что такое абсцисса вершины параболы

Парабола, график, вершина, нули.

теория по математике 📈 функции

Функция вида y=ax 2 +bx+c, где а, b, с – некоторые числа, причем, а ≠ 0 число, х – переменная, называется квадратичной функцией.

Графиком квадратичной функции является парабола, она имеет вершину и две ветви, которые могут быть направлены либо вверх, либо вниз (рис.1). Красной точкой обозначена вершина параболы, из которой выходят ветви. Её координаты по графику – (3; –4). Направление ветвей зависит от значения коэффициента «а», то есть, если «а» – положительное число, то ветви направлены вверх; если число «а» – отрицательное, то ветви направлены вверх. На данном рисунке ветви направлены вверх, значит коэффициент «а» у формулы, которая задает эту функцию – положительное число. Коэффициент «с» показывает ординату (у) точки пересечения ветви параболы с осью у. Так, на рисунке №1 парабола пересекает ось у в точке (5;0), значит коэффициент с=5.

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Чтобы найти координаты вершины параболы (х0; у0), надо воспользоваться формулой:

для нахождения у0 можно просто подставить значение х0 в формулу данной функции y0=ax 2 +bx+c вместо х.

Рассмотрим это на примере конкретно заданной функции.

Пример №1

Найти вершину параболы, заданной формулой у=2х 2 – 8х + 5.

Найдем, чему равны коэффициенты: а=2; b= – 8

Подставим их в формулу и вычислим значение х0:

Теперь в заданную по условию формулу вместо х подставим найденное значение у0=2 ∙ 2 2 – 8 ∙ 2 + 5=8 – 16 + 5= –3

Итак, мы нашли координаты вершины параболы: (2; –3).

Значения х, при которых функция принимает значения, равные нулю, называются нулями функции. Другими словами, Значения абсцисс (х) точек пересечения ветвей параболы с осью х, называются нулями функции. На рисунке №1 точки координаты точек пересечения ветвей параболы с осью х следующие: (1;0) и (5;0). Значит, нули функции – это значения х, равные 1 и 5.

Рассмотрим, как найти нули функции не по рисунку, а по заданной формуле.

Пример №2

Найти нули функции у=х 2 +4х – 5

Так как нули функции это абсциссы точек пересечения ветвей параболы с осью х, то их координаты будут (х;0), то есть у=0. Значит, вместо у подставляем нуль в нашу формулу 0=х 2 +4х – 5 и получаем квадратное уравнение, решив которое, мы и найдем значения нулей функции:

D=b 2 – 4ac=4 2 — 4 ∙ 1 ∙ ( − 5 ) = 36

Значит, нули функции равны –5 и 1

Примечание к заданию по нахождению нулей функции без графика

Если дискриминант уравнения отрицательный, значит, нулей функции нет, то есть парабола не пересекает ось х (вершина находится выше неё, если ветви направлены вверх и ниже, если ветви направлены вниз).

Рассмотрим нахождение соответствия рисунков парабол, расположенных в системе координат значениям а и с.

Пример №3

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Для выполнения данного задания на соответствие необходимо сначала поработать с графиками, подписав на них, какими – отрицательными или положительными являются коэффициенты а и с.

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Теперь можно выполнить соответствие:

Пример №4

Рассмотрим еще пример на соответствие

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

В данном задании рассмотрим коэффициенты в формулах и подчеркнем их: так, в формуле под буквой А коэффициент а=-2, т.е. отрицательный, значит, ветви направлены вниз, а это график под номером 2. В формулах под буквами Б и В первые и третьи коэффициенты одинаковые, значит, сравнить по рисунку их невозможно, следовательно, будем сравнивать по расположению вершины (справа или слева от оси у), а именно х0. что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Итак, найдем х0 для формулы «Б»:

Видим, что х0 отрицательное, значит, вершина расположена слева от оси у, а это рисунок 3. Ну и осталось привести в соответствие В и 1.

А) a>0, с >0 Б) а 0 В) а>0, с

На рисунках в задании изображены параболы. Вспомним, что обозначают коэффициенты а и с: а – направление ветвей (a 0 – ветви вверх); коэффициент с показывает ординату точку пересечения параболы с осью х (с >0 – пересечение в положительном направлении; с 0, с >0 — это график №1

Б) а 0 — это график №3

pазбирался: Даниил Романович | обсудить разбор | оценить

Установите соответствие между функциями и их графиками.

ФУНКЦИИ

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Сразу обратим внимание на вариант В. Эта функция единственная, имеющая положительный коэффициент при х 2 (здесь а=1, т.е. а>0). При а>0 график параболы направлен ветками вверх. Такой график имеется только один – под №3. Кроме того, можно обратить внимание на коэфициент с. Она равен 3, т.е. с>0. Это указывает на то, что парабола должна пересечь ось Оу выше начала координат. Что и отображено на графике В. Получаем соответствие: В–3.

Оба других графика – 1-й и 2-й – пересекают ось Оу ниже начала координат, что соответствует значению с=–3

pазбирался: Даниил Романович | обсудить разбор | оценить

На рисунках изображены графики функций вида

Установите соответствие между знаками коэффициентов a и c и графиками функций.

Мы вспоминаем, за что отвечают коэффициенты a и b при построении графиков функции вида

Коэффициент a определяет направление ветвей параболы: если a > 0, то ветви направлены вверх, а если a 0.

Далее мы смотрим, на что влияет коэффициент c.

Коэффициент c отвечает за положение параболы относительно оси x, или же отвечает за сдвиг по оси y, а именно:

если c > 0, то вершина параболы расположена выше оси х

Из всего вышеперечисленного можно найти ответ:

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Квадратичная функция. Построение параболы

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

Рассмотрим три случая:

Если a > 0, то график выглядит как-то так:

0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>

На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Как строим:

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

Как строим:

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

Данный вид уравнения позволяет быстро найти нули функции:

(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

Определим координаты вершины параболы:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Найти точку пересечения с осью OY:

с = ab = (−2) × (1) = −2 и ей симметричная.

Отметим эти точки на координатной плоскости и соединим плавной прямой.

Источник

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Общие сведения

Парабола — кривая, состоящая из равноудаленных точек от заданной точки (вершина) и прямой. Последняя называется директрисой. График функции имеет ось симметрии, которая проходит по определенной траектории и зависит от функции кривой (рис. 1). Ее вершина находится в центре координат.

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Рисунок 1. График квадратичной функции с вершиной в начале координат.

Однако существуют и другие случаи прохождения кривой. Она может пересекать оси абсцисс или ординат. В некоторых случаях ее ветви направлены вниз. При вращении вокруг оси симметрии получается поверхность, которая используется в различных устройствах. По этому принципу изготовлены фары автомобиля, зеркала в телескопах и т. д. Кроме того, парабола — это квадратичная зависимость переменных друг от друга. Парабола имеет некоторые свойства:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Следует отметить, что оптическое свойство — это способность отражать свет от источника. Если пучок лучей, которые являются параллельными ее оси, отражаются в параболе, то они собираются в фокусе кривой. При нахождении источника света в фокусе происходит отражение параллельного пучка лучей относительно ее оси.

Уравнения квадратичной функции

Параболу можно описать несколькими способами. Каждый из них нужно применять в конкретных случаях для удобства вычислений. Существует три формы описания кривой:

В первой форме она имеет следующий вид: y 2 = 2px. Если поменять местами оси декартовой системы, то получится следующий вид: x 2 = 2yp. Коэффициент p — фокальный параметр. Он соответствует расстоянию между фокусом и директрисой. Кроме того, его значение всегда больше нуля. Вершина лежит всегда между фокусом и директрисой кривой на расстоянии, равном p/2 (рис. 2).

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Рисунок 2. Директриса и фокус.

Пусть уравнение директрисы (прямая, которая параллельна оси ОУ) имеет следующий вид: х + p/2 = 0. Координаты фокуса F — (р/2;0). Начало координат делит луч, проходящий из точки F и точки пересечения с директрисой на 2 равных отрезка. Величина FM рассчитывается таким образом: FM = [(x — p/2)^2 + y 2 ]^0.5. Отрезок (луч) из точки М до директрисы равен p/2 + x. Если приравнять оба выражения, то равенство имеет такой вид: p/2 + x = [(x — p/2)^2 + y 2 ]^0.5. При возведении в квадрат и приведении подобных слагаемых, получается искомое уравнение параболы (y 2 = 2px).

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

В последней формуле переменная D является дискриминантом квадратного уравнения искомой функции. Он вычисляется с помощью такого соотношения: D = b 2 — 4ac. При а>0 фокус лежит на оси, и находится над вершиной. Ось симметрии параллельна оси ординат. Кроме того, она проходит через вершину кривой. Расстояние до нее равно ¼ величины «а». Если а 2 + Bxy + Cy 2 + Dx + Ey + F = 0. Дискриминант равен нулю (при старших членах).

В полярной системе координат с осями p и v уравнение квадратичной функции имеет такой вид: p (1 + cos (v)) = p. Расстояние от фокуса до директрисы обозначается фокальным коэффициентом p. Кроме того, p соответствует удвоенной длине отрезка, проведенного от фокуса до вершины.

Методы нахождения вершины

Когда функция представлена неполным квадратом, нужно прибавить или отнять одинаковое число к двум частям уравнения. Если воспользоваться этим методом, то можно вычислить сразу значения х и у. Алгоритм нахождения вершины для функции у = x 2 + 4x + 2 имеет такой вид:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

При изображении графика вершину нужно сместить в точку (-2;2). Третий способ позволяет узнать координаты вершины с помощью определения производной. Находить ее следует от заданной функции. Для вычисления координат вершины нужно действовать по следующему алгоритму:

Однако эти все три метода относятся к ручному вычислению. Автоматизация действий осуществляется с помощью специализированного программного обеспечения. Для этой цели подойдет онлайн-калькулятор, поддерживающий функцию нахождения точек вершины квадратичной кривой. Программы рекомендуется применять только для проверки решения, поскольку очень важно знать методы нахождения этой точки.

Алгоритм построения

В различных задачах нужно выполнить построение графика функции. В некоторых случаях даются координаты вершины, а в других — их следует искать, используя какой-либо метод. Чтобы построить квадратичную функцию, нужно воспользоваться таким алгоритмом:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Специалисты-математики настоятельно рекомендуют не усложнять вычисления. Возможно, в школьных программах и рассматриваются различные случаи. Однако в высших учебных заведениях основной аспект изучения дисциплин с физико-математическим уклоном сводится к оптимизации процесса решения задачи.

Примеры решений

В математике существует определенная классификация заданий на простые и сложные типы. Все они считаются однотипными, но отличаются только объемами вычислений и необходимостью построения графиков. Для решения нужно воспользоваться рекомендуемыми алгоритмами, которые существенно оптимизируют вычисления.

«Корень» трудностей при расчете — отсутствие систематизации вычислений. Не все ими пользуются. В результате простая задача становится очень сложной, поскольку в ней присутствует много ненужных вычислений. Кроме того, как отмечалось выше, рекомендуется «набить руку» на ручных вычислениях, ведь не всегда можно будет воспользоваться программами.

Упрощенная задача

Простым примером задания является следующий: необходимо вычислить координаты вершины точки параболы y = x 2 + 3x — 18. Следует продемонстрировать решение тремя способами. Решение первым методом:

Следовательно, вершина находится в точке (-1,5;20,25). Второй способ решения данной задачи имеет такой вид:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Повышенная сложность

Задания повышенной сложности сводятся к вычислению нескольких значений. Кроме того, в некоторых случаях следует построить график параболы y = x 2 — 7x +10. Необходимо выполнить такие действия:

Точек пересечения по ОУ нет. Они есть по оси абсцисс. Следует приравнять функцию к 0. Нахождение корней выполняется по теореме Виета: x1 = 2 и x2 = 5.

y40-2-2,25-204
x1233,5456

Таблица 1. Зависимость y от x.

После заполнения таблицы следует построить график искомой функции (рис. 3). Таблица состоит из следующих элементов: вершины, точек пересечения с осью абсцисс и 4 произвольных значений.

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Рисунок 3. График функции.

Математики рекомендуют использовать для построения графика полученные значения при расчетах, поскольку подстановка и вычисление произвольных х существенно снижает скорость вычислений.

Таким образом, нахождение координат вершины параболы является довольно простой задачей, поскольку существует несколько методов. Из них можно выбрать оптимальный, который подходит в конкретной ситуации.

Источник

Как найти вершину параболы: три формулы

Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Нахождение вершины параболы: способы, примеры, советы

У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

Первый способ

Например, y =x 2 –8 x +15;

находим первый, второй коэффициенты и свободный член;

подставляем значения a и b в формулу;

вычисляем значения y;

Значит, вершина находится в точке (4;-1).

Рассмотрим на примере y =x 2 –6x+5

1) Приравниваем к нулю:

2) Находим дискриминант, используя формулу: D = b 2 –4 ac:

3) Находим корни уравнения по формуле (-b±√ D)/2a:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Второй способ

Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2 +8 x +10.

2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2) 2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4) 2 = 6.

4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

Третий способ

Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина — точка экстремума. Для этого способа надо применить следующий алгоритм:

1. Нахождение первой производной по формуле f'(x) = (ax² + bx + c)’ = 2ax + b.

2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

Рассмотрим этот способ подробнее.

Дана функция y = 4x²+16x-17;

f'(x) = (4x²+16x-17)’ = 8x+16 =0

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы

Построение параболы

Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

2) Заполняем таблицу

Так как парабола имеет осевую симметрию, то можно считать только значения справа или слева от вершины. Лучше считать те значения, которые ближе к 0, так удобнее. В нашем случае эти значения 4 и 5.

X455,567
Y-4-6-6,25-6-4

Советы

Правильно находите коэффициенты.

Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

Делайте всё поэтапно. Следуйте алгоритму.

Обратите ваше внимание на то, что:

Видео

Это видео поможет вам научиться находить вершину параболы

Источник

Квадратичная функция (парабола)

x-3-2-10123
y9410149

После этого по точкам строили график:
что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
Параболу y = ax 2 + bx + c мы не станем строить каждый раз «по точкам» — для выпускника школы это просто несолидно. Ведь нам надо знать закономерности поведения данной функции. А эти закономерности таковы.

1. Знак коэффициента a отвечает за направление ветвей. При a > 0 ветви направлены вверх, при a 2 с равными по модулю, но противоположными по знаку значениями a.

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
2. Абсолютная величина коэффициента a отвечает за «раскрыв» параболы. Чем больше |a|, тем у́же парабола (больше прижата к оси Y ). Наоборот, чем меньше |a|, тем шире парабола (больше прижата к оси X).

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
3. Абсцисса вершины параболы y = ax 2 + bx + c находится по формуле:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
Для нахождения ординаты вершины y0 удобнее всего подставить x0 в уравнение параболы. Но вообще, полезно помнить, что

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
где D = b 2 − 4ac — дискриминант.

4. Точки пересечения параболы y = ax 2 + bx + c с осью X находятся с помощью решения квадратного уравнения ax 2 + bx + c = 0. Если дискриминант равен нулю, то парабола касается оси X. Если дискриминант меньше нуля, то парабола не пересекает ось X.

5. Точка пересечения с осью Y находится легко: мы просто подставляем x = 0 в уравнение параболы. Получается точка (0, c).

А теперь покажем, как с помощью графика функции y = ax 2 + bx + c решать квадратные неравенства.

1. Часто на тестировании мы предлагаем решить неравенство

x 2 2 и отметим все значения x, для которых y 2 − 3x − 10 ≥ 0.

Графиком функции y = x 2 − 3x − 10 служит парабола, ветви которой направлены вверх. Решая квадратное уравнение x 2 − 3x − 10 = 0, находим x1 = −2 и x2 = 5 — в этих точках парабола пересекает ось X. Нарисуем схематично нашу параболу:

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
Мы видим, что при x ∈ (−2; 5) значения функции отрицательны (график проходит ниже оси X). В точках −2 и 5 функция обращается в нуль, а при x 5 значения функции положительны. Следовательно, наше неравенство выполняется при что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы.

Обратите внимание, что для решения неравенства нам достаточно было схематично изобразить параболу. Ось Y вообще не понадобилась!

3. Ещё одно неравенство: x 2 + 2x + 4 > 0.

Ветви параболы y = x 2 + 2x + 4 направлены вверх. Дискриминант отрицателен, т. е. уравнение x 2 + 2x + 4 = 0 не имеет корней. Стало быть, нет и точек пересечения параболы с осью X.

Раз ветви параболы направлены вверх и она не пересекает ось X — значит, парабола расположена над осью X.

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
Получается, что значения функции положительны при всех возможных x. Иными словами, решения нашего неравенства — это все действительные числа.

Ответ: что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы.

Квадратные неравенства являются неотъемлемой частью ЕГЭ. Разберём типичные примеры из банка заданий ЕГЭ.

4. Завиcимоcть объeма cпроcа q (тыc. руб.) на продукцию предприятия-монополиcта от цены p (тыc. руб.) задаeтcя формулой q = 100 − 10p. Выручка предприятия за меcяц r (в тыc. руб.) вычиcляетcя по формуле r(p) = q · p. Определите наибольшую цену p, при которой меcячная выручка r(p) cоcтавит не менее 240 тыc. руб. Ответ приведите в тыc. руб.

Подставим выражение для q в формулу выручки:

r(p) = qp = (100 − 10p)p = 100p − 10p 2

Выручка должна быть не менее (то есть больше или равна) 240 тысяч рублей. Поскольку цена p уже выражена в тысячах рублей, мы можем записать это условие в виде неравенства:

Переносим всё вправо и делим на 10:

Для схематичного построения параболы находим корни уравнения p 2 − 10p + 24 = 0. Они равны 4 и 6. Остаётся сделать рисунок.
что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
Решением нашего неравенства служит отрезок [4; 6]. Нас просили найти наибольшее p. Оно равно 6.

Итак, требуется, чтобы выполнялось неравенство h(t) ≥ 3. Подставляем сюда выражение для h:

Собираем всё справа:

Корни соответствующего уравнения 5t 2 −8t+1,4 = 0 равны t1 = 0,2 и t2 = 1,4. Как дальше действовать — мы знаем.

что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
Таким образом, через t1 = 0,2 секунды после начала полёта мяч оказался на высоте 3 метра. Мяч продолжал лететь вверх, высота увеличивалась; затем началось снижение, высота уменьшалась, и в момент времени t = 1,4 секунды снова стала равна трём метрам над землей.

Получается, что мяч находился на высоте не менее трёх метров в течение t2 − t1 = 1,2 секунд. В бланк ответов вписываем десятичную дробь 1,2.

Согласно условию, зависимость температуры нагревательного элемента от времени определяется формулой:

T(t) = 1400 + 200t − 10t 2

В нормальном режиме работы прибора должно выполняться неравенство T ≤ 1760, или

1400 + 200t − 10t 2 ≤ 1760

Переносим всё вправо и делим на 10:

Находим t1 = 2, t2 = 18 и делаем рисунок:
что такое абсцисса вершины параболы. Смотреть фото что такое абсцисса вершины параболы. Смотреть картинку что такое абсцисса вершины параболы. Картинка про что такое абсцисса вершины параболы. Фото что такое абсцисса вершины параболы
Получаем решения нашего неравенства:

Остаётся понять: в какой же момент отключать прибор? Для этого надо представить физическую картину процесса.

Мы включаем прибор в момент времени t = 0. Температура нагревателя повышается и при t = 2 мин достигает 1760 К. Затем повышение температуры продолжается, в результате чего прибор может испортиться. Поэтому ясно, что отключать его надо при t = 2.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *