что такое big data таргет

Кто и зачем собирает большие данные?

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Осенью 2019 года разразился скандал с сервисом Apple Card: при регистрации в нем выдавались разные кредитные лимиты для мужчин и женщин. Даже Стиву Возняку не повезло:

За год до этого выяснилось, что платформа Netflix показывает пользователям разные постеры и тизеры — в зависимости от их пола, возраста и национальности. За это сервис обвинили в расизме.

Наконец, Марку Цукербергу регулярно достается за то, что Facebook якобы собирает, продает и манипулирует данными своих пользователей. В разные годы его обвиняли и даже судили за манипуляции во время американских выборов, пособничество российским спецслужбам, разжигание ненависти и радикальных взглядов, неуместную рекламу, утечку данных о пользователях, препятствия расследованиям против педофилов.

Что такое большие данные

Большие данные — они же биг дата (англ. Big Data) или метаданные — это массив данных, которые поступают регулярно и в большом объеме. Их собирают, обрабатывают и анализируют, получая на выходе четкие модели и закономерности.

Яркий пример — это данные с Большого адронного коллайдера, которые поступают непрерывно и в большом количестве. С их помощью ученые решают множество задач.

Но большие данные в сети — это не только статистика для научных исследований. По ним можно проследить, как ведут себя пользователи разных групп и национальностей, на что обращают внимание и как взаимодействуют с контентом. Иногда для этого данные собирают не из одного источника, а из нескольких, сопоставляя и выявляя определенные закономерности.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

О том, насколько важны большие данные в сети заговорили тогда, когда их стало действительно много. На начало 2020 года пользователей интернета в мире насчитывалось 4,5 млрд человек, из них 3,8 млрд зарегистрированы в соцсетях.

У кого есть доступ к Big Data

По данным опросов, больше половины россиян уверены, что их данные в сети используются третьими лицами. В то же время, многие размещают в соцсетях и приложениях личную информацию, фото и даже номер телефона.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Здесь нужно пояснить: первое лицо — это сам пользователь, который размещает свои данные на каком-либо ресурсе или в приложении. При этом он дает согласие (ставит галочку в соглашении) на обработку этих данных вторым лицом — то есть владельцами ресурса. Третье лицо — это те, кому владельцы ресурса могут передать или продать данные пользователей. Часто это прописано в пользовательском соглашении, но не всегда.

В роли третьего лица выступают госорганы, хакеры или компании, которые покупают данные для коммерческих целей. Первые могут получить данные по решению суда или вышестоящей инстанции. Хакеры, понятно, никакими разрешениями не пользуются — они просто взламывают базы, хранящиеся на серверах. Компании (по закону) могут получить доступ к данным только в том случае, если вы сами им разрешили — поставив галку под соглашением. В противном случае это противозаконно.

Для чего компании используют Big Data?

Большие данные в коммерческой сфере использовали десятки лет, просто их поток не был таким интенсивным, как сейчас. Это, к примеру, записи с камер наблюдения, данные GPS-навигаторов или онлайн-платежи. Теперь, с развитием соцсетей, онлайн-сервисов и приложений все это можно связать и получить максимально полную картину: где живут потенциальные клиенты, что они любят смотреть, куда ездят в отпуск и какая у них марка машины.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Из примеров выше понятно, что с помощью больших данных компании, в первую очередь, хотят таргетировать рекламу. То есть предлагать продукты, услуги или отдельные опции только нужной аудитории и даже настраивать продукт под конкретного пользователя. К тому же, реклама в том же Facebook и на других крупных площадках становится все дороже, и показывать ее всем подряд совсем не выгодно.

Данные о потенциальных клиентах из открытых источников активно используют страховые компании, частные клиники и работодатели. Первые, к примеру, могут изменить условия страховки, если увидят, что вы часто ищете информацию по определенным заболеваниям или лекарствам, а работодатели — оценить, не склонны ли вы к конфликтам и асоциальному поведению.

Но есть и еще одна важная задача, над которой бьются в последние годы: подобраться к самой платежеспособной аудитории. Сделать это не так просто, хотя задачу заметно облегчают платежные сервисы и электронные чеки через единого ОФД (оператора фискальных данных). Чтобы подобраться как можно ближе, компании даже пытаются отследить и «воспитать» потенциальных клиентов с самого детства: через онлайн-игры, интерактивные игрушки и обучающие сервисы.

Самые большие возможности по сбору данных — у мировых корпораций, которые владеют сразу несколькими сервисами. У того же Facebook сейчас — более 2,5 млрд активных пользователей. При этом компания владеет и другими сервисами: Instagram — более 1 млрд, WhatsApp — более 2 млрд и другие.

Но еще большим влиянием обладает Google: почтой Gmail пользуется 1,5 млрд человек в мире, еще 2,5 млрд — мобильной ОС Android, больше 2 млрд — YouTube. И это не считая приложений Google-поиска и Google Maps, магазина Google Play и браузера Chrome. Осталось прикрутить свой онлайн-банк — и Google сможет знать о вас буквально все. Кстати, Яндекс в этом плане уже на шаг впереди, но он охватывает только русскоязычную аудиторию.

👍 В первую очередь компании интересует, что мы постим и лайкаем в соцсетях. К примеру, если банк видит, что вы женаты и активно лайкаете девушек в Instagram или Tinder, потребительский кредит вам, скорее, одобрят. А ипотеку на семью — уже нет.

Важно и то, на какую рекламу вы кликаете, как часто и с каким результатом.

📥 Cледующий шаг — это личные сообщения: в них информации гораздо больше. Утечки сообщений случались у ВКонтакте, Facebook, WhatsApp и других мессенджеров. По ним, к слову, легко отследить и геолокацию в момент отправки сообщения. Наверняка вы замечали: стоит с кем-то обсудить покупку чего-либо или просто заказ пиццы — в ленте тут же появляется релевантная реклама.

🚕 Большие данные активно используют и «сливают» сервисы доставки и такси. Они знают, где вы живете и работаете, что любите, какой у вас примерный доход. Uber, к примеру показывает цену выше, если вы едете из бара домой и явно перебрали. А когда у вас на телефоне куча других агрегаторов — наоборот, предложит подешевле.

🎞 Есть сервисы, которые используют фото и видео, чтобы собрать как можно больше информации. Например, библиотеки компьютерного зрения — такая есть у Google. Они сканируют вас и окружающее пространство, чтобы понять, какой у вас размер груди или рост, какие марки вы носите, на какой машине ездите, есть ли у вас дети и домашние животные.

💳 Те, кто предоставляет смс-шлюзы банкам для их рассылок, могут отследить ваши покупки по карте — зная 4 последние цифры и номер телефона — а потом продать эти данные кому-то еще. Отсюда весь этот спам со скидками и пиццей в подарок.

🤷‍♂️ Наконец, мы сами сливаем свои данные левым сервисам и приложениям. Вспомните этот хайп вокруг Getcontact, когда все радостно забивали свой номер телефона, чтобы узнать, как он записан у других. А теперь найдите их соглашение и почитайте, что там написано насчет передачи ваших данных (спойлер: владельцы могут передавать их третьим лицам на их усмотрение):

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Корпорации могут годами успешно собирать и даже продавать данные пользователей, пока не дойдет до судебного иска — как это случилось с тем же Facebook. И то решающую роль сыграло нарушение компанией GDPR — закона в ЕС, который ограничивает использование данных гораздо жестче, чем американский. Еще один недавний пример — скандал с антивирусом Avast: один из дочерних сервисов компании собирал и продавал данные от 100 до 400 млн пользователей.

Но есть ли у всего этого хоть какие-то плюсы для нас?

Как большие данные помогают всем нам?

Да, есть и светлая сторона.

Большие данные помогают ловить преступников и предупреждать теракты, находить пропавших детей и защищать их от опасности.

С их помощью мы получаем крутые предложения от банков и персональные скидки. Благодаря им мы не платим за многие сервисы и соцсети, которые зарабатывают только на рекламе. Иначе один только Instagram обходился бы нам в несколько тысяч долларов в месяц.

Наконец, иногда это просто удобно: когда сервисы уже знают, где вы и что хотите, и вам не приходится самим искать нужную информацию.

Еще одна перспективная сфера для применения Big Data — образование.

В одном из американских вузов штата Вирджиния провели исследование, чтобы собрать данные о студентах так называемой группы риска. Это те, которые плохо учатся, пропускают занятия и вот-вот отчислятся. Дело в том, что в штатах каждый год отчисляются около 400 000 человек. Это плохо и для вузов, которым снижают рейтинг и урезают финансирование, и для самих студентов: многие берут кредиты на образование, которые после отчисления все равно придется выплачивать. Не говоря уже о потерянном времени и карьерных перспективах. С помощью больших данных можно вовремя вычислить отстающих и предложить им репетитора, дополнительные занятия и другую адресную помощь.

Такое, кстати, подойдет и для школ: тогда система будет оповещать учителей и родителей — мол, у ребенка проблемы, давайте вместе ему поможем. А еще Big Data поможет понять, какие учебники работают лучше и кто из учителей доступнее объясняет материал.

Еще один положительный пример — карьерное профилирование: это когда подросткам помогают определиться с будущей профессией. Здесь большие данные позволяют собрать ту информацию, которую невозможно добыть с помощью традиционных тестов: как ведет себя пользователь, на что обращает внимание, как взаимодействует с контентом.

В тех же США работает программа по профориентации — SC ACCELERATE. В ней, в том числе, используют технологию CareerChoice GPS: анализируют данные о характере учащихся, их склонностях к предметам, сильные и слабые стороны. Затем данные используют, чтобы помочь подросткам выбрать подходящие для них вузы.

Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.

Источник

Что такое Big Data простыми словами? Применение и перспективы больших данных

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Через 10 лет мир перейдет в новую эпоху — эпоху больших данных. Вместо виджета погоды на экране смартфона, он сам подскажет вам, что лучше одеть. За завтраком телефон покажет дорогу, по которой вы быстрее доберетесь до работы и когда нужно будет выехать.

Под влиянием Big Data изменится все, чего бы не коснулся человек. Разберемся, что это такое, а также рассмотрим реальное применение и перспективы технологии.

Навигация по материалу:

Что такое Big data?

Большие данные — технология обработки информации, которая превосходит сотни терабайт и со временем растет в геометрической прогрессии.

Такие данные настолько велики и сложны, что ни один из традиционных инструментов управления данными не может их хранить или эффективно обрабатывать. Проанализировать этот объем человек не способен. Для этого разработаны специальные алгоритмы, которые после анализа больших данных дают человеку понятные результаты.

В Big Data входят петабайты (1024 терабайта) или эксабайты (1024 петабайта) информации, из которых состоят миллиарды или триллионы записей миллионов людей и все из разных источников (Интернет, продажи, контакт-центр, социальные сети, мобильные устройства). Как правило, информация слабо структурирована и часто неполная и недоступная.

Как работает технология Big-Data?

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Пользователи социальной сети Facebook загружают фото, видео и выполняют действия каждый день на сотни терабайт. Сколько бы человек не участвовало в разработке, они не справятся с постоянным потоком информации. Чтобы дальше развивать сервис и делать сайты комфортнее — внедрять умные рекомендации контента, показывать актуальную для пользователя рекламу, сотни тысяч терабайт пропускают через алгоритм и получают структурированную и понятную информацию.

Сравнивая огромный объем информации, в нем находят взаимосвязи. Эти взаимосвязи с определенной вероятностью могут предсказать будущее. Находить и анализировать человеку помогает искусственный интеллект.

Нейросеть сканирует тысячи фотографий, видео, комментариев — те самые сотни терабайт больших данных и выдает результат: сколько довольных покупателей уходит из магазина, будет ли в ближайшие часы пробка на дороге, какие обсуждения популярны в социальной сети и многое другое.

Методы работы с большими данными:

Машинное обучение

Вы просматриваете ленту новостей, лайкаете посты в Instagram, а алгоритм изучает ваш контент и рекомендует похожий. Искусственный интеллект учится без явного программирования и сфокусирован на прогнозировании на основе известных свойств, извлеченных из наборов «обучающих данных».

Машинное обучение помогает :

Анализ настроений

Анализ настроений помогает :

Анализ социальных сетей

Анализ социальных сетей впервые использовали в телекоммуникационной отрасли. Метод применяется социологами для анализа отношений между людьми во многих областях и коммерческой деятельности.

Этот анализ используют чтобы :

Изучение правил ассоциации

Люди, которые не покупают алкоголь, берут соки чаще, чем любители горячительных напитков?

Изучение правил ассоциации — метод обнаружения интересных взаимосвязей между переменными в больших базах данных. Впервые его использовали крупные сети супермаркетов для обнаружения интересных связей между продуктами, используя информацию из систем торговых точек супермаркетов (POS).

С помощью правил ассоциации :

Анализ дерева классификации

Статистическая классификация определяет категории, к которым относится новое наблюдение.

Статистическая классификация используется для :

Генетические алгоритмы

Генетические алгоритмы вдохновлены тем, как работает эволюция, то есть с помощью таких механизмов, как наследование, мутация и естественный отбор.

Генетические алгоритмы используют для :

Регрессионный анализ

Как возраст человека влияет на тип автомобиля, который он покупает?

На базовом уровне регрессионный анализ включает в себя манипулирование некоторой независимой переменной (например, фоновой музыкой) чтобы увидеть, как она влияет на зависимую переменную (время, проведенное в магазине).

Регрессионный анализ используют для определения:

Data Mining — как собирается и обрабатывается Биг Дата

Загрузка больших данных в традиционную реляционную базу для анализа занимает много времени и денег. По этой причине появились специальные подходы для сбора и анализа информации. Для получения и последующего извлечения информацию объединяют и помещают в “озеро данных”. Оттуда программы искусственного интеллекта, используя сложные алгоритмы, ищут повторяющиеся паттерны.

Хранение и обработка происходит следующими инструментами :

Реальное применение Big Data

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Самый быстрый рост расходов на технологии больших данных происходит в банковской сфере, здравоохранении, страховании, ценных бумагах и инвестиционных услугах, а также в области телекоммуникаций. Три из этих отраслей относятся к финансовому сектору, который имеет множество полезных вариантов для анализа Big Data: обнаружение мошенничества, управление рисками и оптимизация обслуживания клиентов.

Банки и компании, выпускающие кредитные карты, используют большие данные, чтобы выявлять закономерности, которые указывают на преступную деятельность. Из-за чего некоторые аналитики считают, что большие данные могут принести пользу криптовалюте. Алгоритмы смогут выявить мошенничество и незаконную деятельность в крипто-индустрии.

Благодаря криптовалюте такой как Биткойн и Эфириум блокчейн может фактически поддерживать любой тип оцифрованной информации. Его можно использовать в области Big Data, особенно для повышения безопасности или качества информации.

Например, больница может использовать его для обеспечения безопасности, актуальности данных пациента и полного сохранения их качества. Размещая базы данных о здоровьи в блокчейн, больница обеспечивает всем своим сотрудникам доступ к единому, неизменяемому источнику информации.

Также, как люди связывают криптовалюту с волатильностью, они часто связывают большие данные со способностью просеивать большие объемы информации. Big Data поможет отслеживать тенденции. На цену влияет множество факторов и алгоритмы больших данных учтут это, а затем предоставят решение.

Перспективы использования Биг Дата

Blockchain и Big Data — две развивающиеся и взаимодополняющие друг друга технологии. С 2016 блокчейн часто обсуждается в СМИ. Это криптографически безопасная технология распределенных баз данных для хранения и передачи информации. Защита частной и конфиденциальной информации — актуальная и будущая проблема больших данных, которую способен решить блокчейн.

Аналитика Big Data будет важна для отслеживания транзакций и позволит компаниям, использующим блокчейн, выявлять скрытые схемы и выяснять с кем они взаимодействуют в блокчейне.

Рынок Big data в России

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Весь мир и в том числе Россия используют технологию Big Data в банковской сфере, услугах связи и розничной торговле. Эксперты считают, что в будущем технологию будут использовать транспортная отрасль, нефтегазовая и пищевая промышленность, а также энергетика.

Аналитики IDC признали Россию крупнейшим региональным рынком BDA. По расчетам в текущем году выручка приблизится к 1,4 миллиардам долларов и будет составлять 40% общего объема инвестиций в секторе больших данных и приложений бизнес-аналитики.

Где можно получить образование по Big Data (анализу больших данных)?

GeekUniversity совместно с Mail.ru Group открыли первый в России факультет Аналитики Big Data.

Для учебы достаточно школьных знаний. У вас будут все необходимые ресурсы и инструменты + целая программа по высшей математике. Не абстрактная, как в обычных вузах, а построенная на практике. Обучение познакомит вас с технологиями машинного обучения и нейронными сетями, научит решать настоящие бизнес-задачи.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

После учебы вы сможете работать по специальностям:

Особенности изучения Big Data в GeekUniversity

Через полтора года практического обучения вы освоите современные технологии Data Science и приобретете компетенции, необходимые для работы в крупной IT-компании. Получите диплом о профессиональной переподготовке и сертификат.

Обучение проводится на основании государственной лицензии № 040485. По результатам успешного завершения обучения выдаем выпускникам диплом о профессиональной переподготовке и электронный сертификат на портале GeekBrains и Mail.ru Group.

Проектно-ориентированное обучение

Обучение происходит на практике, программы разрабатываются совместно со специалистами из компаний-лидеров рынка. Вы решите четыре проектные задачи по работе с данными и примените полученные навыки на практике. Полтора года обучения в GeekUniversity = полтора года реального опыта работы с большими данными для вашего резюме.

Наставник

В течение всего обучения у вас будет личный помощник-куратор. С ним вы сможете быстро разобраться со всеми проблемами, на которые в ином случае ушли бы недели. Работа с наставником удваивает скорость и качество обучения.

Основательная математическая подготовка

Профессионализм в Data Science — это на 50% умение строить математические модели и еще на 50% — работать с данными. GeekUniversity прокачает ваши знания в матанализе, которые обязательно проверят на собеседовании в любой серьезной компании.

GeekUniversity дает полтора года опыта работы для вашего резюме

В результате для вас откроется в 5 раз больше вакансий:

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Для тех у кого нет опыта в программировании, предлагается начать с подготовительных курсов. Они позволят получить базовые знания для комфортного обучения по основной программе.

Поделитесь этим материалом в социальных сетях и оставьте свое мнение в комментариях ниже.

Источник

Почему Big Data постоянно путают с маркетингом и ИТ

Колонка преподавателей НИУ ВШЭ о мифах и кейсах работы с большими данными

Преподаватели Школы новых медиа НИУ ВШЭ Константин Романов и Александр Пятигорский, который также является директором по цифровой трансформации «Билайна», написали для vc.ru колонку о главных заблуждениях по поводу больших данных — примерах использования технологии и инструментах. Авторы предполагают, что публикация поможет руководителям компаний разобраться в этом понятии.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Мифы и заблуждения о Big Data

Big Data — это не маркетинг

Термин Big Data стал очень модным — его используют в миллионах ситуаций и в сотнях разных интерпретаций, зачастую не имеющих отношения к тому, чем он является. Часто в головах людей происходит подмена понятий, и Big Data путают с маркетинговым продуктом. Более того, в некоторых компаниях Big Data является частью маркетингового подразделения. Результат анализа больших данных действительно может быть источником для маркетинговой активности, но не более того. Посмотрим, как это работает.

Если мы определили список тех, кто покупал в нашем магазине товары на сумму более трех тысяч рублей два месяца назад, а затем послали этим пользователям какое-то предложение, то это типичный маркетинг. Мы выводим понятную закономерность из структурных данных, и используем ее для увеличения продаж.

Однако если мы соединим данные CRM с потоковой информацией, например, из Instagram, и проанализируем их, то найдем закономерность: человеку, который снизил свою активность в среду вечером и на чьей последней фотографии изображены котята, следует сделать определенное предложение. Это уже будет Big Data. Мы нашли триггер, передали его маркетологам, а они его использовали в своих целях.

Из этого следует, что технология обычно работает с неструктурированными данными, а если данные и структурированы, то система всё равно продолжает искать в них скрытые закономерности, чего не делает маркетинг.

Big Data — это не ИТ

Вторая крайность этой истории: Big Data часто путают с ИТ. Это связано с тем, что в российских компаниях, как правило, именно ИТ-специалисты являются драйверами всех технологий, в том числе и больших данных. Поэтому, если всё происходит именно в этом отделе, для компании в целом создается впечатление, что это какая-то деятельность ИТ.

На самом деле, здесь есть коренное различие: Big Data — это деятельность, направленная на получение определенного продукта, что совсем не относится к ИТ, хотя без них технология и не может существовать.

Big Data — не всегда сбор и анализ информации

Есть ещё одно заблуждение относительно Big Data. Все понимают, что эта технология связана с большими объемами данных, но какого рода данные имеются в виду, не всегда ясно. Собирать и использовать информацию может каждый, сейчас это возможно не только в фильмах про Джеймса Бонда, но и в любой, даже совсем маленькой компании. Вопрос только в том, что именно собирать и как это использовать с пользой для себя.

Но следует понять, что технологией Big Data не будет являться сбор и анализ совершенно любой информации. Например, если вы соберете в социальных сетях данные о конкретном человеке, это не будет Big Data.

Что такое Big Data на самом деле

Big Data состоит из трех элементов:

Big Data — не что-то одно из этих составляющих, а связка всех трех элементов. Часто люди подменяют понятия: кто-то считает, что Big Data — это только данные, кто-то — что технологии. Но по факту, сколько бы данных вы ни собрали, вы ничего с ними не сделаете без нужных технологий и аналитики. Если есть хорошая аналитика, но нет данных, — тем более плохо.

Если говорить о данных, то это не только тексты, но и все фотографии, размещаемые в Instagram, и вообще всё, что можно проанализировать и использовать для разных целей и задач. Другими словами, под Data понимаются огромные объемы внутренних и внешних данных различных структур.

Также нужна аналитика, потому что задача Big Data — построить какие-то закономерности. То есть аналитика — это выявление скрытых зависимостей и поиск новых вопросов и ответов на основе анализа всего объема разнородных данных. Причем Big Data ставит вопросы, которые напрямую из этих данных не выводим.

Если говорить об изображениях, то факт размещения вами своего фото в голубой футболке ни о чем не говорит. Но если использовать фотографию для Big Data-моделирования, то может выясниться, что именно сейчас вам следует предложить кредит, потому что в вашей социальной группе такое поведение говорит об определенном феномене в действиях. Поэтому «голые» данные без аналитики, без выявления скрытых и неочевидных зависимостей Big Data не являются.

Итак, у нас есть большие данные. Их массив огромен. Также у нас есть аналитик. Но как сделать так, чтобы из этих сырых данных у нас родилось конкретное решение? Для этого нам нужны технологии, которые позволяют их не просто складировать (а раньше и это было невозможно), но и анализировать.

Проще говоря, если у вас есть много данных, вам потребуются технологии, к примеру, Hadoop, которые дают возможность сохранить всю информацию в первозданном виде для последующего анализа. Такого рода технологии возникли в интернет-гигантах, поскольку именно они первыми столкнулись с проблемой хранения большого массива данных и его анализа для последующей монетизации.

Кроме инструментов для оптимизированного и дешевого хранения данных, нужны аналитические инструменты, а также надстройки к используемой платформе. К примеру, вокруг Hadoop уже образовалась целая экосистема из связанных проектов и технологий. Вот некоторые из них:

Все эти инструменты доступны каждому бесплатно, но есть и набор платных надстроек.

Кроме того, нужны специалисты: это разработчик и аналитик (так называемый Data Scientist). Также необходим менеджер, способный понять, как эту аналитику применить для решения конкретной задачи, потому что сама по себе она совершенно бессмысленна, если ее не встраивать в бизнес-процессы.

Все три сотрудника должны работать в команде. Менеджер, который дает специалисту по Data Science задание найти определенную закономерность, должен понимать, что далеко не всегда найдется именно то, что ему нужно. В таком случае руководитель должен внимательно слушать, что же нашел Data Scientist, поскольку зачастую его находки оказываются более интересными и полезными для бизнеса. Ваша задача — применить это к бизнесу и сделать из этого продукт.

Несмотря на то, что сейчас есть множество разного рода машин и технологий, окончательное решение всегда остается за человеком. Для этого информацию нужно как-то визуализировать. Инструментов для этого довольно много.

Самый показательный пример — это геоаналитические отчеты. Компания «Билайн» много работает с правительствами разных городов и областей. Очень часто эти организации заказывают отчеты типа «Транспортная загруженность в определенном месте».

Понятно, что подобный отчет должен попасть к правительственным структурам в простой и понятной им форме. Если же мы предоставим им огромную и совершенно непонятную таблицу (то есть информацию в том виде, в каком ее получаем мы), они вряд ли купят такой отчет — он будет совершенно бесполезен, они не вынесут из него тех знаний, которые хотели получить.

Поэтому, какими бы хорошими ни были специалисты по Data Science и какие бы закономерности они ни находили, вы не сможете работать с этими данными без качественных инструментов визуализации.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Источники данных

Массив получаемых данных очень велик, поэтому его можно разделить на некоторые группы.

Внутренние данные компании

Хотя к этой группе относится 80% собираемых данных, этот источник не всегда используют. Часто это данные, которые, казалось бы, вообще никому не нужны, например, логи. Но если посмотреть на них под другим углом, иногда можно найти в них неожиданные закономерности.

Условно бесплатные источники

Сюда относятся данные социальных сетей, интернета и всего, куда можно бесплатно проникнуть. Почему условно бесплатно? С одной стороны, эти данные доступны каждому, но если вы являетесь крупной компанией, то получать их в размерах абонентской базы в десятки тысяч, сотни или миллионы клиентов — уже непростая задача. Поэтому на рынке существуют платные сервисы по предоставлению этих данных.

Платные источники

Сюда относятся компании, которые продают данные за деньги. Это могут быть телекомы, DMP, интернет-компании, бюро кредитных историй и агрегаторы. В России телекомы не продают данные. Во-первых, это экономически невыгодно, а во-вторых, запрещено законом. Поэтому они продают результаты их обработки, например, геоаналитические отчеты.

Открытые данные

Государство идет навстречу бизнесу и дает возможность пользоваться данными, которые они собирают. В большей степени это развито на Западе, но Россия в этом плане тоже идет в ногу со временем. Например, существует Портал открытых данных Правительства Москвы, где публикуется информация по различным объектам городской инфраструктуры.

Для жителей и гостей Москвы данные представлены в табличном и картографическом виде, а для разработчиков — в специальных машиночитаемых форматах. Пока проект работает в ограниченном режиме, но развивается, а значит, тоже является источником данных, который вы можете использовать для своих бизнес-задач.

Исследования

Как уже отмечалось, задача Big Data — найти закономерность. Часто исследования, проводимые по всему миру, могут стать точкой опоры для нахождения той или иной закономерности — вы можете получить конкретный результат и попытаться применить похожую логику в своих целях.

Big Data — это область, в которой работают не все законы математики. Например, «1»+«1» — это не «2», а значительно больше, потому что при смешении источников данных можно значительно усилить эффект.

Примеры продуктов

Многие знакомы с сервисом по подбору музыки Spotify. Он прекрасен тем, что не спрашивает у пользователей, какое у них сегодня настроение, а сам вычисляет это на основе доступных ему источников. Он всегда знает, что вам нужно сейчас — джаз или тяжелый рок. Это то ключевое отличие, которое обеспечивает ему поклонников и отличает от других сервисов.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Подобные продукты принято называть sense-продуктами — такими, которые чувствуют своего клиента.

Технологию Big Data применяют и в автомобилестроении. Например, это делает Tesla — в их последней модели есть автопилот. Компания стремится создать машину, которая сама будет везти пассажира туда, куда ему нужно. Без Big Data это невозможно, потому что если мы будем использовать только те данные, которые получаем напрямую, как это делает человек, то автомобиль не сможет усовершенствоваться.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Когда мы ведем автомобиль сами, то с помощью наших нейронов принимаем решения, исходя из множества факторов, которых мы даже не замечаем. Например, мы можем не осознать, почему решили не газовать сразу на зеленый свет, а потом окажется, что решение было верным — мимо вас пронеслась машина на бешеной скорости, и вы избежали аварии.

Также можно привести пример использования Big Data в спорте. В 2002 году генеральный менеджер бейсбольной команды Oakland Athletics Билли Бин решил разрушить парадигму того, как нужно искать себе спортсменов — он выбрал и обучил игроков «по цифрам».

Обычно менеджеры смотрят на успехи игроков, но в данном случае всё было иначе — чтобы получить результат, менеджер изучал, какие комбинации спортсменов ему нужны, обращая внимания на индивидуальные характеристики. Причем спортсменов он выбрал таких, которые сами по себе не представляли большого потенциала, зато команда в целом получилась настолько успешной, что выиграла двадцать матчей подряд.

что такое big data таргет. Смотреть фото что такое big data таргет. Смотреть картинку что такое big data таргет. Картинка про что такое big data таргет. Фото что такое big data таргет

Режиссер Беннетт Миллер в последствии снял фильм, посвященный этой истории, — «Человек, который изменил всё» в главной роли с Брэдом Питтом.

Технология Big Data полезна и в финансовом секторе. Ни один человек на свете не сможет самостоятельно и точно определить, стоит ли давать кому-то кредит. Для того, чтобы принять решение, производится скоринг, то есть строится вероятностная модель, по которой можно понять, вернет этот человек деньги или нет. Дальше скоринг применяется на всех этапах: можно, например, просчитать, что в определенный момент человек перестанет платить.

Большие данные позволяют не только заработать деньги, но и сэкономить их. В частности, эта технология помогла Министерству труда Германии сократить расходы на пособия по безработице на 10 млрд евро, так как после анализа информации стало понятно, что 20% пособий выплачивалось незаслуженно.

Также технологии применяются в медицине (особенно это характерно для Израиля). С помощью Big Data можно поставить значительно более точный анализ, чем это сделает врач с тридцатилетним стажем.

Любой доктор, когда ставит диагноз, опирается лишь на свой собственный опыт. Когда это делает машина, она исходит из опыта тысяч таких врачей и всех существующих историй болезни. Она учитывает то, из какого материала сделан дом пациента, в каком районе живет пострадавший, какая там задымленность и так далее. То есть она учитывает массу факторов, которые врачи не берут в расчет.

Примером использования Big Data в здравоохранении можно назвать проект Project Artemis, который внедрила Детская больница Торонто. Это информационная система, которая собирает и анализирует данные по младенцам в реальном времени. Машина позволяет анализировать 1260 показателей здоровья каждого ребенка ежесекундно. Этот проект направлен на прогноз нестабильного состояния ребенка и профилактику заболеваний у детей.

Большие данные начинают использовать и в России: например, подразделение больших данных есть у «Яндекса». Компания совместно с «АстраЗенекой» и Российским обществом клинической онкологии RUSSCO запустили платформу RAY, предназначенную для генетиков и молекулярных биологов. Проект позволяет улучшить методы диагностики рака и выявления предрасположенности к онкологическим заболеваниям. Платформа начнет работу в декабре 2016 года.

Другой проект Yandex Data Factory — «Снайпер», разработанный совместно с Магнитогорским металлургическим комбинатом и направленный на оптимизацию процессов плавки стали с помощью алгоритмов машинного обучения. Планируется, что конечный программный продукт будет выдавать оптимальное количество ферросплавов и добавочных материалов при производстве стали.

Big Data используется или может использоваться абсолютно во всех областях — вплоть до того, что данные мобильных операторов покупают даже службы водоснабжения. В частности, это характерно для Рима, где очень слабая система канализации, поэтому они с помощью Big Data прогнозируют активность в определенных частях города, что помогает им предотвращать прорывы труб и другие проблемы.

В общем, есть огромное число продуктов, которые строятся на Big Data. Они могут менять какую-то сферу тотально, как в здравоохранении, а могут лишь модифицировать ее, как в работе интернет-магазинов. В любом случае, Big Data открывает большие возможности. Нужно всего лишь научиться с ней работать.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *