что такое bsr в бурении

Наружный диаметр, Внутренний диаметр, Коэффициент прочности на изгиб (BSR)

Тип: B, C

Основание: Наружный и внутренний диаметры соединения измеряются на компонентах КНБК для определения коэффициента прочности соединения на изгиб (BSR).

Требования: Допустимые значения определяются типом соединения и указанным диапазоном значений BSR.

Исходные документы: DS-1™: Таблица 3.12. «Практические рекомендации 7G института АНИ»: Рисунки 26-32. К определенному соединению и его коэффициенту прочности на изгиб «Практическими рекомендациями 7G института АНИ» и стандартом DS-1™ применяются одинаковые требования в части наружного и внутреннего диаметров.

Воздействие: Высокий коэффициент BSR повышает вероятность усталостного излома ниппеля, а низкий – напротив, усталостного излома муфты. Пропорциональное соотношение BSR оптимально воздействует на усталостную стойкость соединения.

Корректировка: Коэффициент прочности на изгиб – это принцип, применяемый исключительно к механизму усталостного излома в компонентах КНБК. С теоретической точки зрения, «сбалансированное» соединение имеет самую высокую усталостную стойкость, поскольку обеспечивает равномерное распределение усталостного излома между муфтой и ниппелем, таким образом, что ни тот, ни другой компонент не выйдут из строя преждевременно (См. рисунок 6.5). Коэффициент BSR не имеет смысла при применении в отношении бурильных замков на стандартных бурильных трубах, а также не оказывает влияния на другие эксплуатационные характеристики соединений КНБК. Первоначально установленное значение BSR, равное 2.5, привело к принятию в промышленности «стандартного» диапазона значений от 2.25 до 2.75 в качестве приемлемого для компонентов КНБК. Однако целевое значение, скорее, основано на опыте, а не на вычислениях или большом объеме эмпирических данных. Следовательно, это значение не считается ненарушимым. Наличие оборудования, необходимость решения вопроса и данные о предшествующих отказах помогают установить целевое значение BSR. Оптимальное решение, возможно, заключается в использовании стандартных значений до тех пор, пока не появится возможность опытным путем определить другие параметры. В таком случае, при возникновении проблем, значение коэффициента BSR может быть скорректировано, как показано на рисунке 6.6.

Комментарии: Если возникает необходимость в изменении коэффициента BSR, это может быть осуществлено одним из следующих способов: Путем добавления материала к более слабому компоненту или удаления материала с более прочного компонента. Первый вариант предпочтительнее с точки зрения предупреждения отказа. С другой стороны, он не всегда экономичен, поскольку требует полной замены оборудования.

Для большинства стандартных КНБК особую важность имеет усталостный излом, поэтому прочность на кручение редко становится объектом исследования в ходе инспекции. В случае с небольшими компонентами КНБК, где ключевым фактором является усталостный излом, необходимо контролировать внутренний и наружный диаметры для поддержания прочности на кручение выше необходимого минимума.

Механизм: Усталостный излом

Инспекция: Контроль размеров 3

Дата добавления: 2015-07-20 ; просмотров: 917 | Нарушение авторских прав

Источник

О применении реагента БСР при бурении

Бурение производилось на одной из скважин ЯНАО с применением реагента БСР производства ООО НПП «Химпэк». Интервал активных глин зафиксирован с глубины 420 м. После подтверждения изменения литологического состава породы со слабосцементированного песчаника на глину, была произведен ввод 40 м3 свежеприготовленного бурового раствора с реагентом БСР. Снижение условной вязкости бурового раствора зафиксировано с 102 сек/кварта до 35 сек/кварта. Общий объем сброса бурового раствора с целью разбавления за интервал составил 40 м3. При бурении данного интервала с применением разжижителя объем сброса БР составляет порядка 100 м3.

При бурении до гл. 1100 м концентрация реагента БСР в буровом растворе поддерживалась в диапазоне 2,5-3 кг/м3. Далее до окончательного забоя 1356 м производилась обработка бурового раствора разжижителем (1-1,5 кг/м3). В процессе бурения при периодическом пополнении объема условная вязкость не превышала 36 сек/кварта. Показатель MBT бурового раствора находился в диапазоне 56-90 кг/м3. Интенсивной наработки плотности бурового раствора не наблюдалось. Отмечена высокая стабильность и отсутствие неконтролируемого изменения параметров промывочной жидкости.

Стоит отметить, что при входе в интервал активных глин, выбуренная порода была представлена твердыми неслипающимися частицами. Размер шлама – мелкая/средняя фракция. Выбуренная порода не забивала сепарационный слой ситопанелей. Переливов раствора по виброситам, закупоривания желобной системы не наблюдалось. На протяжении всего интервала проблем с хождением инструмента, нестабильностью ствола скважины не зафиксировано.

ВЫВОД:

При добавлении в состав малоглинистого полимерного раствора реагента БСР наблюдается тенденция снижения реологических параметров, при воздействии на глинистые частицы шлама реагент препятствует их слипанию.

Применение реагента БСР позволило обеспечить безаварийную проводку интервала под кондуктор, исключить проведение контрольной шаблонировки перед спуском ОК-245 мм. Показателем эффективности БСР производства ООО НПП «Химпэк» также является отсутствие сальника на элементах КНБК.

Источник

Что такое bsr в бурении

ГОСТ 33006.2-2014
(ISO 10407-2:2008)

Нефтяная и газовая промышленность

ОБОРУДОВАНИЕ ДЛЯ РОТОРНОГО БУРЕНИЯ

Контроль и классификация применяемых элементов бурового инструмента. Общие технические требования и методы контроля

Petroleum and natural gas industries. Rotary drilling equipment. Part 2. Inspection and classification of used drill stem elements. General technical requirements and control methods

Дата введения 2016-01-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «ТЕХНОНЕФТЕГАЗ» (ООО «ТЕХНОНЕФТЕГАЗ») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 5

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 523 «Нефтяная и газовая промышленность»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 5 декабря 2014 г. N 46)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 августа 2015 г. N 1138-ст межгосударственный стандарт ГОСТ 33006.2-2014 (ISO 10407-2:2008) введен в действие в качестве национального стандарта Российской Федерации с 1 января 2016 г.

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей.

Международный стандарт разработан техническим комитетом по стандартизации ISO/TC 67 «Материалы, оборудование и морские сооружения для нефтяной, нефтехимической и газовой промышленности», подкомитетом SC 4 «Буровое и добывающее оборудование».

Перевод с английского языка (en).

Официальные экземпляры европейского регионального стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, имеются в ФГУП «Стандартинформ».

Наименование настоящего стандарта изменено относительно наименования европейского регионального стандарта в связи с неточностью перевода.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

1 Область применения

Настоящий стандарт устанавливает требования по контролю для каждого уровня проверок (таблицы В.1-В.15) и процедуры для контроля и испытаний элементов бурильной колонны, бывших в эксплуатации. В соответствии с настоящим стандартом бурильная колонна включает следующие элементы: тело бурильной трубы, резьбовое упорное соединение, утяжеленную и толстостенную бурильные трубы, переводники бурильной колонны. Кроме приведенных выше элементов в компоновку низа бурильной колонны (КНБК) могут включаться калибраторы, центраторы, стабилизаторы, расширители, промежуточные опоры для УБТ, обратные клапаны, фильтры, шламометаллоуловители, амортизаторы, протекторные кольца, средства наклонно-направленного бурения, керноприемные устройства и другое специальное оборудование.

Настоящий стандарт содержит рекомендации для практических процедур и стандартных технологий, применяемых при проверках.

Практические процедуры, содержащиеся в настоящем стандарте, являются рекомендованными для проверок и/или диагностических испытаний, и их не следует трактовать как обязательные к применению со стороны организаций или владельцев, или они могут являться дополнением к другим методикам, расширяя существующие методы.

Настоящий стандарт содержит требования к квалификации персонала, проводящего проверки, методам для проведения проверок и калибровке оборудования, а также методики поверок. В проекте также приведена процедура для оценки дефектов и маркировки проверенных элементов колонны бурильных труб.

Настоящий стандарт содержит требования к изготовителям оригинального оборудования с минимально необходимой информацией для проверок оборудования, перечисленного в приложении А.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий межгосударственный стандарт:

ГОСТ ISO 9000-2011 Системы менеджмента качества. Основные положения и словарь

3 Термины и определения

Для целей настоящего стандарта применяются термины и определения, приведенные в ГОСТ ISO 9000 (для терминов по системе контроля качества, не приведенных ниже).

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 армирование/наплавка твердым сплавом (hard-banding/hard-facing): Нанесение твердосплавного материала на наружную поверхность замка для уменьшения его износа.

3.2 безмуфтовый резьбовой конец (pin end): Элемент резьбового упорного соединения элемента бурильной колонны с наружной резьбой.

3.3 бесшовная труба (seamless pipe): Трубное изделие из деформируемой стали, изготовленное без сварного шва.

3.4 бурильная колонна (drill stem): Все составляющие элементы между вертлюгом или верхним силовым приводом и корпусом долота, включая буровую штангу. Бурильная колонна состоит из ведущей трубы, тонкостенных стальных бурильных труб и утяжеленных бурильных труб, к нижней части которых присоединяется буровое долото. В зависимости от условий бурения вблизи долота устанавливаются центрирующие, калибрующие, стабилизирующие и расширяющие устройства. Верхняя труба бурильной колонны соединена с вертлюгом, который с помощью крюка, талевого блока и каната подвешен на кронблоке, установленном в верхней части буровой вышки.

3.5 бурильная труба (drill pipe): Тело бурильной трубы с замками, приваренными методом сварки трением (рисунок 1).

3.6 виток резьбы (lead): Часть выступа резьбы, соответствующая одному полному обороту точек винтовой поверхности резьбы относительно оси резьбы.

3.7 ведущая, или рабочая труба (kelly): Толстостенная стальная труба, имеющая в сечении квадратную или шестигранную форму.

3.8 верхний шаровой клапан ведущей штанги (upper kelly cock): Клапан, находящийся непосредственно на ведущей трубе, который может быть закрыт для герметизации трубного пространства колонны бурильных труб.

3.9 владелец (owner): Физическое лицо, юридическое лицо или организация, обладающие правом собственности на оборудование.

3.10 вмятина (gall): Дефект поверхности в виде произвольно расположенных углублений различной формы, образовавшихся вследствие повреждения и ударов поверхности при транспортировке, правке, складировании и других операциях.

3.11 внутренняя резьба (box thread): Внутренняя резьба резьбового упорного соединения.

3.12 высаженный конец трубы (upset): Кованый конец бурильной трубы, используемый для повышения толщины стенки.

3.13 гибкая лента (pi tape): Гибкая стальная лента для измерения наружного диаметра трубы.

3.14 диаметр фаски замка (bevel diameter): Наружный диаметр упорных уплотнительных поверхностей (торца муфты и уступа ниппеля) резьбового упорного соединения замка.

3.15 допуск (tolerance): Поле, ограниченное наибольшим и наименьшим предельными размерами и определяемое величиной допуска и его положением относительно номинального размера.

3.16 заводская маркировка на трубе (mill slot): Отшлифованная поверхность на наружном диаметре замка бурильной трубы для обозначения марки материала, массы и серийного номер*.

3.17 зажимаемый роторными клиньями участок трубы (slip area): Часть тела трубы, на которой видно, что при подъеме и спуске бурильного инструмента клиновой захват неоднократно зажимается в одном и том же месте (рисунок 4).

3.18 зазубрина (dent): Изменение контура поверхности, вызванное механическим воздействием, не сопровождающееся сильными дефектами металла.

3.19 заточка (grind, noun): Место, где металл был снят с помощью точильного колеса в процессе оценки или устранения дефекта.

3.20 измерение (measure): Определение величины размера и указание ее в рабочем журнале.

3.22 калибровка (calibration): Совокупность операций, устанавливающих соотношение между значением величины, полученным с помощью данного средства измерений, и соответствующим значением величины, определенным с помощью эталона, с целью определения действительных метрологических характеристик этого средства измерений.

3.23 класс 2 (class 2): Второй класс в иерархии классификации эксплуатации бурильных труб, бывших в употреблении, не соответствующих требованиям премиум-класса.

3.24 класс 3 (class 3): Третий класс в иерархии классификации эксплуатации бурильных труб, бывших в употреблении, не соответствующих требованиям класса 2.

3.25 код массы трубы на единицу длины (weight code): Безразмерное условное обозначение массы единицы длины тел бурильных труб. Код массы используют при оформлении заказов на бурильные трубы, а также при их маркировке.

3.26 колонна бурильных труб (drill string): Соединение нескольких секций или звеньев бурильной трубы с бурильными замками.

3.27 контроль/осмотр (inspection): Процесс замера, осмотра, шаблонирования, проверки или другие способы подтверждения соответствия изделия установленным требованиям.

3.28 коррозия (corrosion): Изменения или разрушения материала под влиянием среды.

3.29 коэффициент прочности на изгиб (КПИ) [bending-strength ratio (BSR)]: Отношение момента сопротивления внутренней резьбы и наружной резьбы на последнем витке.

3.30 критическая область (critical area): Зона от основания упорного заплечика бурильного замка до поверхности, удаленной на 660 мм (26 дюймов), или у окончания вмятин от клиньев, в зависимости от того, что находится на большем расстоянии (рисунок 4).

Источник

Рекомендуемые значения BSR

Составить программу инспекции для бурильной колонны.

ФОРМА ЗАКАЗА НА ИНСПЕКЦИЮ БУРИЛЬНОЙ КОЛОННЫ DS-1 TM Ссылка: Страница: 1 из 1 Выдано для: ABC INSPECTION CO.

Дата: Дата поставки оборудования: Запрашивающая компания: Лицо:

Название скважины/установки ПРИМЕР № разрешения AFE: Телефон: Факс:Эл. Почта

(Инструкции: 1) Укажите оборудование, 2) укажите программы инспекции, 3) укажите критерии приемки) © Авторские права 2007, T H Hill Associates, Inc.

СТАНДАРТНАЯ БУРИЛЬНАЯ ТРУБА
ПунктПроходкаРазмерНом. весМаркаСоединениеКомплектПоверхностное упрочнение?Программа инспекцииКритерии приемки
КатегорияДругоеПремиумДругое
№17.000 фт19.50SNC50даХнетСм. примечаниеХ
№21.000 фт3 ½13.30SHT38даХнетСм. примечаниеХХПРИМ 1
№38.000 фт3 ½13.30SNC38даХнетСм. примечаниеХХПРИМ 1
№4данетСм. примечание
ДРУГИЕ КОМПОНЕНТЫ
ПунктПроходкаОписаниеНаруж. диаметрВнутр. диаметрСоединениеРазгрузочная муфта?Разгрузочный ниппель?Программа инспекцииКритерии приемки
КатегорияДругое
№5УБТ4.752.25NC38ХданетХданетСм. примечаниеBSR 1.8-2.5
№6Толстостенная бурильная труба3.52.25NC38ХданетХданетСм. примечаниеDS-1
№7Переходник6.5-4.753.25-2.25м NC50 х н HT38даХнетдаХнетСм. примечание 2ПРИМ 3
№8Переходник4.752.125м HT38 х н NC38даХнетдаХнетСм. примечание 2ПРИМ 4
№9данетданетСм. примечание
№10данетданетСм. примечание
№11данетданетСм. примечание
№12данетданетСм. примечание
даХнетТребуется ли наблюдение третьей стороны?

ПРИМЕЧАНИЯ (в случае необходимости, добавьте примечания)
ПРИМЕЧАНИЕ 1ДЛЯ ПУНКТОВ 2 И 3 МИНИМАЛЬНОЕ ЗНАЧЕНИЕ ОСТАВШЕЙСЯ ТОЛЩИНЫ СТЕНКИ ДОЛЖНО СОСТАВЛЯТЬ ≥82%
ПРИМЕЧАНИЕ 2ДЛЯ ПУНКТОВ 7 И 8 – УЛЬТРАЗВУКОВУЮ ИНСПЕКЦИЮ СТЕНКИ, ПОМИМО КАТ. 3, МИН. СТЕНКА ≥0.500 ДЮЙМОВ ДЛЯ ОБОИХ ПУНКТОВ
ПРИМЕЧАНИЕ 3ДЛЯ ПУНКТА 7 – МИНИМАЛЬНЫЙ НАРУЖ. ДИАМ. МУФТЫ ≥6.375 ДЮЙМА, МИНИМАЛЬНЫЙ ВНУТР. ДИАМ. НИППЕЛЯ ≥2.125 ДЮЙМА.
ПРИМЕЧАНИЕ 4ДЛЯ ПУНКТА 8 – МИНИМАЛЬНЫЙ НАРУЖ. ДИАМ. МУФТЫ ≥4.625 ДЮЙМА, МИНИМАЛЬНЫЙ ВНУТР. ДИАМ. НИППЕЛЯ ≥2.25 ДЮЙМА

Решение:

Решение задачи приведено на рисунке 2.1.

2.10. Периодичность инспекции:При решении вопроса о времени проведения инспекции, заказчик должен учитывать, что проблема планирования повторной инспекции одновременно проще и сложнее, чем приблизительное составление графика, например, в зависимости от объемов бурения и количества отработанных часов. Такой метод проще в том смысле, что параметры, отвечающие за отказ вследствие перегрузки, могут быть оценены в любое время, когда имеется доступ к трубе. В то же время он и более затруднителен, поскольку обуславливающие усталостный излом схемы слишком сложны для исследования на основе метода приближенных расчетов. Для Проектных групп 2 и 3 инспекция проводится до подъема компонентов. Следовательно, при решении вопроса о периодичности инспекции необходимо учитывать, насколько часто используются рассматриваемые компоненты и каков характер ожидаемого отказа.

2.11. Главные задачи инспекции:Технические подробности процедуры инспектирования бурильных колонн могут обескуражить тех, кто не знаком с технологией. Посему, лучше кратко изложить основные задачи инспекции. В большинстве случаев, если исключить вопросы повреждения при транспортировке, действия инспектора направлены на два ключевых аспекта. Если заказчик учтет эти аспекты при планировании последующей проверки, результаты оценки намного превзойдут показатели, выявленные в ходе инспекции, запланированной приблизительно в соответствии с общепринятой практикой. Две основные цели инспекции: 1) обеспечить адекватную нагрузку на каждый компонент и 2) устранить компоненты, имеющие усталостные трещины (или характеризующиеся высоким риском их образования). Эти цели показаны на рисунке 2.2.

2.12. Первая задача инспектора:Первая задача инспектора состоит в том, чтобы убедиться, что допустимая нагрузка на каждый компонент соответствует требуемому значению. Это почти всегда относится к бурильным трубам, допустимая нагрузка на которые значительно ниже нагрузки на более тяжелые компоненты КНБК и которые зачастую подвергаются бόльшим нагрузкам. Для бурильных труб заданного размера с заданными соединениями, допустимая нагрузка определяется по марке трубы, толщине стенки трубы и наружному и внутреннему диаметру соединения. Если предположить, что при первичной инспекции эти показатели соответствовали всем требованиям, то в ходе дальнейшего использования заказчику нужно будет обращать внимание только на накопление износа муфт бурильных замков и бурильных труб (внутренний диаметр ниппеля редко изменяется вследствие износа). Что более важно, непосредственно на буровой установке можно провести повторное измерение параметров, обуславливающих допустимость нагрузки и меняющихся в результате износа. Поскольку при необходимости заказчик может в любое время перепроверить эти показатели, ему вряд ли придется планировать повторную проверку в полном объеме исключительно на основании износа оборудования. Исключение из данного правила составляют случаи, когда планируется использование бурильной колонны в критических условиях. (Пример использования в критических условиях – Проектная группа 3 или колонна для спуска тяжелого типа, когда расчетные коэффициенты и коэффициенты нагрузки приближаются к единице).

2.13. Вторая задача инспектора: Вторая ключевая задача инспектора заключается в выявлении и устранении компонентов, имеющих усталостные трещины или характеризующиеся повышенным риском их возникновения. Обнаружение усталостных трещин на бурильной трубе требует использования специализированного оборудования и лучше всего выполняется подготовленными специалистами, которые не работают с находящимся под давлением оборудованием. Поэтому, если нет возможности приостановить работу установки на несколько дней, заказчику, возможно, придется запланировать транспортировку бурильной трубы к месту проведения инспекции. Исключение составляет инспекция соединений КНБК на предмет наличия усталостных трещин, которая может быть успешно проведена непосредственно на буровой установке, при условии, что инспектору будет предоставлена возможность осуществлять проверку вне рабочего режима установки.

2.14. Принципы планирования повторной инспекции:При условии корректного проведения первой инспекции, планирование повторной проверки обуславливается такими факторами, как суммарная усталость и суммарный износ.

2.14.2. Способность выдерживать нагрузку: Способность выдерживать нагрузку зависит от износа бурильных замков и корпуса трубы. Следовательно, планирование инспекции на предмет выявления избыточной нагрузки осуществляется в зависимости от суммарного износа.

2.15. Оценка накопленных усталостных повреждений:Чтобы немного упростить задачу, проектировщик может разделить колонну на несколько секций и затем с помощью формулы 2.1 оценить накопленные усталостные повреждения для каждой секции. Несмотря на приблизительный характер такого расчета, он будет более эффективен для определения периодичности инспекций, чем любые эмпирические правила. Оценка производится путем суммирования «баллов повреждения» в различных секциях бурильной колонны. Используя эти данные, проектировщик может менять местами компоненты колонны, чтобы равномерно распределить повреждения, и планировать инспекции в зависимости от совокупности баллов усталостных повреждений. При оценке учитывается средний индекс кривизны и количество циклов.

что такое bsr в бурении. Смотреть фото что такое bsr в бурении. Смотреть картинку что такое bsr в бурении. Картинка про что такое bsr в бурении. Фото что такое bsr в бурении(2.1)

DP = Количество «баллов» усталостных повреждений

CI = Средний индекс кривизны в течение эпизода

RPM = Средняя скорость вращения колонны в течение эпизода

Footage = Объем проходки скважины в течение эпизода (фт)

ROP = Средняя скорость проходки в течение эпизода (фт/ч)

2.16. Планирование инспекции:Инспекция на предмет наличия усталостных трещин показана при достижении условного уровня совокупных повреждений. На данный момент данные, позволяющие определить такой уровень, отсутствуют. Тем не менее, для начала может быть показана инспекция при накоплении 100 «баллов» усталостных повреждений, если работы ведутся в критических условиях. Это соответствует примерно 50.000 футов проходки при средней скорости проходки (ROP) в 50 футов/час (1000 часов работы) при индексе кривизны, равном 1000. В менее жестких условиях устанавливаются более высокие допуски по «баллам повреждения», как показано в таблице ниже.

Условия бурения (проектная группа)Показания к проведению инспекции («Баллы усталостных повреждений»)

Проектировщику необходимо помнить о том, что данный метод расчетов является весьма приблизительным. Тем не менее, такой подход по эффективности в значительной мере превосходит принцип учета объема проходки или количества отработанных часов, поскольку позволят учитывать сравнительную жесткость условий бурения. Более точную оценку можно провести с использованием компьютерной программы, разработанной специально для этих целей.

Пример – Задача 2.2, Планирование инспекции для выявления усталостных трещин:

Заказчик осуществляет бурение участка скважины, показанной на рисунке 2.3, от точки касания до конечного участка. Он использует бурильную трубу премиум класса, 5 дюймов, 19.50 фунтов на фут, марка S. По завершении рассматриваемого участка, самый высокий уровень накопления усталостных повреждений отмечается в секции трубы, расположенной над точкой касания. Степень набора кривизны на наклонном участке составляет 3 градуса на 100 футов.

При входе трубы в наклонную секцию, нагрузка при бурении составляла 190,000 фунтов. При проходке конечного участка нагрузка на трубу в точке касания составила 140,000 фунтов. 6,000 футов ствола скважины были пройдена при средней частоте вращения 120 RPM (оборотов в минуту) и средней скорости проходки (ROP) 50 футов/час. Сколько «баллов повреждения» накоплено трубой, дошедшей до точки касания, в момент достижения головкой бура конечной точки?

Решение:

Согласно рисунку 2.4, средний индекс кривизны рассматриваемой трубы в момент ее нахождения на наклонном участке составлял около 1,500. Используя формулу 2.1, получаем значение:

что такое bsr в бурении. Смотреть фото что такое bsr в бурении. Смотреть картинку что такое bsr в бурении. Картинка про что такое bsr в бурении. Фото что такое bsr в бурении= 21.6 баллов повреждения

2.17. Оценка вручную и с использованием компьютера:Оценка степени накопления усталостных повреждений компонентами бурильной колонны может быть проведена вручную с применением указанных выше методов. Кроме того, по разумной цене можно приобрести программное обеспечение, которое позволит автоматизировать процесс оценки и получать более точные результаты. В любом случае, даже проведение расчетов вручную даст результаты, которые будут намного превосходить результаты традиционных расчетов на основании объемов проходки или количества отработанных часов.

2.18. Инспекция на предмет выявления избыточного износа:Существуют формулы для оценки износа бурильного замка. Тем не менее, эти формулы весьма сложны, а полученные с их помощью результаты, вероятно, будут приблизительными. С другой стороны, простым и экономически выгодным способом измерения наружного диаметра бурильных замков является установка каверномеров на минимальное допустимое значение наружного диаметра и их использование в качестве непроходного калибра при спускоподъемных операциях. Таким образом, более эффективный способ – регулярная проверка бурильных замков при спускоподъемных операциях. Если замки, вышедшие из строя из-за чрезмерных нагрузок, по-прежнему сохраняют свою прочность, остальные замки, которые подвергались меньшим нагрузкам, могут считаться годными к эксплуатации.

2.19. Затраты на инспекцию:Стоимость программы инспекции может быть важным фактором. Затраты на проведение инспекции, конечно, будут варьироваться в зависимости от Категории работ. В следующей таблице приведены примерные коэффициенты затрат, которые могут оказаться полезными. (Заказчик должен помнить, что эти коэффициенты могут подвергаться значительным колебаниям в зависимости от конъюнктуры рынка и наличия оборудования. Если необходима оценка фактических расходов, ее можно получить в инспектирующей компании рассматриваемого региона.) Основная программа – инспекция DS-1™ Категории 3, которая почти идентична программам инспекций, которые выполнялись многими компаниями на момент первой публикации стандарта DS-1™. В то время инспекции Категории 3 зачастую обозначали неточными терминами «приемлемый периодический осмотр» (API) или инспекция «стандартного объема» (Standard Rack).

Категория инспекции DS-1 TMПриблизительный коэффициент затрат
0.25
0.50
1.00
1.30
2.00
Колонны для спуска тяжелого типа6.00

2.21. Определения:В настоящем стандарте используются следующие определения

2.21.1. Критерии приемки: Ряд показателей инспектируемого компонента, каждый из которых должен быть соблюден или превышен для признания такого компонента годным к эксплуатации.

2.21.2. Заказчик: Организация, в интересах которой проводится инспекция. Если инспекция компонента проводится перед сдачей в аренду для применения на определенной скважине или скважинах, заказчиком является владелец скважин(ы). Если инспекция проводится перед отправкой компонента на склад для дальнейшей сдачи в аренду, заказчиком является владелец компонента.

2.21.3. Инспекция: Исследование компонента бурильной колонны согласно требованиям Тома 3 Стандартна DS-1™ для установления соответствия такого компонента указанным критериям приемки.

2.21.4. Класс инспектируемого оборудования: Краткий перечень критериев приемки для бурильных труб и замков обычного размера и веса. Настоящим стандартом предусмотрены четыре класса совокупного износа и повреждений: «Класс 1,» «Премиум класс,» «Премиум класс с пониженным показателем TSR» и «Класс 2.» Класс 1 относится к новым трубам. Остальными классами предусматривается допустимый уровень износа и повреждений, как изложено в таблице 3.5.1. Определение «Класс» относится только к компонентам обычных бурильных труб.

2.21.5. Метод инспекции: Один из 31 различных процессов проведения инспекции, указанных в таблице 2.1 и применяемых в соответствии с Томом 3 настоящего стандарта.

2.21.6. Процедура инспекции: Перечень этапов, указанный в Томе 3, которого инспектор должен придерживаться для соблюдения данного стандарта. Каждому методу в таблице 2.1 соответствует определенная процедура.

2.21.7. Программа инспекции: Один или несколько методов инспекции, применяемых к указанному перечню компонентов бурильной колонны, а также критерии приемки, которыми будет руководствоваться инспектор при определении годности/негодности каждого компонента к эксплуатации.

2.21.8. Категория инспекции: Краткое изложение программы инспекции. Выделяют шесть категорий инспекции, которые были описаны выше в данной главе.

2.21.9. Коэффициент прочности на кручение (TSR): Для части бурильной трубы, отношение прочности на кручение бурильного замка к аналогичному показателю трубы.

2.21.10. Инспекция в ходе спускоподъемной операции: Инспекция, проводимая бурильной бригадой на рабочей площадке в ходе спускоподъемной операции. Включает проверку соответствия параметров бурильного замка и ультразвуковое измерение толщины стенки бурильной трубы.

2.22. Появление и изменение классов инспекции для бурильных труб, бывших в эксплуатации:Первый общеотраслевой перечень критериев приемки был опубликован в рамках «Практических рекомендаций 7G института API» (API Recommended Practice 7G или RP7G). Изначально, в RP7G были предусмотрены пять классов, с 1 (новые трубы) по 5 (отбракованные компоненты). Затем на уровень между классами 1 и 2 был добавлен «Премиум класс». Премиум класс, а также Классы 2, 3 и 4 отображают степень износа. По данной системе, классификация труб основана на ряде показателей. В ходе инспекции проводится проверка всех показателей и трубе присваивается максимально возможный класс, уровню которого соответствуют необходимые показатели или уровень которого они превышают. На момент первой публикации RP7G трубы Класса 3 и 4 использовались во многих областях, но на сегодняшний день они считаются слишком изношенными для применения в большинстве ситуаций. Сегодня даже трубы Класса 2 используются достаточно редко, а Премиум класс приобрел статус минимального набора показателей, соответствие которым должно обеспечиваться в большинстве случаев. Во втором издании стандарта DS-1™ трубы Премиум класса с пониженным показателем TSR (Коэффициент прочности на кручение) были отнесены к отдельному классу. К трубам данного класса применимы те же требования, что и к трубам Премиум класса, однако отличающиеся параметры бурильного замка обуславливают более низкий коэффициент прочности на кручение, чем в трубах Премиум класса. Этот класс был официально утвержден по той причине, что до сих пор достаточно широко используется сочетание бурильных труб и бурильных замков, имеющих наружный диаметр меньше номинального (при этом, соответствующих критериям Премиум класса во всех остальных отношениях). Что касается таких сочетаний, многие предпочитают использовать малогабаритные бурильные замки с целью увеличения зазора для ловильных работ и готовы принять более низкий коэффициент прочности на кручение ради расширения такого зазора. Такие бурильные замки обычно изготавливаются в соответствии с параметрами Класса 2. Поскольку все компании в установленном порядке оперируют понятием Премиум класса, инспектирующие организации на протяжении многих лет пользовались неофициальным перечнем критериев для определения годности бурильных замков, одновременно строго соблюдая все остальные требования, предъявляемые к оборудованию Премиум класса. Чтобы обеспечить определенный контроль над такой практикой, составители стандарта DS-1™ решили официально выделить новый класс, который называется «Премиум класс с пониженным показателем TSR.»

2.23. Пригодность для определенной цели:Раньше между заказчиком и инспектором практически не существовало взаимодействия, хотя в настоящее время ситуация меняется. Операторы, инспектирующие организации и владельцы бурильных колонн долго «приспосабливались» к стандартной процедуре, основанной на критериях приемки, соответствующих Премиум классу. В контрактах на выполнение буровых работ и соглашениях на аренду оборудования Премиум класс зачастую указывался в качестве минимального уровня соответствия для бурильных труб. Подрядчики, арендаторы и инспектирующие организации комплектуют оборудование и осуществляют его проверку на годность к эксплуатации именно в соответствии с данными критериями. Зная об этом, проектировщик бурильных колонн будет сверять свой проект, в первую очередь, с показателями Премиум класса. В большинстве случаев таблицы и диаграммы, приведенные в технических источниках, равно как и в указанном нами источнике, составляются на базе характеристик, типичных для оборудования Премиум класса, как будто толщина оставшейся стенки труб во всем мире составляет именно 80 процентов от исходного значения. В этой прочно укоренившейся привычке нет ничего хорошего. Наступит время, когда инженерные и экономические требования заставят нас отойти от этих совершенно условных критериев, что позволит проектировать бурильные трубы и колонны, которые будут идеально подходить для использования в определенных целях.

2.24. Корректировка критериев приемки:Многие критерии годности бурильных труб к эксплуатации менять на протяжении десятилетий. Они регламентируются стандартами по инспекции, включая данный стандарт. Некоторые из них напрямую связаны с рабочими характеристиками, другие связаны косвенно, а некоторые практически не имеют к рабочим характеристикам никакого отношения. Заказчик должен уметь разбираться в этих критериях, поскольку они оказывают непосредственное влияние на пригодность бурильной колонны для определенных целей. Повышение или понижение критериев, равно как и уверенность, с которой можно вносить поправки, зависит от рассматриваемого показателя и условий эксплуатации. Эти вопросы детально рассмотрены в Главе 6.

2.25. Важность процедуры инспекции:Заказчик редко имеет представление о технических подробностях инспектирования бурильной колонны, так же как и инспектор вряд ли сможет спроектировать колонну. Однако заказчик и его компания многим рискуют в зависимости от того, соответствует бурильная колонна заявленным требованиям или нет. Иначе говоря, для заказчика и его организации многое зависит от того, насколько тщательно инспектор будет отбраковывать компоненты. Уровень выполнения инспектором своей работы будет в значительной степени обусловлен тем, какова установленная процедура инспекции. Чувствительность процесса очень хорошо проиллюстрирована известным исследованием, которое провели Мойер (Moyer) и Дэйл (Dale). 1 Они обратились в инспектирующие компании, чтобы провести проверку нескольких бурильных труб и УБТ, которые имели различную степень износа и усталостных повреждений. Они не вмешивались в работу инспекторов, а просто записывали результаты проверки и рассчитывали вероятность того, что инспектора обнаружат трещины, о существовании которых исследователям было известно. В том числе, Мойер и Дэйл оценивали возможность обнаружения трещин на соединениях УБТ. Согласно критериям приемки, наличие трещин (независимо от размера) недопустимо, посему испытание стало хорошим способом определить эффективность технического осмотра с использованием невидимого излучения. Результаты исследования показаны на рисунке 2.5. Данные исследования говорят о том, что шанс обнаружения небольших трещин на инспектируемых компонентах составлял один из четырех. Вероятность выявления трещин возрастала до 8-9 из десяти случаев, если трещины были крупными.

2.26. Результат определяется процедурой:Интересная особенность информации, представленной на рисунке 2.5, заключается в следующем: для выявления трещин исследователи использовали ту же технологию, которую и изучали, невидимое излучение, на основании чего они оценивали эффективность технической инспекции. Однако исследователи выполняли проверку соединений, используя передовые технологии и обеспечив работу вне производственного режима. Поэтому рисунок 2.5 не является отображением абсолютного качества инспекции на предмет выявления трещин с использованием невидимого излучения. В действительности, он сравнивает относительное качество технической инспекции, которая была характерна для того времени, с результатами аналогичной инспекции, которая была выполнена лучше самими исследователями. Иными словами, вероятность выявления исследователями крупных трещин при помощи невидимого излучения была на 10-20% выше, а вероятность выявления мелких трещин – на четыреста процентов выше, чем в ходе обычных инспекций. Такая «чувствительность процесса» характерна для всех неразрушающих инспекций. Поэтому в настоящем стандарте изложены все обязательные этапы технического контроля над ходом инспекции. В источнике 1 также обсуждается степень «контроля» над процессом инспекции. Этот аспект отображен на рисунке 2.6. Установленные критерии приемки, выраженные размером трещины, показаны жирной черной линией. Тем не менее, в действительности, инспекция не дает возможности достичь оптимального результата. Из-за неточности результатов инспекции, некоторые материалы, отвечающие всем требованиям, будут отбракованы, а некоторые неприемлемые материалы будут признаны годными. На рисунке 2.6 (посередине) показан фактический процесс отбраковки, который подвергается тщательному техническому контролю, как в случае с исследователями, упомянутыми в связи с источником 1. Наличие надлежащего контроля над ходом инспекции позволяет достичь результатов, которые будут максимально приближены (однако никогда не будут полностью соответствовать) к теоретическим критериям приемки. При понижении уровня контроля над процедурой инспекции, результаты проверки все больше удаляются от идеальных параметров, что в результате приводит к приемке некачественных материалов и повышению вероятности возникновения проблем у забоя скважины. Это, в особенности, приводит к возникновению трудностей, когда инспекции оплачиваются сдельно и зачастую предлагаются на конкурентной основе заказчикам, которые могут не вполне осознавать, какие услуги они приобретают. Вне зависимости от уровня квалификации и мотивации инспектирующей организации, такие рыночные условия не оставляют другого выбора и заставляют компании работать «в спешке» с целью получения прибыли. В результате, снижение уровня контроля над инспекцией и резкое падение качества инспекции значительно перевешивают те несколько долларов, которые заказчик экономит на стоимости инспекции. Заказчики, основная задача которых – сокращение расходов на инспекцию, не дают инспектирующей организации достаточно времени, которое позволило бы провести качественную инспекции и, одновременно, получить доход. Такие заказчики действуют во вред собственным интересам и вряд ли возьмут на себя большую ответственность, если качество результатов инспекции не будет отвечать их ожиданиям.

2.27. Часто задаваемые вопросы:DS-1™ получил широкое распространение в качестве стандарта, применимого к инспектированию компонентов бурильной колонны. У пользователей часто возникают обычные вопросы в отношении применения данного стандарта. Здесь мы даем ответы на такие вопросы:

В: «Какие именно компоненты бурильных колонн могут быть проверены по стандарту DS-1™?»

О: Третье издание данного стандарта включает бурильные трубы, бывшие в эксплуатации, толстостенные бурильные трубы, УБТ, оборудование API и аналогичные вращающиеся соединения, и резьбовые соединения с упорными заплечиками, ряд патентованных соединений, бурильные ясы, ведущие штанги, переходники, стабилизаторы, буровые расширители, раздвижные расширители, скребки для обсадных труб, роликовые расширители, предохранительные клапаны, запорные клапаны, вставные противовыбросовые превенторы (IBOP), оборудование для каротажа во время бурения (MWD, LWD), ловильные инструменты, колонны для спуска тяжелого типа, двигатели и турбины.

В: «Что такое «Регистрация» по DS-1™? Как оформить регистрацию?

A: Вы можете зарегистрировать свою инспектирующую компанию в T H Hill Associates, Inc. (или другом агентстве регистрации) в соответствии с DS-1™. При этом регистрационное агентство сначала проверит существующую в вашей компании систему гарантии качества, процедуры сертификации оборудования и контрольно-измерительных приборов, а также вашу программу обучения и аттестации инспекторов. Если они отвечают требованиям соответствующих документов Международной организации по стандартизации (ISO), Американского нефтяного института (API) и Американского общества неразрушающих испытаний (ASNT), регистрационное агентство проверит ваш производственный центр на предмет соблюдения указанных требований. Если результаты проверки приемлемы, регистрационное агентство выдаст свою «Регистрацию», указывающую на то, что в вашей компании существует приемлемая система технологического контроля, а также что результаты проверки говорят о соблюдении всех требований. В каком-то смысле, этот процесс напоминает сертификацию промышленного объекта на соответствие требованиям ISO. Регистрация не гарантирует качества ваших услуг по проведению инспекции или нарезки резьбы, но демонстрирует, что ваша компания создала и подтвердила определенную систему внутреннего контроля, которая имеет большое значение дл предоставления клиентам услуг высокого качества. Более подробную информацию и руководства по получению регистрации вы сможете найти в Главе 4 данного тома.

В: «Чем инспекция DS-1™ отличается от инспекции API?»

О: К сожалению, ни один из терминов, упомянутых в вопросе, не имеет точного определения, поэтому на этот вопрос невозможно ответить. Несмотря на свое широкое распространение среди специалистов, понятие «инспекция API» не определено ни в одном из документов API. Следовательно, понятия разных людей о том, что, в действительности, включает в себя «инспекция API», сильно различаются. Аналогичным образом, отсутствует определение и для термина «инспекция DS-1™», за исключением тех случаев, когда отдельно указывается Категория услуг (номер 1-5 или Категория колонн для спуска тяжелого типа). См. параграф 2.7 выше.

В: «Являются ли требования DS-1™ к проведению инспекции бурильных колонн более строгими, чем требования API?»

О: Ответ на этот вопрос включает два аспекта.

Во-первых, два указанных стандарта мало различаются в плане требований к показателям бурильных труб, в соответствии с которыми компонент может быть отнесен к Премиум классу или Классу 2. На самом деле, большинство критериев приемки DS-1™ были заимствованы непосредственно из API RP7G. Однако, что касается контроля над проведением инспекции, DS-1™ предъявляет жесткие требования к процедуре калибровки и эксплуатации инспектором соответствующего оборудования. На момент выпуска настоящего стандарта, эти вопросы совсем не рассматривались в API RP7G. Следовательно, сравнение данных стандартов в рассматриваемом плане не представляется возможным.

В: «Могу я воспользоваться Томом 3 стандарта DS-1 ™ для инспекции новых компонентов бурильной колонны?»

О: Нет. Том 3 данного стандарта относится только к бывшему в эксплуатации оборудованию бурильной колонны. Описанные в нем процедуры разработаны специально для выявления дефектов, возникших в ходе эксплуатации, и они не дадут эффекта при выявлении стандартных дефектов изготовления. Для проведения инспекции новых бурильных труб обратитесь к Тому 1 данного стандарта. Контроль новых бурильных замков и соединений с упорными заплечиками описан в Спецификации 7 института API.

В: «Как мне заказать инспекцию по DS-1™?»

О: Процедура заказа инспекции подробно описана выше в данной главе.

В: «Моя инспектирующая компания заявляет, что инспекция DS-1™ будет стоить дороже, чем инспекция API. Оправданы ли дополнительные расходы?»

О: Это самый часто задаваемый вопрос. Лучше всего ответить на него в контексте Категорий услуг DS-1™. Когда редакционный комитет впервые установил категории DS-1™, в отрасли применялась неофициальная программа, которую многие (но не все) инспектирующие компании называли «инспекцией в стандартном объеме» (Standard Rack Inspection). Такая стандартная инспекция (или ее приближенный эквивалент, поскольку объем инспекции менялся в зависимости от компании и региона) была принята редакционным комитетом в качестве Категории 3 DS-1™. Чтобы предоставить заказчикам инспекций некоторый выбор и одновременно обеспечить жесткий контроль над процессом проведения инспекций, комитет также определил Категории 1 и 2 (с меньшим количеством инспекций, по сравнению с Категорией 3), а также Категории 4-5 (с бόльшим количеством инспекций). Если предположить, что под «инспекцией API» указанное выше лицо подразумевало то, что определялось неточным понятием «инспекции в стандартном объеме», то стоимость такой инспекции будет приблизительно равна стоимости инспекции DS-1™ Категории 3. Если же такая инспекция стоит значительно дешевле, это значит, что, скорее всего, инспектирующая компания игнорирует некоторые этапы контроля, которые предусмотрены стандартом DS-1™. Приведение в соответствие требованиям DS-1™ по качеству будет оправдано практически на сто процентов.

Если говорить более точно, сравнение должно основываться на сопоставлении «инспекции в стандартном объеме» и «инспекции DS-1™ Категории 3». Если компания придерживается всех этапов, предусмотренных в рамках DS-1™, стоимость инспекций будет одинаковой. Конечно же, если сравнивать с инспекциями DS-1™ Категорий 4 или 5, последние окажутся дороже. И наоборот, инспекции DS-1™ Категорий 1 или 2 будут стоить меньше. Подробные данные о сравнительной стоимости инспекций вы найдете в параграфе 2.19.

В: «Моя компания провела аттестацию всех компонентов в рамках инспекции DS-1™ Категории 5, но стоимость инспекции возросла. Правильно ли мы поступаем? «

О: Возможно, нет. Стоимость инспекции Категории 5 примерно вдвое выше стоимости стандартной инспекции Категории 3. Инспекция Категории 5 проводится для тех компонентов, которые подлежат эксплуатации в крайне жестких условиях, где очень высоки издержки вследствие отказа. Если условия бурения и политика управления рисками не требуют принятия предельных мер предосторожности, проведение инспекции Категории 5 может не быть оправданным.

В: «Я хотел бы проверить бурильную колонну, проведя инспекцию образца. Какой процент колонны необходимо проинспектировать, чтобы убедиться в качестве всех ее компонентов?»

О: Нельзя инспектировать бурильную колонну по отдельному образцу. Вы можете быть полностью уверены в высоком качестве каждого компонента непроверенной части колонны только в том случае, если характеристики отобранного вами образца полностью соответствуют характеристикам всего набора оборудования и если уровень отбраковки для образца равен нулю. В двух словах, если вам необходима инспекция бурильной колонны, она должна включать проверку всех компонентов колонны. Если вы хотите сократить расходы на инспекцию при использовании оборудования в неопасных условиях, просто выберите другую категорию инспекции, подразумевающую менее тщательную проверку.

В: «В каких условиях имеет смысл проводить точечные пробы?»

О: Сбор точечных проб может быть полезен, если вы хотите получить общее представление о состоянии колонны, не осуществляя проверку каждого компонента. Например, ели вас интересует общее состояние колонны, вы можете прибегнуть к методу точечных проб, чтобы решить, стоит продолжать ее проверку или лучше выбрать совершенно другую колонну.

1. Мойер, М.К. и Дэйл, Б.Э., «Точность и надежность инспекции бурильных колонн» (Moyer, M.C., и Dale, B.A., «Sensitivity и Reliability of Commercial Drillstring Inspection Services»), Общество инженеров-нефтяников (SPE) 17661, Представлено 2-5 февраля 1988 года на Конференции стран Юго-Восточной Азии по технологии работ в море.

Содержание

3.2. Сделка по проведению инспекции. 19

3.3. Взаимодействие. 19

3.4. Визуальный осмотр трубы. 20

3.5. Измерение наружного диаметра трубы. 21

3.6. Ультразвуковое измерение толщины

3.7. Электромагнитный контроль 1. 22

3.8. Электромагнитный контроль 2. 23

3.9. Магнитопорошковая дефектоскопия участков, зажимаемых клиньями / высадок. 25

3.10. Ультразвуковой (УЗ) контроль участков, зажимаемых клиньями / высадок. 26

3.11. Визуальный осмотр соединений. 28

3.12. Контроль размеров 1. 32

3.13. Контроль размеров 2. 33

3.14. Контроль размеров 3. 39

3.15. Контроль соединений невидимым

3.16. Ультразвуковой контроль соединений. 45

3.17. Капиллярная дефектоскопия. 46

3.18. Инспекция прорезей для элеватора. 48

3.19. Заводская инспекция бурильного яса. 49

3.20. Контроль ведущей трубы. 50

3.21. Заводская инспекция зондов для измерений (MWD) и зондов для каротажа (LWD) во время бурения 51

3.22. Заводская инспекция двигателей и турбин. 52

3.23. Заводская инспекция расширителей, разбуривателей и шарошечных расширителей. 53

3.24. Инспекция стабилизатора. 54

3.25. Инспекция переводника. 55

3.26. Заводская инспекция НКО, запорных клапанов ведущей бурильной трубы и встроенных противовыбросовых превенторов. 57

3.27. Инспекция специальных инструментов в полевых условиях. 60

3.28. Квалификация инспектирующего

3.29. Заводская инспекция ловильных

3.30. Магнитопорошковая дефектоскопия с использованием остаточного поля. 72

3.31. Ультразвуковой контроль по всей длине (FLUT) 1. 74

3.32. Ультразвуковой контроль по всей длине (FLUT) 2. 78

3.33. Заводской ремонт и измерение резьбовых соединений с заплечиками (RSC). 81

3.34. Прослеживаемость. 85

3.35. Инспекция оборудования на подъеме из скважины. 87

Дата добавления: 2015-07-20 ; просмотров: 872 | Нарушение авторских прав

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *