что такое арктангенс угла в прямоугольном треугольнике
Что такое арктангенс угла в прямоугольном треугольнике
Пример вычислений теорема Пифагора
Соотношения в прямоугольном треугольнике
Пример вычислений соотношения в прямоугольном треугольнике
Обратные тригонометрические функции арксинус (arcsin), арккосинус (arccos), арктангенс (arctg) и арккотангенс (arcctg)
— арксинус (arcsin) возвращает угол по его синусу
— арккосинус (arccos) возвращает угол по его косинусу
— арктангенс (arctg) возвращает угол по его тангенсу
— арккотангенс (arcctg) возвращает угол по его арктангенсу
Пример вычислений обратные тригонометрические функции
Сумма углов треугольника
Сумма углов в треугольнике равна 180 градусам
Теорема синусов
Для любого треугольника соблюдается выражение
Пример вычислений теорема синусов
Теорема косинусов
Квадрат любой стороны треугольника, равен сумме квадратов двух других его сторон, минус удвоенное произведение этих сторон на косинус угла между ними
Пример вычислений теорема косинусов
Площадь треугольника
Площадь треугольника можно определить по формулам
также удобно использовать формулу Герона ,
где p-полупериметр треугольника
Пример вычислений площадь треугольника
или по формуле Герона
Площадь круга
Длина дуги окружности
Длина дуги окружности вычисляется по формулам
если угол задан в угловых градусах минутах и секундах
если угол задан в радианах
Пример вычислений длина дуги окружности
угол задан в угловых градусах минутах и секундах
угол задан в радианах
Перевод градусов в угловые градусы минуты и секунды
Перевод угловых градусов минут и секунд в градусы выполняется согласно выражения
Пример вычислений
перевести в градусы угол, который задан в угловых градусах минутах и секундах
Перевод градусов в угловые градусы минуты и секунды
Перевод градусов в угловые градусы минуты и секунды выполняется согласно выражения
Пример вычислений
перевести в угловые градусы минуты и секунды угол, который задан в градусах
Перевод градусов в радианы
Перевод градусов в радианы выполняется по формуле
Пример вычислений
перевести в радианы угол, который задан в угловых градусах минутах и секундах
Перевод радианов в градусы
Перевод радианов в градусы выполняется по формуле
Пример вычислений
перевести в угловые градусы минуты и секунды угол, который задан в радианах
Определение наклона линии в градусах
Определение наклона линии в градусах выполняется с использованием соотношений в прямоугольном треугольнике
Пример вычислений
Определить наклон пандуса длиной 14м и высотой 3,5м
Определение уклона линии в долях, процентах и промилле
При инженерно-строительных работах, наклон линии задают не градусом наклона, а тангенсом этого градуса — безразмерной величиной, которая называется уклоном. Уклон может выражаться относительным числом, в процентах (сотые доли числа) и промилле (тысячные доли числа)
Пример вычислений
Определить уклон отмостки длиной 2,5м и высотой 0,30м
Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса
В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.
Значения арксинуса, арккосинуса, арктангенса и арккотангенса
Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».
Для четкого понимания рассмотрим пример.
Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °
Основные значения arcsin, arccos, arctg и arctg
Таблица синусов основных углов предлагает такие результаты значений углов:
Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.
Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:
Следуя из таблицы, находим значения арккосинуса:
Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.
α | — 3 | — 1 | — 3 3 | 0 | 3 3 | 1 | 3 | |
a r c t g a к а к у г о л | в р а д и а н а х | — π 3 | — π 4 | — π 6 | 0 | π 6 | π 4 | π 3 |
в г р а д у с а х | — 60 ° | — 45 ° | — 30 ° | 0 ° | 30 ° | 45 ° | 60 ° | |
a r c t g a к а к ч и с л о | — π 3 | — π 4 | — π 6 | 0 | π 6 | π 4 | π 3 |
Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса
Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.
Нахождение значения arcsin, arccos, arctg и arcctg
Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.
Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.
Арктангенс и арккотангенс. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти арксинус и арккосинус от числа. Результат можно видеть как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.
Арктангенс и арккотангенс − теория, примеры и решения
Функция арктангенс и ее график
Однако, функцию тангенс можно разделить на интервалы, где она монотонна. Эти интервалы:
По теореме об обратной функции, на каждом из указанных отрезков функция tg x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию обозначают x=arctg y. Поменяв местами x и y, получим:
Функция (1) − это функция, обратная к функции
График функции арктангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.2).
Свойства функции арктангенс.
Решим тригонометрическое уравнение
В интервале для уравнения (2) существует одно t, для которого tg t=a. Это решение
Следовательно в интервале уравнение (2) имеет один корень. Так как тангенс периодичная функция с основным периодом π, то все корни уравнения (2) отличаются на πn (n∈Z), т.е.
Решение уравнения (2) представлен на Рис.3:
Так как tg t − это ординат точки пересечения прямой OMt1 c прямым x=1, то для любого a на линии тангенса есть только одна точка T(1; a). Прямая OTt пересекается с окружностью с радиусом 1 в двух точках: . Но только точка
соответствует интервалу
, которое соответствует решению
.
Пример 1. Решить тригонометрическое уравнение:
Решение. Воспользуемся формулой (3):
Пример 2. Решить тригонометрическое уравнение:
Решение. Воспользуемся формулой (3):
Используя онлайн калькулятор получим:
Функция арккотангенс и ее график
Однако, функцию кокотангенс можно разделить на интервалы, где она монотонна. Эти интервалы:
По теореме об обратной функции, на каждом из указанных интервалов функция ctg x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию оброзначают x=arcctg y. Поменяв местами x и y, получим:
Функция (4) − это функция, обратная к функции
График функции арккотангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.5).
Свойства функции арккотангенс.
Решим тригонометрическое уравнение
В интервале (0; π) для уравнения (5) существует одно t, для которого сtg t=a. Это t=arcctg a. Следовательно в интервале (0; π) уравнение (5) имеет один корень. Так как котангенс периодичная функция с основным периодом π, то общее решение уравнения (5) имеет следующий вид:
Решения уравнения (5) можно представить на единичной окружности (Рис.6):
ctg t − это абсцис точки пересечения прямой с прямым y=1. Любому числу a на линии котангенс соответствует только одна точка
. Прямая
пересекется с единичной окружностью в двух точках
. Но только точка
соответствует интервалу (0; π), которое соответствует решению
.
Пример 1. Решить тригонометрическое уравнение:
Решение. Воcпользуемся формулой (6):
Так как в интервале (0; π), то
Пример 2. Решить следующее тригонометрическое уравнение:
Решение. Используя формулу (6), имеем
С помощью онлайн калькулятора вычисляем . Тогда
Как найти арктангенс: формула, функция, свойства
Понятие арктангенса
Область определения для функции \(y=\operatorname
\(\operatorname
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
\(D(\operatorname
Функция arctg обладает следующими свойствами, которые полезно использовать при расчете:
Получение функции арктангенса
Предположим, что имеется некая функция:
Заметим, что эта функция имеет вид кусочно-монотонной. Такая ситуация наблюдается на любом участке области определения. В результате нельзя назвать функцией:
Это связано с нарушением условий однозначности. Проанализируем участок, где функция является возрастающей и имеет каждое значение лишь однажды:
Отрезок \(y=\operatorname
График арктангенса
Рассматриваемая аркфункция характеризуется определенным графиком. Изобразить арктангенс на координатной плоскости можно с помощью преображения графика, которому соответствует тангенс. В процессе требуется переместить между собой оси абсцисс и ординат.
График функции \(y=\operatorname
Арксинус, арккосинус, арктангенс и арккотангенс как число
Обратными функциями в тригонометрии называют такие функции, которые являются обратными к тригонометрическим функциям.
Существует несколько основных аркфункций:
Обратные тригонометрические функции обладают особыми наименованиями. Названия аркфункций формулируют путем приписывания к наименованию функции приставки «арк-».
Функции в тригонометрии отличаются периодичностью. В связи с этим обратные к ним функции обладают множеством значений в виде углов (дуг), для которых конкретная прямая функция определена соответствующим числом.
Под функцией \(\arcsin 1/2\) понимается множество углов \(\left ( \frac<\pi><6>, \frac<5 \pi><6>, \frac<13 \pi><6>, \frac<17 \pi> <6>\dots
(30^\circ, 150^\circ, 390^\circ, 510^\circ \dots) \right ).\)
Если посчитать, синус перечисленных углов соответствует 1/2.
Если рассмотреть множество значений обратной тригонометрической функции, то можно получить ключевые ее значения. Данные значения подразумевают при упоминании арксинуса, арккосинуса и других аркфункций.
Тогда каждое из решений уравнения \(\sin x=\alpha\) допустимо записать, как:
\(x=(-1)^
При нахождении ответов в процессе решения задач, в условии которых присутствуют такие функции, как: синус, косинус, тангенс, котангенс угла, обратные им функции — арксинус, арккосинус, арктангенс, арккотангенс — определяют угол. В том случае, когда речь в задании идет о тригонометрических функциях числа, то аркфункции также будут определяться в виде числа.
Арккосинус числа \(а \in [−1, 1]\) является числом \(t\in [0, \pi]\) с косинусом, равным а.
Арккотангенс числа а \(\in (−\infty, \infty)\) является числом \(t\in (0, \pi)\) с котангенсом, равным а. В данном случае используют знак бесконечности, когда речь идет об определении а.
Важно различать задачи, где аркфункции являются числами, а где — углами. Данное условие можно понять по контексту. Если указана обратная тригонометрическая функция а без каких-либо уточнений, то ее допускается определять, как аркфункцию а в виде угла или числа.
Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства
Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса
Это свойство используется чаще всего, поэтому логичнее всего начать рассмотрение всех основных свойств именно с него. Рассмотрим, чему равны синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа.
Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа
Данное свойство следует напрямую из определения арксинуса, арккосинуса, арктангенса и арккотангенса.
sin ( a r c sin a ) = a
Доказательство для арккосинуса, арктангенса и арккотангенса строится аналогично, на базе определений этих функций. Вот несколько примеров использования данного свойства.
Пример 1. Свойства обратных тригонометрических функций
Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел
Существует связь между арксинусами, арккосинусами, арктангенсами и арккотангенсами противоположных чисел. Запишем соотношения, выражающие ее.
arcsin, arccos, arctg и arcctg противоположных чисел
Доказательство свойства арксинусов противоположных чисел завершено.
Теперь рассмотрим доказательство свойства арккосинусов противоположных чисел.
Доказательства для арктангенса и арккотангенса проводится по аналогичному принципу.
Сумма арксинуса и арккосинуса, арктангенса и арккотангенса
Данное свойство устанавливает связь соответственно между арксинусом и арккосинусам, арктангенсом и арккотангенсом. Запишем формулы для арксинуса и арккосинуса.
Сумма arcsin и arccos
Соответственно, для арктангенса и арккотангенса
Сумма arctg и arcctg
Пользуясь разобранными свойствами, можно выряжать арксинус через арккосинус, арккосинус через арксинус, арктангенс через арккотангенс и наоборот.
Пример 2. Сумма арксинуса и арккосинуса
Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса
Запишем соотношения, иллюстрирующие свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.
Свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса
Аналогично, соблюдение условий обязательно для арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.
К примеру, запись a r c sin ( sin 8 π 3 ) = 8 π 3 будет ошибочной, так как число 8 π 3 не удовлетворяет условиям неравенства.
Описанные в этой статье свойства позволяют получить ряд полезных формул, определяющих связи между основными и обратными тригонометрическими функциями. Соотношениям, связывающим sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg будет посвящена отдельная статья.