что такое аксиома в обществознании

Что такое аксиома, теорема и доказательство теоремы

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Понятие аксиомы

Аксиома — это правило, которое считают верным и которое не нужно доказывать. В переводе с греческого «аксиома» значит принятое положение — то есть взяли и договорились, что это истина, с которой не поспоришь.

Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.

Синоним аксиомы — постулат. Антоним — гипотеза.

Основные аксиомы евклидовой геометрии

Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.

А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.

Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:

Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

У этой аксиомы два следствия:

Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:

Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.

На картинке можно увидеть, как это выглядит:

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.

Понятие теоремы

Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.

Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.

Состав теоремы: условие и заключение или следствие.

Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.

Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.

Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.

Примеры следствий из аксиомы о параллельности прямых:

Доказательство теоремы — это процесс обоснования истинности утверждения.

Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.

Способы доказательства геометрических теорем

Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.

Приемы для доказательства в геометрии:

Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.

Прямая и обратная теорема взаимно-обратные. Например:

В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.

Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.

Вот, как выглядит взаимное отношение теорем на примере:

В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.

Записывайся на онлайн обучение по математике для учеников с 1 по 11 классы!

Доказательство через синтез

Рассмотрим пример синтетического способа доказательства.

Теорема: сумма углов треугольника равна двум прямым.

Дан треугольник: ABC. Нужно доказать, что A + B + C = 2d.

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Доказательство:

Проведем прямую DE, так чтобы она была параллельна AC.

Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно, α + B + γ = 2d.

Так как α = A, γ = C, то заменим в предыдущем равенстве углы α и γ равными им углами: A + B + C = 2d. Что и требовалось доказать.

Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, которые лежат по одну сторону прямой. Есть связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною. Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.

Доказательство через анализ

Рассмотрим пример аналитического способа доказательства.

Теорема: диагонали параллелограмма пересекаются пополам.

Дан параллелограмм: ABCD.

Доказательство:

Если диагонали пересекаются пополам, то треугольники AOB и DOC равны.

Равенство же треугольников AOB и DOC вытекает из того, что AB = CD, как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ, как накрест-лежащие углы.

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до уже доказанного предложения.

Теоремы без доказательств

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

где a, b и c — стороны плоского треугольника,

α — угол напротив стороны а.

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Следствия из теоремы косинусов:

Понятия свойств и признаков

У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.

Свойства и признаки — понятия из обычной жизни, которые мы часто используем.

Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.

Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.

Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.

Признак — это то, по чему мы однозначно распознаем объект.

Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.

А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.

Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.

Такие утверждения называют необходимым и достаточным признаком.

Источник

АКСИОМА

Смотреть что такое АКСИОМА в других словарях:

АКСИОМА

(слово греч.). Аксиомой называется в узком и научном смысле общее предложение, истинность которого представляется очевидной нашему уму по самому смыслу. смотреть

АКСИОМА

(греч. axíōma — удостоенное, принятое положение, от axióō — считаю достойным) положение некоторой данной теории, которое при дедуктивном построе. смотреть

АКСИОМА

АКСИОМА

аксиома ж. 1) Исходное положение какой-л. научной теории, принимаемое без доказательств. 2) перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая доказательств.

АКСИОМА

аксиома ж.axiom это аксиома (самоочевидно) — that is self-evident / axiomatic

АКСИОМА

АКСИОМА

Аксиома (слово греч.). — Аксиомой называется в узком и научном смысле общее предложение, истинность которого представляется очевидной нашему уму по самому смыслу и значению слов, его составляющих, очевидным непосредственно, без всякого вывода его из какого-либо другого. На такого рода общих положениях строятся все дальнейшие выводы и заключения науки, и обойтись без них не может ни одна умозрительная наука. Существует ли вообще такая основная, безусловно общая всему человеческому знанию А., на которой могут быть построены все выводы человеческого ума, — это еще вопрос, разрешить который должна философия. С формальной стороны закон противоречий, идентичности, исключение третьего и подобные им логические основные положения — все это А., очевидные не только для развитого человеческого ума, но и для всякого способного сообразоваться с сущностью мысли. Критическая философия ограничивает понятие об А. так называемыми синтетическими положениями a priori, непосредственной, наглядной очевидности, и утверждает, что существуют таковые только в математике; философские же А. считают лишь дискурсивными основными положениями, очевидность коих обусловливается характером нашего представления, как, напр., положение: «каждое впечатление имеет определенную силу». Математики называют А. положение теоретически непосредственной истинности, как, напр., каждая величина равна самой себе.

АКСИОМА

АКСИОМА (от греч. axioma — значимое, принятое положение) — исходное, принимаемое без доказательства положение к.-л. теории, лежащее в основе доказа. смотреть

АКСИОМА

АКСИОМА (греч. axioma — принятое положение) — исходное утверждение (предложение) к.-л. научной теории, которое берется в качестве недоказуемого в данной теории и из которого (или совокупности которых) выводятся все остальные предложения теории по принятым в ней правилам вывода. Вопрос об истинности аксиомы решается или в рамках др. научных теорий, или при нахождении интерпретаций данной с-мы: реализация некоторой формализованной аксиоматической с-мы в той или иной предметной области свидетельствует об истинности принятых в ней аксиом. Философы, и в частности Г.И.Куницын (доктор философских наук, профессор), выдвигает следующие аксиомы (умопостигаемые истины) для осознания бесконечности Мироздания и множественности миров:
Аксиома 1. Космос — не бесконечен. Доказывается логикой: всякое конечное — часть бесконечного. Бесконечность — абсолютна, по крайней мере, бесконечность пространства и времени. Очевидные границы всего сущего доказывают именно безграничность Мироздания.
Аксиома 2. Поскольку Космос бесконечен, то материальный (и духовный) состав его представляет собой повторение того, что гдел. и когдал. уже существовало или существует. Но также и того, что где-то или когда-то будет существовать.
Аксиома 3. Если предположить, что наша Вселенная — одно из «зернышек» в бескрайнем Космосе, то все, что происходит в ней — все это бесчисленно повторяется где-то в др. «зернышках», вплоть как бы буквально до зеркального повторения.
Аксиома 4. Уникальность и повторяемость — соотносимы. Поэтому должна существовать как бы единица повторяемости. Ею является уникальность. Скажем, на Земле все до конца уникально, неповторимо. Не уникальны, однако, элементарные частицы. В бескрайности же Космоса и все сложности — через их повторяемость — становятся тоже элементарными. Повторяемость порождает и означает собой элементарность. Но для нас (субъекта познания) повторяемость — результат познания. Уникальность же — пока она не повторяется — реальная тайна. Относительная повторяемость существует всюду (в противном случае был бы хаос).
Аксиома 5. Повторяющихся ситуаций внутри нашей Вселенной — бессчетное количество. Возможно, в ней и нет полных повторений на сколько-нибудь сложном уровне (из-за «малости» этого региона), но относительные повторения, несомненно, имеются и здесь. Всякая уникальность и здесь относительна. Из-за той же «малости» региона может и не быть, к примеру, полностью одинаковых цивилизаций (для этого необходима истинная бескрайность). Но то, что кроме нас тоже существуют цивилизации, говорит о повторяемости даже и разума. Конечно, эти цивилизации — различного возраста. Старые цивилизации Вселенной непосредственно ведут наблюдение за развитием младенческих цивилизаций. Они могли посещать Землю в те времена, когда на ней еще не было жизни и находится здесь в каждый данный момент.
Аксиома 6. Материя с самого начала сингулярности и в процессе последующего «разлетания» Вселенной, в течение десятков млрд. лет, развивается поступательно, по линии усложнения. Это обусловлено движением материи к своему самосознанию, к появлению духа. Развитие проходит путь от неделимой элементарной части до универсального, но естественно развившегося разума. Дух — осознавшая себя материя.
Аксиома 7. Усложнение изначально присущей природе целесообразности в конце концов неизбежно приводит к самоцельности, самодостаточности завершающей ее структуры. Самоцелью и оказывается именно естественно развившийся разум. Он представляет последней стадией усложнения в структуре материи, в ее атрибутах, формах ее функционирования. Это и мыслящий и творящий особый слой Мироздания (ноосфера). В целом Космический мыслящий слой является самосознанием Мироздания, а универсальный индивид — самосознание самого этого слоя (рода «человек»).
Аксиома 8. Самоцелью развития Природы является индивид. Из индивидов составляется совокупный разум всякой цивилизации. Индивид — выразитель сущности рода. Включая в себя возможности рода, индивид — пик развития материи. Человек — идеал (в противном случае он не создал бы цивилизации, не стал бы самодостаточным). Вывод: при общности законов развития материи разум может возникнуть при благоприятных для него обстоятельствах лишь в форме человека (только такая форма — универсальна). Даже если где-то во Вселенной разумные существа могли бы возникнуть и не на углеродной основе (как земляне), а скажем, на фторовой, кремниевой или еще какой, это не может повлиять на характер совершенства индивида: в любых обстоятельствах он будет гуманоидом.

АКСИОМА

АКСИОМА

АКСИОМА

АКСИОМА

АКСИОМАпринцип или положение, принимаемое без доказательств за истинное. Термин «аксиома» использовался как до Евклида, так и после него, но сам Евклид употреблял выражение «общая идея», т.е. идея, принимаемая всеми за истинную, понимая под этим аксиому абстрактного содержания, а также термин «требование» (лат. postulatum), т.е. утверждение, имеющее конкретное геометрическое содержание, которое требуется принять без доказательства ради последующего рассуждения, воздерживаясь от его оценки. Такое различие сохранилось ныне только в элементарной математике. Что же касается высших разделов математики, то здесь термин «постулат» используется почти исключительно в смысле допущения чисто логического содержания.Хотя несовершенство постулатов Евклида было осознано довольно давно, считалось, что они тем не менее правильно описывают свойства пространства в рамках человеческого опыта. Дж.Саккери (1667-1733) пытался доказать постулат о параллельных (через точку P, лежащую вне прямой L, можно провести одну и только одну прямую, параллельную L); Н.И.Лобачевский (1792-1856) и Я.Бойяи (1802-1860) независимо друг от друга создали другую геометрию, предположив, что через точку P можно провести более одной прямой, параллельной прямой L; Б.Риман (1826-1866) создал еще одну геометрию, предположив, что всякая прямая, проходящая через точку P, пересекается с прямой L. В 1882 М.Паш предложил первую евклидову геометрию, выведенную из постулатов без определения таких элементов, как точка, прямая и плоскость. В 1888 Д.Пеано начал публикацию результатов предпринятых им попыток сведения всей математики к абстрактным системам, выводимым из явно сформулированных постулатов, записанных с помощью точной символики и использующих минимальное число неопределяемых терминов. В 1899 Д.Гильберт опубликовал свои Основания геометрии, в которых евклидова геометрия была изложена как чисто формальная абстрактная система, выводимая из явно сформулированных постулатов относительно никак более не определяемых терминов.Так в математике началась эпоха постулатов. Ныне существуют постулаты геометрии (евклидовой или неевклидовой, метрической или проективной), арифметики, алгебры и т.д. Вопрос о внутренней истинности постулатов более не рассматривается. Что же касается терминов, используемых в постулатах, то от них не требуется иного смысла, кроме того, который приписывается им постулатами. Из-за возросшей роли постулатов в математической системе их теперь анализируют более тщательно, чем когда-либо раньше. Разумеется, постулаты должны быть непротиворечивы, но весьма желательно, чтобы они были независимы, а число их было минимально. В некоторых случаях постулаты должны образовывать полное множество. Не вдаваясь в детали, можно сказать, что множество постулатов называется полным, если оно позволяет решить, истинно или ложно любое утверждение из области применимости постулатов, или, иначе говоря, если к этому множеству невозможно добавить новые постулаты, не впадая при этом в противоречие или избыточность. смотреть

АКСИОМА

⊲ АКСИО́МА 1708, ы, ◄ ср. и ж. □ им. мн. аксиомы и аксиоматы.Гр. ἀ&xiίωμα, мн.-ώματα, непоср. и через лат. axioma, нем. Axiom.Научн.Отправное, исход. смотреть

Источник

Что такое аксиома

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Мало кто может сформулировать точный ответ на этот вопрос.

Зевая за партой на уроке геометрии, мы краем уха слушали о пифагоровых штанах и параллельных прямых, которым не суждено встретиться.

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

С тех пор утекло много воды. Пришло время освежить знания. Обещаю, скучно не будет.

Аксиома — что это

Термин образовался от греческого слова axioma – утверждение, положение. Википедия сообщает, что:

аксиома – это исходное положение теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.

Толковый словарь Даля дает более простое определение:

аксиома — это «основная истина, очевидность, ясная сама по себе».

Такая трактовка термина отражает отношение древних греков к аксиомам.

В рамках современного научного подхода, аксиома рассматривается как некое фундаментальное положение, с которого начинается логическое доказательство. Она необязательно должна быть простой и понятной.

Аксиомы используют для доказательства теорем. В фундаменте каждой теории должно лежать исходное положение, которое считается истинным. Это основа, с нее начинается доказательство. Если бы аксиом не существовало, то цепочка логических обоснований уходила бы в бесконечность.

Например, мы утверждаем, что рыбы умеют плавать благодаря плавникам. Дальше будем задавать вопрос «почему», каждый раз требуя обоснования начального утверждения. Почему плавники помогают плавать? И так далее, пока не дойдем до того, что «вода — жидкость». Если не остановимся на этом, скатимся в обсуждения устройства вселенной, времени и материи. Цепочка бесконечна.

Аксиома позволяет разорвать цепочку обязательных доказательств путем принятия неких утверждений в качестве исходных и бесспорных (пляшем от печки).

Научное сообщество собралось, посовещалось и решило принимать выражение «А=B» как истинное, а тех, кто не согласен – предать анафеме и лечить в психиатрических больницах.

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Легче всего понять социальные аксиомы. Вот вы покупаете бублики в магазине и отдаете за них деньги. Что такое деньги, по своей сути? Кусочки бумаги с напечатанными картинками и цифрами. Но весь мир условился считать, что такая бумага имеет ценность.

Это аксиома. Никто не требует доказательств. Каждый человек принимают этот факт как очевидный. В это верит покупатель бубликов, продавец, хозяин булочной, поставщики муки, иначе сделка бы не состоялась.

Аксиома действует в границах некоторой сферы, а за пределами – нет.

Вы взяли кошелек, набитый купюрами, и поехали в гости к приятелю из дикого племени Тумба-Юмба. Но никто не берет ваши деньги. Для туземцев – это просто бумажки, пригодные лишь для разжигания костра. Там в ходу бусы или зубы тигра, которые уже для вас не представляют интереса.

Аксиомы — это наследие далекого прошлого

Впервые термин использовал греческий философ Аристотель. Он называл аксиомой исходную предпосылку, фундамент, на котором держится доказательство.

Аристотель выделял 2 основные аксиомы:

Все эти положения очевидны и не нуждаются в доказательствах. Это правда, потому что правда.

Древнегреческий математик Евклид в работе «Начала» выделил утверждения, которые принимаются на веру без доказательств. Он разделял их на аксиомы и постулаты, но так и не объяснил, чем один термин отличается от другого.

В целом можно признать: аксиома и постулат – это синонимы.

В качестве примера приведу пятый постулат Евклида. Звучит довольно жутко: «если при пересечении двух прямых третьей сумма внутренних односторонних углов меньше 180°, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше 180°».

Не пугайтесь, значение этого постулата знакомо любому школьнику: «параллельные прямые не пересекаются». Нарисуем на бумаге две прямые линии параллельно друг другу. Если их продолжить, то они не сблизятся и не удалятся, и уж тем более не пересекутся.

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Ученые предпринимали немало попыток представить это утверждение в виде теоремы, чтобы доказать или опровергнуть. Венгерский математик Янош Бойаи начал изучать пятый постулат и сошел с ума. Опровержение аксиом – опасная затея!

Мыслители выдвигали разные требования к аксиомам. Аристотель считал, что такое выражение должно быть общепринятым. Если половина людей считает, что А=В, а другая половина с ними не согласны, то речь идет скорее о гипотезе.

Рене Декарт полагал, что главные критерии аксиомы – это ясность и очевидность.

Выражение должно быть настолько понятным и бесспорным, что никому и в голову не придет сомневаться. Блез Паскаль говорил о недоказуемости.

Если утверждение в принципе возможно доказать — это не аксиома.

Аксиоматический метод

Это способ построения научной теории, когда в основу кладутся исходные положения, принимаемые без доказательств. Все дальнейшие умозаключения выводятся из них логическим путем.

Три этапа построения знания аксиоматическим способом:

что такое аксиома в обществознании. Смотреть фото что такое аксиома в обществознании. Смотреть картинку что такое аксиома в обществознании. Картинка про что такое аксиома в обществознании. Фото что такое аксиома в обществознании

Чтобы было понятнее, создадим безумную систему аксиом на вымышленном языке. Исходные понятия: «сванс», «курм», равать (отношение между свансами и курмами).

Дальше на основании этих выражений формируем и доказываем теорию.

Выбранный набор аксиом обязан соответствовать требованиям:

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (1)

Если два утверждения противоречат друг другу, то не факт, что одно из них истинное, здесь точно не может быть двух истинных утверждений, но зато могут быть два ложных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *