что такое аннушка для интернета
Трансиверы и области их применения
Трансиверы применяются для приема-передачи данных между станциями — компьютерами, ЭВМ, серверами, устройствами связи, — для транспортировки в сетевой среде, для соединения ее элементов. Широкое распространение получили в сфере телекоммуникации и технологиях, обслуживающих интернет, компьютерные сети. Такой приемопередатчик осуществляет транспортировку оптическими средами (линиями) или конвертацию сигналов для этого между ними и электрическими (металлические провода) их типами. Работа с оптоволокном (ОВ, ВОЛС, ВОЛ) обеспечивает чрезвычайно высокие скорости, расстояния, особо затребованные высокоскоростным интернетом, телекоммуникациями. Transceiver и ОВ позволяют уменьшить количество проводов и одновременно улучшить емкость каналов, скорость. Рассмотрим принципы работы сетевых приемопередатчиков, где и для чего они применяются, виды. В статье также приведем конкретный пример постройки сети с трансиверами.
Основные понятия о трансиверах
Более правильно ставить перед термином «трансивер» слово «сетевой» или «конвертер». В большинстве случаев он относится к сетевому типу оборудования. Transceiver — совокупность слов receiver и transmitter (термины для приемника и передатчика на англ.).
Трансивер (сетевой, конвертер) — это прибор для приема/передачи сигналов между различными (физически) средами, оснащением связи, компьютерным оборудованием.
Такие приемопередатчики являют собой устройство, соединяющие интерфейс хоста (главной вычислительной машины) с локальными сетями, например, стандарта Ethernet. Аппарат передает сигнал в кабель, позволяет станциям передавать и принимать из общего сетевого окружения передачи, делать конвертацию от витой пары к оптоволоконному кабелю и наоборот. Также адаптер способен обнаруживать противоречия на линии, мониторить ее.
Transceiver чрезвычайно удобный: это компактный модуль (часто немногим больше флешки), который вставляется в посадочные места на коммутаторе, сетевом оборудовании. Может быть и отдельной коробочкой со своим блоком питания (часто такие медиаконвертеры). Монтаж элементарный: достаточно вставить в гнездо, соединить разъемы и штекеры. Можно также вставить в плату обычного сетевого адаптера в RJ-45. Устройства съемные.
Например, трансивер Gls-lh-sm способен передавать по ВОЛС на 500 м и до десятка км без потерь качества сигнала, без усилителей. Расстояния для иных моделей могут быть еще большими. Это самые лучшие и эффективные на сегодняшний день инструменты для построения оптоволоконных сетей.
Итак, трансивер, что делает:
Алгоритм работы подобен радиостанциям и в этом состоит одна из главных особенностей — устройство может одновременно передавать и получать данные.
Организовать интернет-связь, подключение к сети ПК можно витой парой, но есть и другой более эффективный, более технологичный способ — оптоволокно. Именно для этого используют не обычные сетевые адаптеры под RJ-45 и медный кабель, а с трансиверами под ВОЛС. Приборы позволяют преобразовывать некие параллельные данные, транспортирующиеся по шине компьютера, в поток уже последовательного типа, которым можно предавать их по кабелю, объединяющего ПК в сеть.
Как работает устройство
Надо отличать оптические (проводные) и беспроводные радиочастотные трансиверы, последние применяются для телефонной связи, радиостанций (интересный факт, в FM они не используются, так как прием/передача тут — две разные задачи), в рациях, смартфонах, мобильниках, для беспроводных устройств. Мы остановимся на проводных оптических приборах.
Устройства могут устанавливаться в стандартные электрические порты или в SFP или SFP+ гнезда и иные, встроенные в коммутатор.
Устройство в своем составе имеет лазер (передатчик) и фотомодуль (приемо узел), что позволяет одновременно принимать и передавать световые сигналы по ОВ.
Где применяются примеры
Есть чрезвычайное множество схем сетей с оптоволокном и такими сетевыми адаптерами. Принцип простой: ОВ от провайдера заходит в коммутатор с указанным приемопередатчиком, а тот раздает интернет на компьютеры, подключаемые к нему. Ниже один из вариантов:
Основные сферы применения:
Трансивер может работать с линиями полностью из ОВ или переводить сигнал с них на металлические магистрали и наоборот. Почти всегда он связан с этой разновидностью среды (оптоволоконной).
Среда передачи
Среда передачи во многом влияет на форм-фактор, скорость, технологию связи. Есть два типа таковой:
По оптоволокну (ОВ) передают не электросигналы, а свет. Это кабель с очень тонким ядром (сердцевиной) толщиной немногим большей волоса из специального гибкого стекла, которое проводит свет. Жила покрыта лаковой оболочкой, сверху которой тканевая и пластиковая изоляция. То есть провод тут один, все остальное — защитные оболочки.
На схеме выше видно как идет свет внутри жилы: он полностью отражается от ее границ — это полное внутреннее отражение, обеспечивающее преодоление больших расстояний.
Оптика не передает электричество, что можно рассматривать и как плюс, и как минус. Также по ней сигнал либо есть, либо его нет, так как это цифровая передача.
Перейдем к следующему типу среды, к металлическим кабелям, проводящим электросигналы.
WDM и CWDM
При выборе трансиверов обращают внимание на следующие технологии.
WDM — модули работают в паре с одной стороны передача на длине волн 1310 нм, с другой 1550, что позволяет вместо двух жил применить один провод. Приемник остается широкополосным.
CWDM. Развитие предыдущей технологии. Возможны 8 дуплексных каналов по одному волокну.
Transceiver медиаконвертер
Пока самыми популярными являются классические медные (витая пара и прочее) линии связи adsl, shdsl, ethernet. Но оптические кабели постепенно становятся все больше и заметно распространенными. Монтаж волоконно-оптических линий (ВОЛ, ВОЛС) с развитием технологий удешевляется. Еще недавно интернет ими прокладывали преимущественно для юридических лиц, предприятий, а в последнее время много таких систем заказывают физические субъекты, обычные граждане желающие получить высокую скорость связи.
Иногда у интернет провайдеров, чтобы развернуть сразу обширную сеть нет средств или это на некотором этапе развития их сервиса нецелесообразно. Проблема решается подключением абонентов через transceiver медиаконвертеры. В народе — «медик». Основная задача приспособить сигнал с оптоволокна для передачи на витую пару и наоборот. Аппарат переводит электрический импульс (именно такой на металлических жилах) в оптический (таковой на ВОЛ). Если кратко, то это электронно-оптический преобразователь.
Популярный внешний вид — небольшая коробочка, напоминающая устаревшие уже модемы, в высоту около 2 см, в длину и ширину 10 см.
На корпусе есть такие элементы:
Такой трансивер-медиаконвертер не является роутером и даже коммутатором. Это так называемый прозрачный мост, переходник, просто пропускающий через себя трафик в точке перехода связи с электросреды в опто. Обычно приборчик без IP, веб-интерфейсов (встречаются модели с ним, но редко).
Виды медиаконвертеров
На станциях связи (у интернет-провайдеров) для удобства применения медиаконвертеров монтируются специальные корзины с разъемами под такие микросхемы с уже подведенным питанием, что позволяет обойтись без блоков розеток.
Для предоставления услуг интернета описанный тип аппаратов по-прежнему результативный, но морально устаревает, постепенно становится менее популярным, поскольку чаще абонентам ставят специальные коммутаторы, принимающие несколько услуг, а также можно приобрести роутер с оптопортом и трансивером внутри, что намного удобнее.
Но трансиверы-медиаконверторы по-прежнему популярные и порой незаменимые для постройки оптоволоконной сети видеонаблюдения (пример такой рассмотрим ниже подробно) и для подобных целей.
Модули SFP или оптические трансиверы
Расшифровка аббревиатуры: Small Form-factor Pluggable. Техническое название — «оптический трансивер». Это то же приемопередаточное устройство с рассмотренным выше принципом, но со своими особенностями.
В данном сегменте форма изделия, можно сказать, одна:
Задачи те же, что и у рассмотренных выше «медиков» — преобразование сигнала электро в опто и обратно при использовании ВОЛС или для работы с линиями полностью с ОВ. Это тот же медиаконвертер, только намного компактнее, дополнительного блока питания не требуется (оно есть на модуле с гнездами). Но рассматриваемый вариант технически продвинутее.
Разновидности SFP модулей:
Есть разные патч-корды под конкретные типы разъемов:
Построение оптоволоконных сетей с трансиверами
Рассмотрим условия, в которых применяются transceiver. Выберем 2 сферы: для интернета, сети ПК и для системы безопасности с видеокамерами (аналоговыми, не IP).
Интернет и сеть ПК
Если говорить об оптоволоконном интернете, то для среднестатистического пользователя тут все понятно: провайдер, предоставляющий услуги, тянет оптоволокно со специальным разъемом к роутеру, коммутатору, на котором установлен трансивер. А оттуда уже интернет раздается по Wi-Fi или по витой паре или тому же оптоволокну. То есть механика процесса немного схожая как, если бы использовалась витая пара. Но внутренние нюансы значительные: клиент получает чрезвычайно качественный и быстрый сигнал.
Если строится именно локальная сеть (без выхода в интернет) с оптоволокном и такими приемопередатчиками, то таковое протягивается от каждого компьютера к общему маршрутизатору (свитчу). ПК должны иметь встроенные трансиверы, не обычные сетевые адаптеры для витой пары. Преимущество в том, что такую систему (ВОЛС) можно построить на больших расстояниях и скорость ее будет выше, чем на металлических проводах, на одну жилу можно «повесить» несколько каналов.
Видеонаблюдение
Принцип снятия сигнала с нескольких видеокамер максимально схож как для постройки сети с компьютерами, так как в данном случае эти приборы, если упростить, в составе системы такой же элемент как ПК.
Преимущества перед иными типами связи:
Куплен комплект трансиверов-медиаконвертеров
Один блок на прием, второй на передачу, между собой будут соединяться оптоволокном. К каждому идет слаботочный блок питания на 5 В и 1 А:
Корпусы самих устройств идентичные, отличаются только буквами: на одном R — ресивер (передает), на втором — T (принимает)
Для соединения между собой блоков куплен оптический патч-корд. Надо проследить, чтобы штекеры подошли к трансиверу, так как есть несколько стандартов: SC, FC, LC и пр. На нашем тип указан на листке в упаковке. Длина — 10 м, так как делается пока тестовое соединение
Для соединения ОВ не применяют обычных способов — есть особые механические коннекторы или специальный сварщик, но он чрезвычайно дорогой, поэтому применим первые. Изоляцию с такого кабеля можно снять любыми кусачками, подручными инструментами, но потребуется еще и зачистка, а для нее нужен специальный стриппер (стоит около 5 тыс. руб., но на китайских площадках есть экземпляры и за 800 руб.). Главное, зачем он нужен — для снятия лака с внутренней жилы, диаметр которой 0.25 мм.
В доме есть маленькая серверная, где расположен видеорегистратор. Отсоединяем от него кабели камер и присоединяем трансивер — блок с буквой T, он будет отправлять картинку с камер на ресивер (с буквой R).
Это тестовая сборка, для наглядности в ограниченном пространстве, поэтому ответная коробочка (R) размещена в доме на столе:
Для соединения ресивера с видеорегистратором применяются короткие патч-корды с BNC штекерами. Результат ниже. У нас transceiver не поддерживает некоторые стандарты, поэтому картинка черно-белая. Есть модели, обеспечивающие цветное видео, но у продавца надо особо уточнить, какие стандарты работают (PAL, SECAM, NTEC, Plug&Play и прочее). В нашем случае из-за неправильно подобранных стандартов пользователю пришлось добиваться цветной картинки, изменяя положение перемычек на самих камерах, но само качество немного ухудшилось.
Подбор трансиверов
Параметры для оценки мы описали выше в разделах о видах этих устройств. Одной из самых важных характеристик является расстояния, на которые рассчитано изделие. Чтобы не ошибиться, оно замеряется спецприборами. Но также можно оценить и на глаз (чаще так и делают), но потребуется точность минимум до 1 км.
Опишем правила выбора для оптических трансиверов:
Маркировка
Данные можно узнать из диагностических характеристик изделия, это такие пункты:
Пример самых важных параметров из спецификации, указанной магазином, и сбоку диагностическая информация:
Совместимость
Будет ли работать выбранный изделие с уже имеющимися.
Подбор — чрезвычайно обширная тема, по каждому аспекту можно написать небольшую брошюру. Мы лишь сориентируем читателя, на какие характеристики обратить внимание, для подробных исследований надо изучать специсточники, учебники. Тут есть много нюансов, например 2-волоконный SFP 4.25 Гбит/с FiberChannel модуль не совместим с 2-волоконным GBIC 1.25 Гбит/с модулем из-за расхождений в скорости передачи и пр.
По волнам есть таблицы:
Проверка совместимости с коммутатором производится с изучением его спецификации. Тут важно тщательно различать названия типов ресиверов, например, часто путают порты SFP с SFP+ (они визуально идентичные). А также, даже если есть порт SFP+, то сетевое оборудование может не поддерживать SFP+ZR.
Надо также изучить спецификацию, именно программную часть, операционку коммутатора, где будут указано, что поддерживается.
Подбор медиаконвертеров для простых задач
Если же речь идет лишь о медиаконвертере, то есть когда просто требуется перевести сигнал из меди на оптоволокно, например, для более простой цели, как в описанном нами случае — для видеонаблюдения, то дела обстоят значительно проще. Подбирают под имеющиеся разъемы/штекеры, протяженность линии, под количество жил и поддерживаемые стандарты.
Итог, важные интересные факты
Постройка сети, обеспечение интернета с трансиверами и оптоволокном в последнее время упрощается, так как выпускаются специальные роутеры, маршрутизаторы, коммутаторы с ними под оптоволокно. Есть также transceiver переходники, один из них на изобр. ниже:
На завершение приведем интересные нюансы:
Выше — выборка из специализированного ресурса об ONU, которая также отображает тот факт, что оптические технологии развиваются чрезвычайно быстрыми темпами. Мы же в статье рассмотрели основы по одному из ее основных элементов — именуемым трансивером, выполняющим роль сетевого адаптера и медиаконвертера.
Видео по теме
Та самая булгаковская Аннушка, которая разлила масло
Анна Павловна Горячева (та самая Аннушка)
На самом деле всё было гораздо банальнее. Анна Павловна Горячева просто отравляла жизнь Булгакова, делая её невыносимой. Она была соседкой писателя по коммунальной квартире на Большой Садовой улице, где он жил в одной из 10 комнат со своей супругой Татьяной Лаппой.
Именно Горячева стала той самой Аннушкой, которая разлила злополучное масло на трамвайных путях в романе «Мастер и Маргарита».
«Никто не знал, да, наверное, и никогда не узнает, чем занималась в Москве эта женщина и на какие средства она существовала. Видеть ее можно было ежедневно то с бидоном, то с сумкой, а то и с сумкой и с бидоном вместе – или в нефтелавке, или на рынке, или под воротами дома, или на лестнице, а чаще всего в кухне квартиры № 48, где и проживала эта Аннушка. Кроме того и более всего было известно, что где бы ни находилась или ни появлялась она – тотчас же в этом месте начинался скандал, и кроме того, что она носила прозвище Чума».
Но эта роль не была её единственной. Аннушка отметилась и в других произведениях Булгакова, в частности, она практически «играет» саму себя в цикле рассказов «Москва 20-х годов».
Михаил Булгаков и Анна Горячева
В рассказе «Самогонное озеро» Аннушка выступает в роди бабки Павловны, которая постоянно била своего сына Шурку и торговала папиросами.
В десять часов вечера под светлое воскресенье утих наш проклятый коридор. В блаженной тишине родилась у меня жгучая мысль о том, что исполнилось мое мечтанье, и бабка Павловна, торгующая папиросами, умерла. Решил это я потому, что из комнаты Павловны не доносилось криков истязуемого ее сына Шурки.
Фигурирует Аннушка и в рассказе «№ 13. Дом Эльпит-Рабкоммуна». Это произведение повествует о том, как прекрасный дом на Большой Садовой, принадлежавший господину Эльпиту, после революции превратился в «мышасто-серую пятиэтажную громаду».
Ул. Большая Садовая, 10
Дом национализировали и на нём появилась табличка «Рабкоммуна». Прежние жильцы покинули квартиры, а в их комнатах поселились другие люди, которые развешивали в гостиных сырое бельё и ставили чадящие примусы.
Однажды зимой в доме пропало отопление, и Аннушка не придумала ничего лучше, чем достать буржуйку и затопить её паркетом. Это привело к пожару, и дом сгорел.
Долгое время никто не знал, как выглядела Анна Горячева. Но однажды объявился её правнук, живущий сейчас из Швейцарии, и подарил музею Булгакова фото знаменитой родственницы.
Снимок оказался очень маленьким, вероятно, он был сделан для какого-то документа. Современные технологии помогли увеличить изображение, и теперь оно украшает кухню коммунальной квартиры, где обычно и устраивала склоки та самая Аннушка.
Грозная «Аннушка»: как в СССР впервые в мире испытали систему ПРО
Этой победе инженерной мысли предшествовали более семи лет напряженной работы по решению чрезвычайно сложных на тот момент научных, конструкторских и производственных задач.
О необходимости разработки «средств борьбы с баллистическими ракетами в связи с нависшей угрозой» первыми в августе 1953 года открыто заговорили известные советские военачальники, направившие письмо в Президиум ЦК КПСС. После нескольких месяцев размышлений Совет министров СССР издал распоряжение «О возможности создания средств ПРО», мероприятия в этом направлении были поручены ведущим конструкторским бюро.
Через два с небольшим года у экспериментального противоракетного комплекса появилось обозначение Система «А», его главным конструктором был назначен Григорий Кисунько. Масштабы развернутых работ были впечатляющими даже по сегодняшним меркам. На берегу озера Балхаш в Казахстане был разбит новый полигон, а в качестве его административного центра был возведен новый город Приозерск, где сконцентрировали все инженерные силы. На этом населенном пункте и отрабатывалась модель защиты Москвы, которая была выбрана первым объектом обороны от ракетного удара.
Все составляющие Системы «А» были разработаны фактически «с нуля». А это ни много ни мало командно-вычислительный пункт и центральная вычислительная станция, три радиолокатора с каналами обнаружения и сопровождения баллистических целей, захвата и сопровождения противоракет, РЛС визирования противоракет со станцией передачи команд управления и стартовая позиция с пусковыми установками.
Процесс перехвата цели предусматривал минимальное вмешательство обслуживающего персонала. Для автоматизации была создана вычислительная машина М-40, ставшая на то время одной из самых производительных ЭВМ в мире.
Радиолокаторы размещались по методу «трех дальностей», что обеспечивало высокую точность определения координат цели. РЛС визирования осуществляла автоматический захват противоракеты после старта и сопровождение ее на всей траектории полета.
Правильность выбора схемы В-1000 была безоговорочно подтверждена 4 марта 1961 года. Система «А» осуществила перехват баллистической ракеты Р-12, а стартовавшая «Аннушка», получив команду на подрыв, разрубила цель, летевшую со скоростью более трех километров в секунду. Мишень, по данным радиотелеметрии, была уничтожена через шесть секунд после встречи с облаком «микробомб».
В течение следующих нескольких месяцев советские разработчики провели еще около 30 пусков экспериментальной системы ПРО. Все они оказались успешными.
Появление уникальных оборонительных средств вынудило США искать возможности для заключения Договора по сокращению стратегических наступательных вооружений и по ограничению противоракетной обороны. К слову, американские специалисты сумели воспроизвести способы работы Системы «А» только спустя почти 20 лет, летом 1984 года.