что такое esata на материнской плате
Что такое eSATAp и с чем его едят?
Не так давно сразу несколько моих знакомых попросили меня пояснить, что это за порт на их материнских платах и ноутбуках, и как избавиться от кучи кабелей и адаптера питания для внешнего HDD-box? Отвечу всем и сразу на оба этих вопроса. Речь идет о порте eSATAp, который каждый производитель называет по разному. Встречаются названия Power eSATA, Powered eSATA, Power over eSATA, SATA on the go, eSATA USB Hybrid Port (EUHP), SATA/USB Combo, eSATApd, eSATAp 5v, eSATAp 12v и другие, из за чего потребители постоянно путаются как в разъемах, так и в кабелях. Ничего, разберемся вместе.
Сразу оговорюсь, что разъем Female в тексте я буду называть «разъемом», а Male – «кабелем».
Немного истории.
История появления этого порта в компьютерах достаточно интересна. После разработки консорциумом SATA-IO интерфейса eSATA у многих пользователей появилась возможность подключать свои накопители к ПК, не вскрывая его корпус и не используя Mobile Rack, но если для передачи данных интерфейс был разработан и внедрен, то вопрос передачи питания накопителям повис в воздухе. Некоторыми производителями предлагались брекеты для задней панели с разъемами Molex 8981 и eSATA, которые поставляла, например, Gigabyte со своей платой EX58-Extreme, но это решение было неудобным и требовало от пользователей нескольких кабелей для подключения одного устройства. Выходом из ситуации стал интерфейс eSATAp, разработанный в обход консорциума SATA-IO независимыми компаниями, и являющийся по сути смонтированными в одном интерфейсе портами eSATA и USB 2.0. Но по питающим контактам USB 2.0 невозможно было передать ток с напряжением 12 вольт, из за чего интерфейс подходил только для питания 2,5-дюймовых HDD, поэтому он был доработан, нужные контакты были добавлены, что позволило подключать к новой версии интерфейса 3,5-дюймовые HDD и ODD. Одновременно с этим был представлен компактный интерфейс Mini eSATAp для ноутбуков, не получивший в дальнейшем особого распространения в связи с нестандартностью.
Старый интерфейс стали называть eSATAp 5v или просто eSATAp, а новый — eSATAp 12v, eSATAp dual, eSATApd, или вновь просто eSATAp, отчего путаница на рынке адаптеров и кабелей присутствует до сих пор. Видя, к чему привела такая недоработка стандарта, консорциум SATA-IO в сентябре 2008 года выпустил брошюру с информацией о разработке стандарта Power over eSATA, что привело бы к окончанию чехарды с названиями и версиями интерфейсов, но стандарт так и не был представлен. Вместо него был представлен стандарт eSATA USM (Universal Storage Module), не совместимый ни с чем, но это уже другая история…
Разъем eSATAp 12v.
Рассмотрим устройство самого функционального из упомянутых интерфейса eSATAp 12v в сравнении с интерфейсами, из которых он собран. Разъемы и кабели eSATAp 5v отличаются отсутствием дополнительных контактов P12 и P13.
Совместимость кабелей.
Ниже представлена таблица совместимости кабелей с разъемами eSATAp.
Распространенность версий интерфейса eSATAp.
В отличие от интерфейса eSATA, распространенного повсеместно, интерфейс eSATAp пока еще не так популярен, поскольку не стандартизирован, но под разными именами встречается на ноутбуках практически всех производителей, на материнских платах ASUS, GIGABYTE, MSI и некоторых других, на передних панелях некоторых корпусов. Почти все разъемы, устанавливаемые в ноутбуки и на мат. платы — это разъемы eSATAp 5v, поэтому необходимо обращать внимание на невозможность питания через такой разъем 12v HDD-box’ов. Для их питания необходимо приобрести брекет для задней или передней панели с разъемом eSATAp 12v, например, такой:
Заключение
Надеюсь, что рано или поздно интерфейс eSATAp уступит место какому-либо другому интерфейсу, или будет наконец стандартизирован. А пока этого не случилось, остается смотреть в таблицу совместимости и не путать кабели.
Чем отличается интерфейс ESATA от SATA
Что такое SATA? Если вы активный пользователь компьютера, то нужно придавать этому понятию определенное значение, когда выбираешь жесткий диск, системную плату или уже готовый компьютер. Ведь в характеристиках этих девайсов слово SATA ныне встретишь нередко.
SATA (Serial ATA) – это последовательный интерфейс. Он осуществляет передачу данных между накопителями информации. Он сменил ранее распространенный параллельный интерфейс АТА.
История создания SATA
И уже через пару лет появились первые разъемы SATA на системных платах. Они служили для того, чтобы передавать данные через сетевые устройства. А в 2003 году последовательный интерфейс интегрировали уже во все современные системные платы.
Новый интерфейс на программном уровне совместим с каждым существующим аппаратным устройством и обеспечивает более высокую скорость передачи информации.
У контактного провода толщина меньше. За счет этого более удобно соединять различные девайсы. Также можно увеличить численность разъемов Serial ATA на системной плате. В отдельных моделях материнских плат их может быть 6!
Меньшее количество контактов и микросхем, более низкое рабочее напряжение снизило и выделение тепла девайсами. Вот почему не перегреваются контроллеры портов SATA. В результате передача данных стала еще более надежной.
К интерфейсу Serial ATA подключить львиную долю современных дисководов еще проблематично. И потому все, кто производят современные системные платы, не спешат отказываться и от интерфейса АТА (IDE).
Кабеля и разъемы
Для обеспечения плавного перехода от АТА к SATA, чтобы подключить питание, на отдельных моделях жестких дисков еще есть старые четырехконтактные разъемы. Современные винчестеры – только с пятнадцатиконтактным разъемом.
Кабель передачи данных Serial ATA подключается к винчестеру и системной плате, даже когда они включены. Ведь выводы заземления в районе контактов интерфейса длиннее, чем силовые и сигнальные. И при подсоединении, прежде всего, контактируют провода заземления, а затем все прочие. Это же качается и силового пятнадцатиконтактного кабеля.
Скорость передачи данных
Скорость передачи данных – важный параметров. Интерфейс SATA для того и разработали, чтобы этот параметр улучшить. В этом интерфейсе он постоянно увеличивался. И теперь скорость передачи данных достигает уже 1969 Мбайт/с. Во многом это определяется тем, какое поколение интерфейса SATA.
Первые поколения последовательного интерфейса, версии «0», способны были передать до 50 Мбайт/с. Однако их сразу же заменили на SATA 1.0. их скорость передачи данных тогда достигала 150 Мбайт/с. Теперь же скорость постоянно растет дальше.
Создание ESATA
Интерфейс eSATA (External SATA) необходим именно для того, чтобы подключать внешние устройства. Он осуществляет поддержку режима «горячей замены». Его создали в 2004 году. Имеет более надежные разъемы и увеличенную длину кабеля. И потому интерфейс eSATA удобен для того, чтобы подключать различные внешние устройства. Это хорошее подтверждение универсальности интерфейса SATA.
Здесь нашли применение более надежные разъемы подключения и порты. Они конструктивно рассчитаны на число подключений, которое больше, чем SATA. Зато с обычными SATA они физически несовместимы.
Есть и недостаток. Для того, чтобы подключаемые eSATA устройства имели питание, нужен отдельный кабель. Однако разработчикам интерфейса не стоило большого труда оперативно решить и эту проблему путем внедрения системы питания сразу в основной кабель в интерфейсе eSATAp.
Длину кабеля довели до двух метров. У SATA же длина не превышает одного метра. Для компенсации потерь в нем пришлось изменить уровни сигналов. Уровень передачи стал выше. Уровень порога приемника – ниже.
Нетрудно понять, что рано еще говорить о том, что интерфейс последовательной передачи данных SATA уже полностью исчерпал себя. Конечно, он будет совершенствоваться, развиваться. Он еще удивит тем, как быстро передает данные, как и своим удобством в работе.
Введение в SSD. Часть 2. Интерфейсная
В прошлой части цикла «Введение в SSD» мы рассказали про историю появления дисков. Вторая часть расскажет про интерфейсы взаимодействия с накопителями.
Общение между процессором и периферийными устройствами происходит в соответствии с заранее определенными соглашениями, называемыми интерфейсами. Эти соглашения регламентируют физический и программный уровень взаимодействия.
Интерфейс — совокупность средств, методов и правил взаимодействия между элементами системы.
Физическая реализация интерфейса влияет на следующие параметры:
Параллельные и последовательные порты
По способу обмена данными порты ввода-вывода делятся на два типа:
Параллельные порты, на первый взгляд, отлично масштабируются: больше сигнальных линий — больше бит передается за раз и, следовательно, выше пропускная способность. Тем не менее, из-за увеличения количества сигнальных линий между ними возникает интерференционное взаимодействие, приводящее к искажению передаваемых сообщений.
Последовательные порты — противоположность параллельным. Отправка данных происходит по одному биту за раз, что сокращает общее количество сигнальных линий, но усложняет контроллер ввода-вывода. Контроллер передатчика получает машинное слово за раз и должен передавать по одному биту, а контроллер приемника в свою очередь должен получать биты и сохранять в том же порядке.
Малое количество сигнальных линий позволяет без помех увеличивать частоту передачи сообщения.
Small Computer Systems Interface (SCSI) появился в далеком 1978 году и был изначально разработан, чтобы объединять устройства различного профиля в единую систему. Спецификация SCSI-1 предусматривала подключение до 8 устройств (вместе с контроллером), таких как:
Изначально SCSI имел название Shugart Associates System Interface (SASI), но стандартизирующий комитет не одобрил бы название в честь компании и после дня мозгового штурма появилось название Small Computer Systems Interface (SCSI). «Отец» SCSI, Ларри Баучер (Larry Boucher) подразумевал, что аббревиатура будет произноситься как «sexy», но Дал Аллан (Dal Allan) прочитал «sсuzzy» («скази»). Впоследствии произношение «скази» прочно закрепилось за этим стандартом.
В терминологии SCSI подключаемые устройства делятся на два типа:
Используемая топология «общая шина» накладывает ряд ограничений:
Устройства на шине идентифицируются по уникальному номеру, называемому SCSI Target ID. Каждый SCSI-юнит в системе представлен минимум одним логическим устройством, адресация которого происходит по уникальному в пределах физического устройства номеру Logical Unit Number (LUN).
Команды в SCSI отправляются в виде блоков описания команды (Command Descriptor Block, CDB), состоящих из кода операции и параметров команды. В стандарте описано более 200 команд, разделенных в четыре категории:
Дальнейшее усовершенствование SCSI (спецификации SCSI-2 и Ultra SCSI) расширило список используемых команд и увеличило количество подключаемых устройств до 16-ти, а скорость обмена данными по шине до 640 МБ/c. Так как SCSI — параллельный интерфейс, повышение частоты обмена данными было сопряжено с уменьшением максимальной длины кабеля и приводило к неудобству в использовании.
Начиная со стандарта Ultra-3 SCSI появилась поддержка «горячего подключения» — подключение устройств при включенном питании.
Первым известным SSD диском с интерфейсом SCSI можно считать M-Systems FFD-350, выпущенный в 1995 году. Диск имел высокую стоимость и не имел широкой распространенности.
В настоящее время параллельный SCSI не является популярным интерфейсом подключения дисков, но набор команд до сих пор активно используется в интерфейсах USB и SAS.
ATA / PATA
Интерфейс ATA (Advanced Technology Attachment), так же известный как PATA (Parallel ATA) был разработан компанией Western Digital в 1986 году. Маркетинговое название стандарта IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод») подчеркивало важное нововведение: контроллер привода был встроен в привод, а не на отдельной плате расширения.
Решение разместить контроллер внутри привода решило сразу несколько проблем. Во-первых, уменьшилось расстояние от накопителя до контроллера, что положительным образом повлияло на характеристики накопителя. Во-вторых, встроенный контроллер был «заточен» только под определенный тип привода и, соответственно, был дешевле.
ATA, как и SCSI, использует параллельный способ ввода-вывода, что отражается на используемых кабелях. Для подключения дисков с использованием интерфейса IDE необходимы 40-жильные кабели, также именуемые шлейфами. В более поздних спецификациях используются 80-жильные шлейфы: более половины из которых — заземления для уменьшения интерференции на высоких частотах.
На шлейфе ATA присутствует от двух до четырех разъемов, один из которых подключается в материнскую плату, а остальные — в накопители. При подключении двух устройств одним шлейфом, одно из них должно быть сконфигурировано как Master, а второе — как Slave. Третье устройство может быть подключено исключительно в режиме «только чтение».
Положение перемычки задает роль конкретного устройства. Термины Master и Slave по отношению к устройствам не совсем корректны, так как относительно контроллера все подключенные устройства — Slaves.
Особенным нововведением в ATA-3 считается появление Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). Пять компаний (IBM, Seagate, Quantum, Conner и Western Digital) объединили усилия и стандартизировали технологию оценки состояния накопителей.
Поддержка твердотельных накопителей появилась с четвертой версии стандарта, выпущенной в 1998 году. Эта версия стандарта обеспечивала скорость обмена данными до 33.3 МБ/с.
Стандарт выдвигает жесткие требования к шлейфам ATA:
Стандарт Serial ATA (SATA) был представлен 7 января 2003 года и решал проблемы своего предшественника следующими изменениями:
Шестнадцать сигнальных линий для передачи данных в ATA были заменены на две витые пары: одна для передачи, вторая для приема. Коннекторы SATA спроектированы для большей устойчивости к множественным переподключениям, а спецификация SATA 1.0 сделала возможным «горячее подключение» (Hot Plug).
Некоторые пины на дисках короче, чем все остальные. Это сделано для поддержки «горячей замены» (Hot Swap). В процессе замены устройство «теряет» и «находит» линии в заранее определенном порядке.
Чуть более, чем через год, в апреле 2004-го, вышла вторая версия спецификации SATA. Помимо ускорения до 3 Гбит/с в SATA 2.0 ввели технологию Native Command Queuing (NCQ). Устройства с поддержкой NCQ способны самостоятельно организовывать порядок выполнения поступивших команд для достижения максимальной производительности.
Последующие три года SATA Working Group работала над улучшением существующей спецификации и в версии 2.6 появились компактные коннекторы Slimline и micro SATA (uSATA). Эти коннекторы являются уменьшенной копией оригинального коннектора SATA и разработаны для оптических приводов и маленьких дисков в ноутбуках.
Несмотря на то, что пропускной способности второго поколения SATA хватало для жестких дисков, твердотельные накопители требовали большего. В мае 2009 года вышла третья версия спецификации SATA с увеличенной до 6 Гбит/с пропускной способностью.
Особое внимание твердотельным накопителям уделили в редакции SATA 3.1. Появился коннектор Mini-SATA (mSATA), предназначенный для подключения твердотельных накопителей в ноутбуках. В отличие от Slimline и uSATA новый коннектор был похож на PCIe Mini, хотя и не был электрически совместим с PCIe. Помимо нового коннектора SATA 3.1 мог похвастаться возможностью ставить команды TRIM в очередь с командами чтения и записи.
Команда TRIM уведомляет твердотельный накопитель о блоках данных, которые не несут полезной нагрузки. До SATA 3.1 выполнение этой команды приводило к сбросу кэшей и приостановке операций ввода-вывода с последующим выполнением команды TRIM. Такой подход ухудшал производительность диска при операциях удаления.
Спецификация SATA не успевала за бурным ростом скорости доступа к твердотельным накопителям, что привело к появлению в 2013 году компромисса под названием SATA Express в стандарте SATA 3.2. Вместо того, чтобы снова удвоить пропускную способность SATA, разработчики задействовали широко распространенную шину PCIe, чья скорость превышает 6 Гбит/с. Диски с поддержкой SATA Express приобрели собственный форм-фактор под названием M.2.
«Конкурирующий» с ATA стандарт SCSI тоже не стоял на месте и всего через год после появления Serial ATA, в 2004, переродился в последовательный интерфейс. Имя новому интерфейсу — Serial Attached SCSI (SAS).
Несмотря на то, что SAS унаследовал набор команд SCSI, изменения были значительные:
Максимальное количество одновременно подключенных устройств в SAS-домене по спецификации превышает 16 тысяч, а вместо SCSI ID для адресации используется идентификатор World-Wide Name (WWN).
WWN — уникальный идентификатор длиной 16 байт, аналог MAC-адреса для SAS-устройств.
Несмотря на схожесть разъемов SAS и SATA, эти стандарты не являются полностью совместимыми. Тем не менее, SATA-диск может быть подключен в SAS-коннектор, но не наоборот. Совместимость между SATA-дисками и SAS-доменом обеспечивается при помощи протокола SATA Tunneling Protocol (STP).
Первая версия стандарта SAS-1 имеет пропускную способность 3 Гбит/с, а самая современная, SAS-4, улучшила этот показатель в 7 раз: 22,5 Гбит/с.
Peripheral Component Interconnect Express (PCI Express, PCIe) — последовательный интерфейс для передачи данных, появившийся в 2002 году. Разработка была начата компанией Intel, а впоследствии передана специальной организации — PCI Special Interest Group.
Последовательный интерфейс PCIe не был исключением и стал логическим продолжением параллельного PCI, который предназначен для подключения карт расширения.
PCI Express значительно отличается от SATA и SAS. Интерфейс PCIe имеет переменное количество линий. Количество линий равно степеням двойки и колеблется в диапазоне от 1 до 16.
Термин «линия» в PCIe обозначает не конкретную сигнальную линию, а отдельный полнодуплексный канал связи, состоящий из следующих сигнальных линий:
«Аппетиты» твердотельных накопителей растут очень быстро. И SATA, и SAS не успевают увеличивать свою пропускную способность, чтобы «угнаться» за SSD, что привело к появлению SSD-дисков с подключением по PCIe.
Хотя PCIe Add-In карты прикручиваются винтом, PCIe поддерживает «горячую замену». Короткие пины PRSNT (англ. present — присутствовать) позволяют удостовериться, что карта полностью установлена в слот.
Твердотельные накопители, подключаемые по PCIe регламентируются отдельным стандартом Non-Volatile Memory Host Controller Interface Specification и воплощены в множестве форм-факторов, но о них мы расскажем в следующей части.
Удаленные накопители
При создании больших хранилищ данных появилась потребность в протоколах, позволяющих подключить накопители, расположенные вне сервера. Первым решением в этой области был Internet SCSI (iSCSI), разработанный компаниями IBM и Cisco в 1998 году.
Идея протокола iSCSI проста: команды SCSI «оборачиваются» в пакеты TCP/IP и передаются в сеть. Несмотря на удаленное подключение, для клиентов создается иллюзия, что накопитель подключен локально. Сеть хранения данных (Storage Area Network, SAN), основанная на iSCSI, может быть построена на существующей сетевой инфраструктуре. Использование iSCSI значительно снижает затраты на организацию SAN.
У iSCSI существует «премиальный» вариант — Fibre Channel Protocol (FCP). SAN с использованием FCP строится на выделенных волоконно-оптических линиях связи. Такой подход требует дополнительного оптического сетевого оборудования, но отличается стабильностью и высокой пропускной способностью.
Существует множество протоколов для отправки команд SCSI по компьютерным сетям. Тем не менее, есть только один стандарт, решающий противоположную задачу и позволяющий отправлять IP-пакеты по шине SCSI — IP-over-SCSI.
Большинство протоколов для организации SAN используют набор команд SCSI для управления накопителями, но есть и исключения, например, простой ATA over Ethernet (AoE). Протокол AoE отправляет ATA-команды в Ethernet-пакетах, но в системе накопители отображаются как SCSI.
С появлением накопителей NVM Express протоколы iSCSI и FCP перестали удовлетворять быстро растущим требованиям твердотельных накопителей. Появилось два решения:
Протокол NVMe over Fabrics стал хорошей альтернативой iSCSI и FCP. В NVMe-oF используются волоконно-оптическая линии связи и набор команд NVM Express.
Стандарты iSCSI и NVMe-oF решают задачу подключения удаленных дисков как локальные, а компания Intel пошла другой дорогой и максимально приблизила локальный диск к процессору. Выбор пал на DIMM-слоты, в которые подключается оперативная память. Максимальная пропускная способность канала DDR4 составляет 25 ГБ/с, что значительно превышает скорость шины PCIe. Так появился твердотельный накопитель Intel® Optane™ DC Persistent Memory.
Для подключения накопителя в DIMM слоты был изобретен протокол DDR-T, физически и электрически совместимый с DDR4, но требующий специального контроллера, который видит разницу между планкой памяти и накопителем. Скорость доступа к накопителю меньше, чем к оперативной памяти, но больше, чем к NVMe.
Протокол DDR-T доступен только с процессорами Intel® поколения Cascade Lake или новее.
Заключение
Почти все интерфейсы прошли долгий путь развития от последовательного до параллельного способа передачи данных. Скорости твердотельных накопителей стремительно растут, еще вчера твердотельные накопители были в диковинку, а сегодня NVMe уже не вызывает особого удивления.
В нашей лаборатории Selectel Lab вы можете самостоятельно протестировать SSD и NVMe диски.