что такое eev в кондиционере
Как работает электронный расширительный вентиль (ЭРВ)
Электронные расширительные вентили подразделяются на импульсные и ЭРВ с шаговым двигателем. В данной статье будет рассмотрен второй (наиболее распространенный) тип электронных расширительных вентилей.
Также как и механические терморегулирующие вентили (ТРВ), электронный расширительный вентиль представляет собой вентиль с узким проходным сечением и предназначен для дросселирования и регулирования подачи хладагента в испаритель в соответствии с тепловой нагрузкой.
Однако, в отличие от ТРВ, в котором изменение проходного сечения вентиля осуществляется термомеханическим воздействием на мембрану, соединенную со штоком, для управления ЭРВ необходим контроллер, а также электропитание для привода шагового электродвигателя ЭРВ. Входными сигналами контроллера являются показания датчиков давления и температуры, установленных на всасывающем трубопроводе.
Измеренное датчиком давление кипения хладагента соответствует определенной температуре кипения. Показания датчика температуры соответствуют температуре перегрева хладагента на выходе из испарителя. Контроллер ЭРВ определяет значение перегрева хладагента как разность температуры перегрева и температуры кипения. Для корректной и безопасной работы системы значение перегрева должно составлять 7–10 °С. Контроллер сравнивает текущее значение перегрева со значением уставки и выдает соответствующий управляющий сигнал: на открытие вентиля для снижения перегрева или на закрытие вентиля — для увеличения перегрева.
В качестве привода запорного узла ЭРВ используется шаговый двигатель. Это предоставляет ряд преимуществ по сравнению с механическим ТРВ.
Первое преимущество это более точное поддержание температурного режима и быстрое реагирование на изменение тепловой нагрузки.
ЭРВ имеет большое число шагов регулирования (до 500). За счет этого достигается высокая точность регулирования подачи хладагента. Механический ТРВ, в котором изменение проходного сечения осуществляется термомеханически, имеет большую инерцию в регулировании, особенно при резком изменении тепловой нагрузки. Более высокая скорость передачи электрических сигналов обеспечивает быстрое реагирование на изменение тепловой нагрузки электронным расширительным вентилем.
Благодаря точному регулированию расхода хладагента в соответствии с тепловой нагрузкой электронный расширительный вентиль позволяет оптимизировать энергопотребление агрегата, что в свою очередь позволяет экономить электроэнергию.
Электронный расширительный вентиль имеет значительно более широкий диапазон регулирования, что позволяет применять его в агрегатах с большим числом ступеней регулирования холодопроизводительности или глубоким плавным регулированием.
Также ЭРВ менее чувствителен к изменению давления конденсации, что расширяет диапазон работы холодильной машины в целом.
Более подробно о принципе действия электронного расширительного вентиля Вы можете узнать из видео:
Принцип работы кондиционера
Как работает кондиционер
Как устроен принцип работы инверторного кондиционера
Устройство и принцип функционирования сплит-системы
Внешний блок
Внешний блок включает в себя компрессор, конденсатор, четырехходовой клапан, также в нем есть капиллярная трубка. Во всех блоках находится фильтр-осушитель, который очищает и осушает холодильный агент от возможного попадания влаги в систему и различного рода загрязнений. В сплит-системах инверторного типа во внешнем блоке также расположена плата управления, которая есть и в мультисплит-системах. Благодаря тому, что компрессор располагается именно в наружном блоке, уровень шума от работающего кондиционера в квартире гораздо ниже, чем со стороны улицы.
Размеры внешнего блока могут отличаться в зависимости от производительности модели, а также от бренда.
Соединение внутреннего блока с внешним происходит с помощью фреоновых трубопроводов. Также имеется дренажная магистраль, и электрический кабель для питания внутреннего и внешнего блока.
Внешний блок кондиционера всегда должен располагаться со стороны улицы. Он крепится на наружную сторону стены. Если кондиционер необходимо устанавливать на достаточной высоте от земли и смонтировать наружный блок обычным способом не представляется возможным, то приглашаются монтажники-альпинисты со специальным снаряжением и оборудованием. Без таких приспособлений невозможно установить внешний блок высоко.
Также наружный блок может быть установлен на крыше зданий, на незастекленных балконах и лоджиях, открытых общих балконах или лестничных пролетах с открытым доступом к улице.
Часто внешние блоки поставляются в антивандальном корпусе, если это не предусмотрено производителем, то блок, установленный на уровне первых этажей, может быть дополнительно помещен в специальный защитный короб из металлических прутьев. Во избежание скапливания снега или дождевой воды, а также мусора, над внешними блоками иногда устанавливают специальный скошенный навес.
Внутренний блок
Внутренние блоки сплит-системы могут быть следующих типов:
Основные функции современных сплит-систем – вентиляция, осушение, охлаждение, обогрев и поддержание заданной температуры воздуха в помещении.
Управление при помощи пульта дистанционного управления. Практически все современные модели сплит-систем оснащены пультом ДУ. С его помощью происходит не только включение и отключение прибора, но и управление всеми функциями – установка температурного режима, включение таймера, программирование задач, включение всех режимов, предусмотренных конкретной моделью кондиционера.
Если в модели реализована функция «I feel», то благодаря датчику температуры в пульте ДУ кондиционер отслеживает окружающую температуру воздуха в помещении, и при достижении установленной пользователем температуры оборудование поддерживает ее.
На внутреннем блоке происходит регулировка направления воздушного потока путем изменения угла наклона жалюзи.
Работа компрессора внешнего блока регулируется постоянным контролем всех систем.
Особенности функционирования напольных кондиционеров
Эти модели используются редко, если нельзя установить стандартный сплит. Напольные кондиционеры также бывают только стационарными. Стационарные модели имеют аналогичный принцип работы, как обычный кондиционер, за исключением установки внутреннего блока. Он размещается не под потолком, а на высоте полуметра от пола. Внешний блок расположен на улице. Такие сплит-системы относятся к полупромышленной серии. Как правило, они отличаются большей производительностью, чем бытовые модели.
Особенности мобильных моделей
Обычно выбирать мобильную модель не рекомендуют, поскольку самая шумная часть будет установлена не за окном, а в помещении. При включенном кондиционере вам будет некомфортно находиться в комнате. К тому же, они отличаются небольшой мощностью.
В чем отличие кондиционера от сплит-системы
Кондиционер – это сложное техническое оборудование, предназначенное для создания и поддержания комфортного температурного режима в помещении любого назначения. Кондиционер может не только охлаждать воздух, но и нагревать его, если это предусмотрено производителем. Кондиционер – это общее понятие климатической холодильной техники. Видов кондиционеров на сегодняшний день представлено очень много. Кондиционером можно назвать как бытовой прибор для охлаждения воздуха, например, оконный кондиционер или мобильный кондиционер, так и чиллер – промышленное климатическое оборудование большой мощности. Для более точного определения существуют названия кондиционеров, например, сплит-система.
Бытовая сплит-система чаще всего устанавливается в относительно небольших по площади помещениях, например, бытовая настенная сплит-система предназначена для создания оптимального микроклимата в помещениях от 10 до 70 м2, в зависимости от мощности оборудования. Поэтому такие сплит-системы чаще всего устанавливаются в квартирах или в небольших офисных помещениях.
Есть также и другие типы сплит-систем, которые больше подходят для просторных помещений большой площади – торговых центров, ресторанов, бизнес-центров и т.д. Все эти сплит-системы также имеют по одному внутреннему и одному внешнему блоку, отличаются они только внутренними блоками и производительностью. Внутренние блоки делятся по типу установки – кассетные, канальные, колонные, напольно-подпотолочные, колонные.
Сплит-системы могут отличаться опциями и функциями, это зависит от модели и производителя. Например, в сплит-системах может быть разное количество очищающих воздушных фильтров. Количество режимов также может отличаться – в некоторых кондиционерах предусмотрены следующие популярные режимы – «I feel», ночной режим, самоочистка, авторестарт, автоотключение, самодиагностика, турборежим, интеллектуальная оттайка и др.
Структурная схема инверторного кондиционера
*для увеличения изображения кликните левой клавишей мыши
Функциональные блоки схемы
Входной фильтр
Подавляет и существенно уменьшает уровень помех из сети, которые возникают при переходных процессах от других потребителей, атмосферного электричества.
Выпрямитель
Осуществляет преобразование переменного тока в постоянный для питания инверторного модуля
Инверторный модуль
Из постоянного напряжения получает трёхфазное переменное для питания компрессора. Частота, переменного напряжения задаётся блоком управления в зависимости от тепловой нагрузки. Частота переключения силовых ключей при этом около 20 кГц.
Источник вторичного питания
Обеспечивает выходное напряжение для питания схемы управления, индикаторов, реле, драйверов для инвертора, электродвигателя вентилятора и других исполнительных механизмов.
Типовые значения постоянного напряжения:
Блок управления
Управление всеми блоками и механизмами кондиционера, получение информации с датчиков и её анализ, а также обмен данными с внутренним блоком.
Основные функции схемы управления:
Двигатель вентилятора
Охлаждение конденсатора и поддержание заданного давления в системе.
Получает питание +310 В с выпрямителя для питания обмоток двигателя
+15 В с источника ВП для питания схемы управления
Передаёт данные с датчика Холла о частоте вращения вентилятора на схему управления, а с неё получает сигналы управления, для обеспечения оптимального давления в системе.
Электронный ТРВ
Управляет количеством хладагента поступающего в испаритель.
Представляет из себя канал с иглой, положение которой изменяет сечение канала.
Сама игла управляется шаговым двигателем. Это позволяет очень точно регулировать поток хладагента.
Четырёхходовой клапан
Обеспечивает реверс хладагента.
На схемах обозначается как 4WAY или подписывается Reversing Valve.
Блок датчиков
Назван так условно, на самом деле они располагаются по всему контуру:
Во внутреннем блоке также установлены датчики информация о состоянии которых передаётся платой управления:
Некоторые серии инверторных кондиционеров также оснащаются линией перепуска хладагента, системами инжекции (впрыска) в компрессор, системами сбора и возврата масла и прочими, в этой схеме обозначены лишь основные узлы.
Мы рассмотрели структурную схему инвертора с двойным преобразованием, существуют также инверторы постоянного тока (DC Inverter).
Следующие статьи этой категории:
Подскажите по конструктивным отличиям инверторных кондиционеров от on/off.
Возможно есть какая-то литература, где можно почитать об особенностях инверторов?
Самое главное инверторные модели более экономичные и не перегружают сеть при запуске компрессора, плюс они более тихие и более точно поддерживают температуру в помещении (у старт-стопных она постоянно прыгает на несколько градусов).
LG например вообще в ближайшем будущем хочет отказаться от производства старт-стопных моделей и в сегменте «эконом» класса выпускать недорогие инверторы.
Спасибо, за информацию. Я правильно понял, что в инверторах не применяются механические ТРВ и капиллярки, а применяются только ЭРВ (EEV) с управлением от контроллера?
Как строится совместное управление ЭРВ и компрессором в случае уменьшения потребности в холоде? Я правильно понимаю, что ЭРВ прикрывается, компрессор уменьшает обороты, в итоге мы получаем увеличение перегрева, но так как нагрузка на компрессор упала, то более слабого охлаждения (из-за увеличившегося перегрева) ему будет достаточно?
Designman написал :
Самое главное инверторные модели более экономичные и не перегружают сеть при запуске компрессора, плюс они более тихие и более точно поддерживают температуру в помещении (у старт-стопных она постоянно прыгает на несколько градусов).
LG например вообще в ближайшем будущем хочет отказаться от производства старт-стопных моделей и в сегменте «эконом» класса выпускать недорогие инверторы.
Это как раз информация по инверторам для «пользователя», т.е. маркетинговая. Гугл ее очень хорошо выдает. Меня же интересуют технические особенности реализации, а с этим у Гугла сложнее.
Привет. Да, я соглашусь с выше перечисленным. НО! в ремонте «сложны и дороги» Решать клиенту.
Задача ЭРВ поддерживать постоянную величину перегрева по датчикам температуры на испарителе при любой производительности компрессора.
mr-h написал :
Как строится совместное управление ЭРВ и компрессором в случае уменьшения потребности в холоде? Я правильно понимаю, что ЭРВ прикрывается, компрессор уменьшает обороты, в итоге мы получаем увеличение перегрева, но так как нагрузка на компрессор упала, то более слабого охлаждения (из-за увеличившегося перегрева) ему будет достаточно?
Designman написал :
LG например вообще в ближайшем будущем хочет отказаться от производства старт-стопных моделей и в сегменте «эконом» класса выпускать недорогие инверторы.
Вот и интересно, чем такой «недорогой» инвертор может технически отличаться от нормального. Ранее встречал такой термин «недоинвертер», это не про них случайно?
mr-h написал :
Как строится совместное управление ЭРВ и компрессором в случае уменьшения потребности в холоде? Я правильно понимаю, что ЭРВ прикрывается, компрессор уменьшает обороты, в итоге мы получаем увеличение перегрева, но так как нагрузка на компрессор упала, то более слабого охлаждения (из-за увеличившегося перегрева) ему будет достаточно
Designman написал :
Задача ЭРВ поддерживать постоянную величину перегрева по датчикам температуры на испарителе при любой производительности компрессора.
Тогда наверно происходит все так:
При уменьшении потребности в холоде контроллер уменьшает обороты компрессора, в результате массовый расход газа через него уменьшается. У Котзаогланиана подобное состояние установки называется «слишком слабый компрессор». Компрессор больше не может всосать то количество газа, которое образуется в испарителе, и давление в последнем повышается, что приводит к повышению температуры кипения, увеличению температуры теплообменника испарителя и соответственно уменьшению съема холода с него. Если при этом изменится перегрев, то ЭРВ соответствующим образом отреагирует, но напрямую на холодопроизводительность это не влияет.
Собственно для такой работы достаточно и ТРВ, а не обязательно ЭРВ. Интересно бывают ли инверторы с ТРВ? Конечно у ЭРВ диапазон регулирования шире, но он требует мозгов, т.е. контроллера. Может быть в наличии ЭРВ или ТРВ и заключается одна из разниц между дешевыми и дорогими инверторами?
Клапан кондиционера
Если нужно купить клапан кондиционера в Москве — это к нам!
Сервисный клапан кондиционера
Сервисные клапаны кондиционера служат для присоединения межблочных труб сплит системы. А также, для контроля давления хладагента в контуре при проведении диагностики или заправке (дозаправке) фреоном. Двухходовой клапан используется только для присоединения труб и перекрытия фреоновой магистрали. Трехходовой клапан кроме этого позволяет производить контроль давления и дозаправку системы фреоном.
Схема 3-х ходового вентиля на наружном блоке.
Четырехходовой клапан кондиционера
4-х ходовой реверсивный клапан предназначен для изменения направления движения хладагента в контуре с обратным циклом (тепловой насос). Это нужно для того, чтобы кондиционер мог работать как на охлаждение, так и на обогрев. Внешний вид 4-х-ходового клапана, а также схема работы кондиционера на охлаждение (cooling) и на обогрев (heating) приведена на рисунке.
Замена четырехходового клапана в кондиционере — одна из наиболее сложных и дорогостоящих ремонтных операций. По стоимости она сопоставима с заменой компрессора кондиционера.
Замена 4-х-ходового клапана требует выполнения нескольких паек в труднодоступных местах в непосредственной близости к телу клапана. Перегрев может привести к деформации и заклиниванию внутренней фторопластовой втулки. Поэтому прежде, чем говорить о дефекте обратного клапана, необходимо проверить исправность электрической схемы. Убедитесь, что катушка соленоидного клапана реверсивного вентиля находится под напряжением. Наличие магнитного поля проверяется, например, по характерному щелчку при снятии и установке катушки. А также, следует убедиться в том, что в контуре достаточное количество хладагента и компрессор работает с полной производительностью.
Чаще всего клапан не может изменять направление цикла или не полностью меняет направление потока. Если реверсивный электромагнитный клапан не может изменить направление потока в холодильном контуре, то это может быть вызвано неисправностью обмотки, нарушением герметичности и неполным закрыванием клапана, засорением нагнетательного отверстия или капилляра, утечкой хладагента или неисправностью компрессора.
Неисправность магнитной обмотки
Возможно, провод обмотки заржавел или перегорел, или железный сердечник клапана заржавел или перекосился. Проверьте, правильно ли расположена обмотка клапана, не наклонен и не заржавел ли железный сердечник клапана. Чтобы проверить, исправна обмотка, надо измерить ее сопротивление измерительным прибором, например, ампервольтомметром. Если сопротивление бесконечно велико, то это обрыв провода обмотки. Если обмотка оказалась неправильно размещена, то измените ее положение. Обнаружив ржавчину на сердечнике, удалите ее наждачной бумагой. Если обмотка повреждена ржавчиной или перегорела, то замените провод на такой же. После этого включите питание и проверьте работу клапана. Если электромагнитная сила окажется меньше, чем требуется, добавьте несколько витков обмотки и вновь проверьте ее.
Нарушение герметичности и неполное закрывание клапана
Если между основанием клапана и поршнем не полностью герметичное соединение, то электромагнитный реверсивный клапан не может выполнять свою функцию и пропускает газ. Это может произойти из-за истирания элементов клапана, увеличившего зазор между ними, из-за примесей к смазочному маслу или других посторонних частиц в холодильном контуре, или из-за повреждения основания клапана.
Для восстановления герметичности клапана включайте и выключайте питание его обмотки несколько раз, чтобы клапан непрерывно работал, переключая режимы. В это же время слегка постучите деревянным бруском по клапану. Из-за этого вибрация клапана усилится, и если нарушение герметичности было вызвано попаданием примесей к смазочному маслу или других посторонних частиц, то вибрация может удалить их из клапана, и он начнет работать нормально. Если таким образом устранить неполадку не удалось, клапан придется заменить.
Неплотное закрывание клапана означает, что отверстие клапана, управляющего изменением направления потока хладагента, перекрывается не полностью. При правильной работе клапана кондиционер должен переключаться в другой режим. При этом поверхность капиллярной трубки низкого давления, находящейся справа от реверсивного клапана, должна быть холодной, а поверхность другой капиллярной трубки – горячей. Если оба капилляра горячие на ощупь, значит, правое отверстие клапана не полностью перекрыто и клапан не может изменить направление потока хладагента через систему. Газообразный хладагент под высоким давлением попадает одновременно и в испаритель, и в конденсатор, и это мешает нормальной работе кондиционера.
Для восстановления работы клапана включайте и выключайте питание его обмотки несколько раз, чтобы клапан непрерывно работал, переключая режимы. Возможно, после этого он начнет работать нормально. Если таким образом устранить неполадку не удалось, клапан придется заменить.
Засор нагнетательного отверстия и капилляра
Диаметр нагнетательного отверстия, через которое хладагент выходит из реверсивного клапана, менее 0,3 мм. Даже если перед ним установлен фильтр, отверстие легко может засориться и клапан перестанет работать. Чаще всего это случается из-за низкого качества хладагента или попадания в холодильный контур посторонних примесей.
Для восстановления работы клапана включайте и выключайте питание его катушки несколько раз, чтобы клапан непрерывно работал, переключая режимы. Если клапан был засорен не полностью, то возможно, он будет работать нормально. В противном случае клапан нужно разобрать, прочистить его и проверить его работу, заполнив контур азотом и увеличив давление.
Если таким образом устранить неполадку не удалось, клапан придется заменить. Перед тем, как снять электромагнитный клапан, надо удалить хладагент из системы, затем отвинтить четыре крепежных болта, выньте катушку электромагнита. После этого выньте клапан и короткую трубку. Запомните (отметьте) угол и направление трубки, чтобы правильно установить ее при сборке клапана.
Демонтаж и сварка
При газовой сварке и демонтаже клапана соблюдайте осторожность! Клапан имеет тефлоновое уплотнение, которое легко повредить.
Чтобы установить электромагнитный реверсивный клапан на место, снимите с него сплошную крышку, приварите клапан к трубам холодильного контура кондиционера. Точно выровняйте клапан по горизонтали. Чтобы тефлоновое уплотнение клапана не пострадало при сварке, полностью оберните корпус клапана мокрой тканью или даже поливайте его водой во время сварки. Сварка должна производиться в азотной атмосфере, чтобы кислород не поступал к месту сварки. После этого, приварите электромагнитный клапан к трубам холодильного контура. Если клапан снабжен короткой трубкой, его можно разместить на фланце кондиционера или в том месте, где он находился до ремонта.
Засорение трубки – это блокирование капиллярной трубки, расположенной с любой стороны от управляющего клапана электромагнитного реверсивного клапана. Причиной засорения становятся примеси к хладагенту или маслу, которые попадают в капилляр и перекрывают его.
Чтобы устранить засорение, включайте и выключайте питание катушки электромагнитного клапана несколько раз, чтобы газ под высоким давлением проходил через трубку в разных направлениях, прочищая ее. Если это не помогло, клапан нужно разобрать, прочистить его и проверить его работу, заполнив контур азотом и увеличив давление.
Замена клапана
Мы предлагаем несколько вариантов решения проблемы в работе данного клапана. Во-первых, замена неисправного 4-х ходового клапана на новый. Во-вторых, замена всего гидравлического узла в сборе. В-третьих, удаление клапана с переделкой контура под работу в каком-то одном режиме. При этом, как правило, выбирается работа только на охлаждение.
В первом случае потребуется обязательное использование теплоотводящей пасты и круговой доступ к трубопроводу. Поэтому замена 4-х ходового клапана практически невозможна на смонтированном на стене кондиционере. Для проведения работ придется демонтировать внешний блок на время ремонта.
При замене узла в сборе число паек уменьшается до двух и они выполняются на удалении от клапана. То есть, исключается его перегрев. В обеих случаях после ремонта сохраняется возможность работы кондиционера и на охлаждение, и на обогрев.
Если возможно использование кондиционера только в одном режиме (обогрев или охлаждение), то клапан можно исключить. В результате, кондиционер будет работать либо на холод, либо только на тепло по желанию заказчика. Кондиционер будет работать и без 4-х ходового клапана. Однако, такой ремонт будет значительно дешевле, чем при замене.
Клапан valve check кондиционера
Служит для обеспечения оптимального перепада давления между конденсатором и испарителем при переключении режимов «обогрев» и «охлаждение».
В зависимости от направления движения фреона подключается или отключается дополнительная капиллярная трубка. Схема работы клапана кондиционера valve check приведена на рисунке.
Электронный расширительный клапан
Электронный расширительный клапан предназначен для использования в кондиционерах и холодильных системах, в тепловых насосах. Клапан EEV (Electronic Expansion Valve) поддерживает автоматические настройки расхода хладагента. Он не только оптимизирует работу системы для быстрого охлаждения или нагрева, но и обеспечивает точный контроль температуры и энергосбережение. Клапан изменяет перегрев, поддерживая заданное значение производительности. Пропорциональность изменения расхода хладагента, в зависимости от степени открытия вентиля, гарантирует высокую точность регулирования производительности. Это позволяет экономить электроэнергию. Клапаны обеспечивают двунаправленное управление хладагентом. То есть, они регулируют скорость потока как в режиме нагрева, так и охлаждения.
Терморегулирующий клапан
ТРВ служит для дозирования количества фреона, подаваемого в охладитель и представляет собой дроссель с переменным сечением. Как правило, он устанавливается после фильтра на жидкостной линии.
Терморегулирующий вентиль контролирует поток жидкого холодильного агента, поступающего в испаритель прямого расширения, поддерживая постоянный перегрев паров хладагента на выходе из испарителя. Перегрев — это разница между температурой паров хладагента на выходе из испарителя и температурой кипения. Контролируя перегрев, ТРВ заполняет поверхность испарителя настолько, чтобы не дать частицам жидкости попасть в компрессор. Возможность ТРВ сопоставлять поток хладагента со скоростью испарения в испарителе безусловно делает ТРВ идеальным расширительным устройством для систем кондиционирования воздуха и холодильной техники.
Терморегулирующий клапан уменьшает давление и температуру фреона так, чтобы при попадании его в охладитель, обеспечить его выкипание и эффективную теплопередачу. Специальное отверстие уменьшает давление входящего в ТРВ фреона. Хладагент, поступающий из компрессорно-конденсаторного агрегата, представляет собой жидкость под высоким давлением. Проходя через ТРВ, фреон превращается в жидкую пыль, при этом его основные параметры уменьшаются. Все эти моменты безусловно улучшают процесс выкипания фреона в охладителе.
Дозирование количества фреона, проходящего через компрессорно-конденсаторный блок, происходит следующим образом. Баллон ТРВ находится в контакте с коллектором охладителя. Внутри баллона находится фреон. Когда увеличивается температура фреона в блоке, давление хладогента в ТРВ возрастает и сильфон растягивается. Дно сильфона, через тягу давит на шарик или иглу, который перемещаясь, увеличивает количество фреона, проходящего через терморегулирующий клапан. При этом происходит снижение температуры выходной трубки и испарителя. Давление фреона падает, сильфон сжимается, шарик перекрывает дроссель, вызывая уменьшение объема газа.
Перед выполнением работ по замене клапана кондиционера удаляют весь хладагент из системы. После ремонта вакуумируют контур, монтируют новый фильтр-осушитель и заправляют фреоном.