНК, идущий с участием ферментов (ДНК— полимераз).
Это уникальное свойство молекулы ДНК — её способность к самоудвоению (воспроизведению точных копий исходной молекулы). Благодаря этой способности молекулы ДНК, осуществляется передача наследственной информации от материнской клетки дочерним во время деления.
Репликация осуществляется полуконсервативным способом, то есть под действием ферментов молекула ДНК раскручивается.
Раскручивание молекулы происходит на небольшом отрезке (это несколько десятков нуклеотидов), называемом репликативной вилкой.
Около каждой цепи, выступающей в роли матрицы, по принципу комплементарности достраивается новая цепь.
В каждой дочерней ДНК одна цепь является материнской, а вторая вновь синтезированной (дочерней).
После окончания синтеза дочерних цепей ДНК раскручивается новый отрезок, и цикл репликации повторяется. Таким образом, репликативная вилка перемещается вдоль молекулы, пока не дойдёт до точки окончания синтеза.
ДНК— полимеразы способны двигаться в одном направлении — от 3’— конца к 5’— концу (от три штрих конца к пять штрих концу), строя дочернюю цепь антипараллельно — от 5′ к 3’— концу. Эта цепь называется лидирующей.
Другая ДНК— полимераза движется по другой цепи (5’—3′) в обратную сторону (тоже в направлении 3’к 5′), синтезируя вторую дочернюю цепь фрагментами (их называют фрагменты Оказаки). Фрагменты Оказаки после завершения репликации сшиваются в единую цепь. Эта цепь называется отстающей. Таким образом, на цепи 3’— 5′ репликация идёт непрерывно, а на цепи 5’— 3′ — прерывисто.
Строение молекулы РНК
В отличие от ДНК, она образована не двумя, а одной полинуклеотидной цепочкой. Обычно эта цепочка значительно короче цепей ДНК.
Рибонуклеиновые кислоты также является полимерами, мономерами которых служат рибонуклеотиды, образованные: остатком пятиуглеродного сахара — рибозы, остатком фосфорной кислоты и остатком одного из азотистых оснований. Три азотистых основания — аденин, гуанин и цитозин — такие же, как и у ДНК, а четвертым является урацил.
Нуклеотиды РНК, как и у ДНК, способны образовывать водородные связи между собой.
Информация о структуре молекулы РНК заложена в молекулах ДНК. Синтез молекул РНК происходит на матрице ДНК с участием ферментов РНК— полимераз и называется транскрипцией.
Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.
Выделяют три основных типа РНК, различающихся по структуре, величине молекул, расположению в клетке и выполняемым функциям.
Информационная РНК, (иногда её называют матричной), а сокращённо — иРНК;
Транспортная РНК, или тРНК;
Рибосомальная РНК — рРНК.
Информационная РНК — это наиболее разнообразный по размерам и стабильности класс.
Все они являются переносчиками генетической информации из ядра в цитоплазму. Они служат матрицей для синтеза молекулы белка, т. к. определяют аминокислотную последовательность первичной структуры белковой молекулы.
Другими словами, на информационную РНК списывается информация с ДНК. А потом уже с информационной РНК будет считываться информация для построения белков.
Транспортная РНК. В клетке этих молекул более 30 разновидностей.
Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Третичная структура тРНК напоминает по форме лист клевера.
Аминокислоты, которые плавают в цитоплазме поступают в рибосому для дальнейшего построения белка ─ именно при помощи транспортной РНК.
Одна т— РНК несёт 1 аминокислоту. Однако т— РНК может захватить не любую аминокислоту, а строго определённую.
На вершине тРНК имеется последовательность трёх нуклеотидов, их называют антикодоном. Данный антикадон взаимосоответствует, то есть ─ комплементарен кодону в информационной РНК, с которым он связывается, и соответствует той аминокислоте, которую он переносит.
Подобнее данный процесс (синтез белка) будет рассмотрен позднее, на следующих уроках.
Рибосомальные РНК синтезируются в основном в ядрышке и составляют примерно 85% всех РНК клетки.
В комплексе с рибосомными белками рРНК образует рибосомы — органеллы, на которых происходит синтез белка.
Рибосомы построены из двух субъединиц разного размера и формы. На определённых стадиях белкового синтеза в клетке происходит разделение рибосом на субъединицы.
Рибосомная РНК служит как бы каркасом рибосом и способствует первоначальному связыванию иРНК с рибосомой в процессе биосинтеза белка.
рРНК формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.
Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.
Все типы РНК, за исключением генетической РНК вирусов, не способны к самоудвоению и самосборке.
В качестве генетического материала РНК входят в состав ряда вирусов.
Таким образом, нуклеиновые кислоты — это важнейшие биополимеры, которые содержатся во всех без исключения живых организмах.
Нуклеиновым кислотам присущи три важнейшие функции: хранение, передача и реализация генетической информации. Кроме этих, они выполняют и другие функции, например участвуют в катализе некоторых химических реакций, выполняют структурные функции и др.
Нуклеиновые кислоты могут быть линейными и кольцевыми. Они могут состоять из одной или двух цепей.
Роль хранителя генетической информации у большинства организмов (эукариот, прокариот, некоторых вирусов) выполняют двухцепочечные ДНК.
Только у некоторых вирусов хранителем генетической информации являются одноцепочечные ДНК или одноцепочечные РНК.
- что значит имя ежи
- что делать чтобы не образовывались тромбы после вакцинации