что такое float в информатике
Тип float
Числа с плавающей запятой используют формат IEEE (Института инженеров по электротехнике и электронике). Значения с одиночной точностью и типом float имеют 4 байта, состоят из бита знака, 8-разрядной двоичной экспоненты excess-127 и 23-битной мантиссы. Мантисса представляет число от 1,0 до 2,0. Поскольку бит высокого порядка мантиссы всегда равен 1, он не сохраняется в числе. Это представление обеспечивает для типа float диапазон примерно от 3,4E–38 до 3,4E+38.
Можно объявить переменные в качестве типа float или double в зависимости от нужд приложения. Основные различия между двумя типами значения заключаются в представляемой ими значимости, требуемых ресурсах хранения и диапазоне. В следующей таблице показана связь между значимостью и требованиями к хранению.
Типы с плавающей запятой
Переменные с плавающей запятой представлены мантиссой, которая содержит значение числа, и экспонентой, которая содержит порядок возрастания числа.
В следующей таблице показано количество битов, выделенных мантиссе и экспоненте для каждого типа с плавающей запятой. Наиболее значимый бит любого типа float или double — всегда бит знака. Если он равен 1, число считается отрицательным; в противном случае — положительным.
Длина экспонент и мантисс
Type | Длина экспоненты | Длина мантиссы |
---|---|---|
float | 8 бит | 23 бита |
double | 11 бит | 52 бита |
Поскольку экспоненты хранятся в форме без знака, экспоненты смещены на половину своего возможного значения. Для типа float смещение составляет 127; для типа double это 1023. Можно вычислить фактическое значение экспоненты, вычтя значение смещения из значения экспоненты.
Мантисса хранится в виде бинарной доли, которая больше или равна 1 и меньше 2. Для типов float и double в мантиссе подразумевается наличие начального 1 в наиболее значимой битовой позиции, поэтому фактически длина мантисс составляет 24 и 53 бит соответственно, даже если наиболее значимый бит никогда не хранится в памяти.
Вместо только что описанного метода хранения пакет значений с плавающей запятой может хранить двоичные числа с плавающей запятой как денормализованные числа. Денормализованные числа — это ненулевые числа с плавающей запятой и зарезервированными значениями экспонент, в которых наиболее значимый бит мантиссы равен 0. Используя денормализованный формат, можно расширить диапазон числа с плавающей запятой в ущерб точности. Невозможно контролировать, в какой форме будет представлено число с плавающей запятой — нормализованной или денормализованной. Пакет значений с плавающей запятой определяет представление. В пакете значений с плавающей запятой никогда не используется денормализованная форма. Исключение составляют случаи, когда экспонента становится меньше, чем минимальное значение, которое может быть представлено в нормализованной форме.
В следующей таблице показаны минимальное и максимальное значения, которое можно сохранить в переменных каждого типа с плавающей запятой. Значения, указанные в этой таблице, применяются только к нормализованным числам с плавающей запятой; денормализованные числа с плавающей запятой имеют меньшее минимальное значение. Обратите внимание, что номера, сохраненные в регистрах 80 x 87, всегда представлены в 80-разрядной нормализованной форме; при сохранении в 32- или 64-разрядных переменных с плавающей запятой числа могут быть представлены только в ненормализованной форме (переменные типов float и long).
Диапазон типов с плавающей запятой
Type | Минимальное значение | Максимальное значение |
---|---|---|
плавающее | 1,175494351 E – 38 | 3,402823466 E + 38 |
double | 2,2250738585072014 E – 308 | 1,7976931348623158 E + 308 |
Если точность менее важна, чем размер хранимых данных, имеет смысл использовать тип float для переменных с плавающей запятой. И наоборот, если точность — наиболее важный критерий, используйте тип double.
Уровень переменных с плавающей запятой можно повысить до типа большей значимости (преобразование типа float в тип double). Повышение уровня часто происходит при выполнении арифметических действий с переменными плавающего типа. Это арифметическое действие всегда выполняется на том же уровне точности, что и переменная с наивысшим уровнем точности. Например, проанализируйте объявления следующих типов.
В следующем примере (с использованием объявлений из предыдущего примера) арифметическая операция выполняется на уровне точности переменной типа float (32-разрядной). Уровень результата затем повышается до уровня double.
4.8 – Числовые типы с плавающей точкой
Типы данных с плавающей запятой всегда идут со знаком (могут содержать положительные и отрицательные значения).
Категория | Тип | Минимальный размер | Типовой размер |
---|---|---|---|
С плавающей запятой | float | 4 байта | 4 байта |
double | 8 байт | 8 байт | |
long double | 8 байт | 8, 12 или 16 байт |
Ниже показан пример определения чисел с плавающей запятой:
При использовании литералов с плавающей точкой всегда включайте хотя бы один знак после десятичной точки (даже если этот знак равен 0). Это помогает компилятору понять, что число принадлежит типу плавающей точкой, а не к целочисленному типу.
Лучшая практика
Всегда проверяйте, соответствует ли тип ваших литералов типу переменных, которым они назначаются или используются для инициализации. В противном случае произойдет ненужное преобразование, возможно, с потерей точности.
Предупреждение
Убедитесь, что вы не используете целочисленные литералы там, где должны использоваться литералы с плавающей точкой. Это включает в себя инициализацию или присвоение значений объектам с плавающей точкой, выполнение арифметических операций с плавающей точкой и вызов функций, ожидающих значений с плавающей точкой.
Печать чисел с плавающей точкой
Теперь рассмотрим следующую простую программу:
Результаты работы этой, казалось бы, простой программы могут вас удивить:
В первом случае std::cout напечатал 5, хотя мы ввели 5.0. По умолчанию std::cout не будет печатать дробную часть числа, если она равна 0.
Во втором случае число печатается так, как мы и ожидали.
В третьем случае напечаталось число в экспоненциальном представлении (если вам нужно освежить в памяти экспоненциальное представление, смотрите урок «4.7 – Введение в экспоненциальную запись»).
Диапазоны значений типов с плавающей точкой
Предполагая, что используется представление IEEE 754:
80-битный тип с плавающей запятой – это своего рода историческая аномалия. На современных процессорах он обычно реализуется с использованием 12 или 16 байтов (что является более естественным размером для обработки процессорами).
Может показаться немного странным, что 80-битный тип с плавающей запятой имеет тот же диапазон значений, что и 16-байтовый тип с плавающей запятой. Это связано с тем, что у них одинаковое количество бит, выделенных для показателя степени, однако 16-байтовое число может хранить больше значащих цифр.
Точность с типов плавающей запятой
Рассмотрим дробь 1/3. Десятичное представление этого числа – 0,33333333333333… с тройками, уходящими в бесконечность. Если бы вы писали это число на листе бумаги, ваша рука в какой-то момент устала бы, и вы, в конце концов, прекратили бы писать. И число, которое у вас осталось, будет близко к 0,3333333333…. (где 3-ки уходят в бесконечность), но не совсем.
На компьютере число бесконечной длины потребует для хранения бесконечной памяти, но обычно у нас есть только 4 или 8 байтов. Эта ограниченная память означает, что числа с плавающей запятой могут хранить только определенное количество значащих цифр – и что любые дополнительные значащие цифры теряются. Фактически сохраненное число будет близко к необходимому, но не точно.
Точность числа с плавающей запятой определяет, сколько значащих цифр оно может представлять без потери информации.
При выводе чисел с плавающей точкой std::cout по умолчанию имеет точность 6, то есть предполагает, что все переменные с плавающей точкой имеют только до 6 значащих цифр (минимальная точность с плавающей точкой), и, следовательно, он будет отсекать всё, что идет дальше.
Следующая программа показывает усечение std::cout до 6 цифр:
Эта программа выводит:
Обратите внимание, что каждое из напечатанных значений имеет только 6 значащих цифр.
Число цифр точности переменной с плавающей запятой зависит как от размера (у float точность меньше, чем у double ), так и от конкретного сохраняемого значения (некоторые значения имеют большую точность, чем другие). Значения float имеют точность от 6 до 9 цифр, при этом большинство значений float имеют не менее 7 значащих цифр. Значения double имеют от 15 до 18 цифр точности, при этом большинство значений double имеют не менее 16 значащих цифр. Значения long double имеет минимальную точность 15, 18 или 33 значащих цифр в зависимости от того, сколько байтов этот тип занимает.
Проблемы с точностью влияют не только на дробные числа, они влияют на любое число со слишком большим количеством значащих цифр. Рассмотрим большое число:
Следовательно, нужно быть осторожным при использовании чисел с плавающей запятой, которые требуют большей точности, чем могут содержать переменные.
Лучшая практика
Ошибки округления затрудняют сравнение чисел с плавающей запятой
С числами с плавающей запятой сложно работать из-за неочевидных различий между двоичными (как хранятся данные) и десятичными (как мы думаем) числами. Рассмотрим дробь 1/10. В десятичном формате ее легко представить как 0,1, и мы привыкли думать о 0,1 как о легко представимом числе с 1 значащей цифрой. Однако в двоичном формате 0,1 представлен бесконечной последовательностью: 0,00011001100110011… Из-за этого, когда мы присваиваем 0,1 числу с плавающей точкой, мы сталкиваемся с проблемами точности.
Эффект от этого можно увидеть в следующей программе:
Эта программ выводит следующее:
Ошибки округления также могут иметь неожиданные последствия:
Хотя можно было ожидать, что d1 и d2 должны быть равны, мы видим, что это не так. Если бы мы сравнивали d1 и d2 в программе, программа, вероятно, не работала бы так, как ожидалось. Поскольку числа с плавающей запятой имеют тенденцию быть неточными, их сравнение обычно проблематично – мы обсудим эту тему (и решения) подробнее в уроке «5.6 – Операторы отношения и сравнение значений с плавающей запятой».
Последнее замечание об ошибках округления: математические операции (такие как сложение и умножение), как правило, приводят к увеличению ошибок округления. Таким образом, даже несмотря на то, что 0,1 имеет ошибку округления в 17-й значащей цифре, когда мы складываем 0,1 десять раз, ошибка округления добралась бы и до 16-й значащей цифры. Продолжение операций приведет к тому, что эта ошибка станет всё более значительной.
Ключевые выводы
Следствие этого правила: будьте осторожны с использованием чисел с плавающей запятой для финансовых или валютных данных.
NaN и Inf
Ниже приведена программа, показывающая все эти три категории чисел с плавающей точкой:
И результаты работы этой программы при использовании Visual Studio 2008 в Windows:
INF означает бесконечность, а IND означает неопределенность. Обратите внимание, что результаты печати Inf и NaN зависят от платформы, поэтому ваши результаты могут отличаться.
Лучшая практика
Вообще избегайте деления на 0, даже если ваш компилятор поддерживает это.
Заключение
Подводя итог, вы должны помнить две вещи о числах с плавающей запятой:
IEEE-представление с плавающей точкой
Значения хранятся в следующем виде:
Значение | Хранение |
---|---|
одиночная точность | разряд знака, 8 разрядов показателя степени, 23 разряда значащей части |
двойная точность | разряд знака, 11 разрядов показателя степени, 52 разряда значащей части |
В форматах с одиночной и двойной точностью в дробной части предполагается первый символ 1. Дробная часть называется значащей частью или мантиссой. Это начальное значение 1 не сохраняется в памяти, так что по сути значащая часть имеет длину 24 или 53 бита, из которых хранится на один бит меньше. В формате расширенной двойной точности этот разряд сохраняется в памяти.
Величина показателя степени смещена наполовину относительно возможного значения. Это значит, что для получения фактического значения экспоненты необходимо вычесть это смещение из хранящегося в памяти значения. Если сохраненное в памяти значение экспоненты меньше смещения, значит экспонента отрицательная.
Смещение показателя степени определяется следующим образом:
Показатель степени | Величина смещения |
---|---|
8 разрядов (одиночная точность) | 127 |
11 разрядов (двойная точность) | 1023 |
Эти экспоненты определяют показатели степени для двойки, а не для десятки. Таким образом, для 8-разрядного формата фактические показатели степени в диапазоне от –127 до 127 хранятся в памяти соответственно в виде значений в диапазоне от 0 до 254. Значение 2 127 примерно равно 10 38 и определяет фактический предел для чисел с одиночной точностью.
Значащая часть хранится в виде двоичной части в форме 1.XXX. Эта часть имеет значение больше 1 и меньше 2. Вещественные числа всегда хранятся в нормализованном представлении. В частности, значение значащей части всегда смещается влево, чтобы ее старший бит имел значение 1. Так как этот разряд всегда равен 1, для форматов одиночной и двойной точности его значение принимается по умолчанию и не хранится в памяти. Двоичная (не десятичная) точка располагается непосредственно справа от начальной 1.
Формат представления с плавающей запятой выглядит следующим образом:
Формат | байт 1 | байт 2 | байт 3 | байт 4 | . | байт n |
---|---|---|---|---|---|---|
одиночная точность | SXXXXXXX | XMMMMMMM | MMMMMMMM | MMMMMMMM | ||
двойная точность | SXXXXXXX | XXXXMMMM | MMMMMMMM | MMMMMMMM | . | MMMMMMMM |
S представляет разряд знака, X — это разряды смещенного показателя степени, а M — это значащие разряды. В форматах одиночной и двойной точности значение самого левого бита предполагается.
Чтобы правильно определить смещение двоичной точки, необходимо сначала выделить показатель степени, а затем сместить двоичную точку вправо или влево на соответствующее количество разрядов.
Специальные значения
Форматы с плавающей запятой предусматривают некоторые значения, которые обрабатываются особым образом.
Значение нуля невозможно представить в нормализованном виде, который используется для форматов одиночной и двойной точности. Таким образом, для определения значения 0 используется специальный шаблон, состоящий из нулей. При необходимости с помощью разряда знака можно представить значение –0, однако оно всегда будет сопоставляться как равное 0.
Бесконечность
Значения +∞ и −∞ представляются с экспонентой из одних единиц и мантиссой из одних нулей. Разряд знака определяет знак бесконечности.
Субнормальные числа
Числа, которые находятся ближе к нулю, чем наименьшее число в нормализованном преставлении, могут быть представлены. Такие числа называются субнормальными или денормализованными. Если показатель степени представлен одними нулевыми значениями, а значащая часть отлична от нуля, старший бит значащей части принимается равным нулю, а не единице. Точность субнормальных чисел снижается по мере увеличения количества начальных нулей в значащей части.
NaN (не число)
В формате IEEE с плавающей запятой могут быть представлены значения, не являющиеся действительными числами, например 0/0. Значения такого вида называются NaN (не число). Значение NaN представляется состоящим из единиц показателем степени и отличной от нуля значащей частью. Существует два вида значений NaN: несигнальные (QNaN) и сигнальные (SNaN). Для несигнальных значений NaN старший разряд значащей части равен единице, и эти значения распространяются через выражения. Они представляют неопределенные значения, например результат деления на бесконечность или умножения бесконечности на нуль. Для сигнальных значений NaN старший разряд значащей части равен нулю. Эти значения используются для недопустимых операций, указывая на аппаратное исключение, связанное с обработкой чисел с плавающей запятой.
Примеры
Ниже приводятся примеры чисел в формате одиночной точности:
Для значения 2 знаковый бит имеет значение 0. Сохраняется экспонента 128, то есть двоичное значение 1000 0000, вычисляемое как 127 плюс 1. Хранимая в памяти двоичная значащая часть равна (1.) 000 0000 0000 0000 0000 0000: здесь по умолчанию принимаются начальная 1 и двоичная точка, то есть фактически значащая часть равна единице.
Значение | Формула | Двоичное представление | Шестнадцатеричный |
---|---|---|---|
2 | 1 * 2 1 | 0100 0000 0000 0000 0000 0000 0000 0000 | 0x40000000 |
Значение –2. То же, что и + 2, однако в этом случае задан разряд знака. Таким же образом задаются отрицательные числа во всех форматах IEEE с плавающей запятой.
Значение | Формула | Двоичное представление | Шестнадцатеричный |
---|---|---|---|
-2 | –1 * 2 1 | 1100 0000 0000 0000 0000 0000 0000 0000 | 0xC0000000 |
Значение 4. Та же значащая часть, показатель степени увеличивается на единицу (смещенное значение 129 или 100 0000 1 в двоичном формате).
Значение | Формула | Двоичное представление | Шестнадцатеричный |
---|---|---|---|
4 | 1 * 2 2 | 0100 0000 1000 0000 0000 0000 0000 0000 | 0x40800000 |
Значение | Формула | Двоичное представление | Шестнадцатеричный |
---|---|---|---|
6 | 1.5 * 2 2 | 0100 0000 1100 0000 0000 0000 0000 0000 | 0x40C00000 |
Значение 1. Та же значащая часть, что и для остальных степеней двух; смещенный показатель степени на единицу меньше, чем у двух при 127, то есть 011 1111 1 в двоичном формате.
Значение | Формула | Двоичное представление | Шестнадцатеричный |
---|---|---|---|
1 | 1 * 2 0 | 0011 1111 1000 0000 0000 0000 0000 0000 | 0x3F800000 |
Значение 2,5. Так же, как и два, однако в значащей части задан разряд, который представляет 1/4.
Значение | Формула | Двоичное представление | Шестнадцатеричный |
---|---|---|---|
2.5 | 1.25 * 2 1 | 0100 0000 0010 0000 0000 0000 0000 0000 | 0x40200000 |
1/10 — это повторяющаяся часть в двоичном формате. Значащая часть здесь немного меньше 1,6, а экспонента с учетом смещения указывает, что 1,6 нужно разделить на 16. (Это значение 011 1101 1 в двоичной записи или 123 в десятичной.) Фактический показатель степени 123 – 127 = –4. Это значит, что выполняется умножение на 2 –4 = 1/16. Хранимая в памяти значащая часть округляется до последнего разряда, чтобы представить выходящие за пределы числа с максимально возможной точностью. (Величины 1/10 и 1/100 нельзя точно представить в двоичном формате по той же причине, по которой 1/3 нельзя представить в десятичном.)
Нуль рассматривается как особый случай. Для него используется формула минимального положительного числа, которое может быть представлено, то есть представление из одних нулей.
Что нужно знать про арифметику с плавающей запятой
В далекие времена, для IT-индустрии это 70-е годы прошлого века, ученые-математики (так раньше назывались программисты) сражались как Дон-Кихоты в неравном бою с компьютерами, которые тогда были размером с маленькие ветряные мельницы. Задачи ставились серьезные: поиск вражеских подлодок в океане по снимкам с орбиты, расчет баллистики ракет дальнего действия, и прочее. Для их решения компьютер должен оперировать действительными числами, которых, как известно, континуум, тогда как память конечна. Поэтому приходится отображать этот континуум на конечное множество нулей и единиц. В поисках компромисса между скоростью, размером и точностью представления ученые предложили числа с плавающей запятой (или плавающей точкой, если по-буржуйски).
Арифметика с плавающей запятой почему-то считается экзотической областью компьютерных наук, учитывая, что соответствующие типы данных присутствуют в каждом языке программирования. Я сам, если честно, никогда не придавал особого значения компьютерной арифметике, пока решая одну и ту же задачу на CPU и GPU получил разный результат. Оказалось, что в потайных углах этой области скрываются очень любопытные и странные явления: некоммутативность и неассоциативность арифметических операций, ноль со знаком, разность неравных чисел дает ноль, и прочее. Корни этого айсберга уходят глубоко в математику, а я под катом постараюсь обрисовать лишь то, что лежит на поверхности.
1. Основы
Множество целых чисел бесконечно, но мы всегда можем подобрать такое число бит, чтобы представить любое целое число, возникающее при решении конкретной задачи. Множество действительных чисел не только бесконечно, но еще и непрерывно, поэтому, сколько бы мы не взяли бит, мы неизбежно столкнемся с числами, которые не имеют точного представления. Числа с плавающей запятой — один из возможных способов предсталения действительных чисел, который является компромиссом между точностью и диапазоном принимаемых значений.
Число с плавающей запятой состоит из набора отдельных разрядов, условно разделенных на знак, экспоненту порядок и мантиссу. Порядок и мантисса — целые числа, которые вместе со знаком дают представление числа с плавающей запятой в следующем виде:
Математически это записывается так:
Основание определяет систему счисления разрядов. Математически доказано, что числа с плавающей запятой с базой B=2 (двоичное представление) наиболее устойчивы к ошибкам округления, поэтому на практике встречаются только базы 2 и, реже, 10. Для дальнейшего изложения будем всегда полагать B=2, и формула числа с плавающей запятой будет иметь вид:
Что такое мантисса и порядок? Мантисса – это целое число фиксированной длины, которое представляет старшие разряды действительного числа. Допустим наша мантисса состоит из трех бит (|M|=3). Возьмем, например, число «5», которое в двоичной системе будет равно 1012. Старший бит соответствует 2 2 =4, средний (который у нас равен нулю) 2 1 =2, а младший 2 0 =1. Порядок – это степень базы (двойки) старшего разряда. В нашем случае E=2. Такие числа удобно записывать в так называемом «научном» стандартном виде, например «1.01e+2». Сразу видно, что мантисса состоит из трех знаков, а порядок равен двум.
Допустим мы хотим получить дробное число, используя те же 3 бита мантиссы. Мы можем это сделать, если возьмем, скажем, E=1. Тогда наше число будет равно
2 = 10 (в двоичной системе) = 1.000e+1 = 0.100e+2 = 0.010e+3. (E=1, E=2, E=3 соответственно)
Обратите внимание, что одно и то же число имеет несколько представлений. Это не удобно для оборудования, т.к. нужно учитывать множественность представлния при сравнении чисел и при выполнении над ними арифметических операций. Кроме того, это не экономично, поскольку число представлений — конечное, а повторения уменьшают множество чисел, которые вообще могут быть представлены. Поэтому уже в самых первых машинах начали использовать трюк, делая первый бит мантиссы всегда положительным. Такое предаставление назвали нормализованным.
Это экономит один бит, так как неявную единицу не нужно хранить в памяти, и обеспечивает уникальность представления числа. В нашем примере «2» имеет единственное нормализованное представление («1.000e+1»), а мантисса хранится в памяти как «000», т.к. старшая единица подразумевается неявно. Но в нормализованном представлении чисел возникает новая проблема — в такой форме невозможно представить ноль.
Строго говоря, нормализованное число имеет следующий вид:
Качество решения задач во многом зависит от выбора представления чисел с плавающей запятой. Мы плавно подошли к проблеме стандартизации такого представления.
2. Немного истории
В 60-е и 70-е годы не было единого стандарта представления чисел с плавающей запятой, способов округления, арифметических операций. В результате программы были крайне не портабельны. Но еще большей проблемой было то, что у разных компьютеров были свои «странности» и их нужно было знать и учитывать в программе. Например, разница двух не равных чисел возвращала ноль. В результате выражения «X=Y» и «X-Y=0» вступали в противоречие. Умельцы обходили эту проблему очень хитрыми трюками, например, делали присваивание «X=(X-X)+X» перед операциями умножения и деления, чтобы избежать проблем.
Инициатива создать единый стандарт для представления чисел с плавающей запятой подозрительно совпала с попытками в 1976 году компанией Intel разработать «лучшую» арифметику для новых сопроцессоров к 8086 и i432. За разработку взялись ученые киты в этой области, проф. Джон Палмер и Уильям Кэхэн. Последний в своем интервью высказал мнение, что серьезность, с которой Intel разрабатывала свою арифметику, заставила другие компании объединиться и начать процесс стандартизации.
Все были настроены серьезно, ведь очень выгодно продвинуть свою архитектуру и сделать ее стандартной. Свои предложения представили компании DEC, National Superconductor, Zilog, Motorola. Производители мейнфреймов Cray и IBM наблюдали со стороны. Компания Intel, разумеется, тоже представила свою новую арифметику. Авторами предложенной спецификации стали Уильям Кэхэн, Джероми Кунен и Гарольд Стоун и их предложение сразу прозвали «K-C-S».
Практически сразу же были отброшены все предложения, кроме двух: VAX от DEC и «K-C-S» от Intel. Спецификация VAX была значительно проще, уже была реализована в компьютерах PDP-11, и было понятно, как на ней получить максимальную производительность. С другой стороны в «K-C-S» содержалось много полезной функциональности, такой как «специальные» и «денормализованные» числа (подробности ниже).
В «K-C-S» все арифметические алгоритмы заданы строго и требуется, чтобы в реализации результат с ними совпадал. Это позволяет выводить строгие выкладки в рамках этой спецификации. Если раньше математик решал задачу численными методами и доказывал свойства решения, не было никакой гарантии, что эти свойства сохранятся в программе. Строгость арифметики «K-C-S» сделала возможным доказательство теорем, опираясь на арифметику с плавающей запятой.
Компания DEC сделала все, чтобы ее спецификацию сделали стандартом. Она даже заручилась поддержкой некоторых авторитетных ученых в том, что арифметика «K-C-S» в принципе не может достигнуть такой же производительности, как у DEC. Ирония в том, что Intel знала, как сделать свою спецификацию такой же производительной, но эти хитрости были коммерческой тайной. Если бы Intel не уступила и не открыла часть секретов, она бы не смогла сдержать натиск DEC.
Подробнее о баталиях при стандартизации смотрите в интервью профессора Кэхэна, а мы рассмотрим, как выглядит представление чисел с плавающей запятой сейчас.
3. Представление чисел с плавающей запятой сегодня
Разработчики «K-C-S» победили и теперь их детище воплотилось в стандарт IEEE754. Числа с плавающей запятой в нем представлены в виде знака (s), мантиссы (M) и порядка (E) следующим образом:
Замечание. В новом стандарте IEE754-2008 кроме чисел с основанием 2 присутствуют числа с основанием 10, так называемые десятичные (decimal) числа с плавающей запятой.
Чтобы не загромождать читателя чрезмерной информацией, которую можно найти в Википедии, рассмотрим только один тип данных, с одинарной точностью (float). Числа с половинной, двойной и расширенной точностью обладают теми же особенностями, но имеют другой диапазон порядка и мантиссы. В числах одинарной точности (float/single) порядок состоит из 8 бит, а мантисса – из 23. Эффективный порядок определяется как E-127. Например, число 0,15625 будет записано в памяти как
Рисунок взят из Википедии
3.1 Специальные числа: ноль, бесконечность и неопределенность
Неопределенность или NaN (от not a number) – это представление, придуманное для того, чтобы арифметическая операция могла всегда вернуть какое-то не бессмысленное значение. В IEEE754 NaN представлен как число, в котором E=Emax+1, а мантисса не нулевая. Любая операция с NaN возвращает NaN. При желании в мантиссу можно записывать информацию, которую программа сможет интерпретировать. Стандартом это не оговорено и мантисса чаще всего игнорируется.
Вернемся к примеру. Наш Emin=-1. Введем новое значение порядка, E=-2, при котором числа являются денормализованными. В результате получаем новое представление чисел:
Интервал от 0 до 0,5 заполняют денормализованные числа, что дает возможность не проваливаться в 0 рассмотренных выше примерах (0,5-0,25 и 1,5-1,25). Это сделало представление более устойчиво к ошибкам округления для чисел, близких к нулю.
Но роскошь использования денормализованного представления чисел в процессоре не дается бесплатно. Из-за того, что такие числа нужно обрабатывать по-другому во всех арифметических операциях, трудно сделать работу в такой арифметике эффективной. Это накладывает дополнительные сложности при реализации АЛУ в процессоре. И хоть денормализованные числа очень полезны, они не являются панацеей и за округлением до нуля все равно нужно следить. Поэтому эта функциональность стала камнем преткновения при разработке стандарта и встретила самое сильное сопротивление.
3.4 Очередность чисел в IEEE754
Одна из удивительных особенностей представления чисел в формате IEEE754 состоит в том, что порядок и мантисса расположены друг за другом таким образом, что вместе образуют последовательность целых чисел
4.2 Неассоциативность арифметических операций
В арифметике с плавающей запятой правило (a*b)*c = a*(b*c) не выполняется для любых арифметических операций. Например,
Допустим у нас есть программа суммирования чисел.
Некоторые компиляторы по умолчанию могут переписать код для использования нескольких АЛУ одновременно (будем считать, что n делится на 2):
Так как операции суммирования не ассоциативны, эти две программы могут выдать различный результат.
4.3 Числовые константы
Помните, что не все десятичные числа имеют двоичное представление с плавающей запятой. Например, число «0,2» будет представлено как «0,200000003» в одинарной точности. Соответственно, «0,2 + 0,2 ≈ 0,4». Абсолютная погрешность в отдельном
случае может и не высока, но если использовать такую константу в цикле, можем получить накопленную погрешность.
4.4 Выбор минимума из двух значений
4.5 Сравнение чисел
Очень распространенная ошибка при работе с float-ами возникает при проверке на равенство. Например,
Ошибка здесь, во-первых, в том, что 0,2 не имеет точного двоичного представления, а во-вторых 0,2 – это константа двойной точности, а переменная fValue – одинарной, и никакой гарантии о поведении этого сравнения нет.
Лучший, но все равно ошибочный способ, это сравнивать разницу с допустимой абсолютной погрешностью:
Недостаток такого подхода в том, что погрешность представления числа увеличивается с ростом самого этого числа. Так, если программа ожидает «10000», то приведенное равенство не будет выполняться для ближайшего соседнего числа (10000,000977). Это особенно актуально, если в программе имеется преобразование из одинарной точности в двойную.
Выбрать правильную процедуру сравнения сложно и заинтересованных читателей я отсылаю к статье Брюса Доусона. В ней предлагается сравнивать числа с плавающей запятой преобразованием к целочисленной переменной. Это — лучший, хотя и не портабельный способ:
5. Проверка полноты поддержки IEE754
Думаете, что если процессоры полностью соответствуют стандарту IEEE754, то любая программа, использующая стандартные типы данных (такие как float/double в Си), будет выдавать один и тот же результат на разных компьютерах? Ошибаетесь. На портабельность и соответствие стандарту влияет компилятор и опции оптимизации. Уильям Кэхэн написал программу на Си (есть версия и для Фортрана), которая позволяет проверить удовлетворяет ли связка «архитектура+компилятор+опции» IEEE754. Называется она «Floating point paranoia» и ее исходные тексты доступны для скачивания. Аналогичная программа доступна для GPU. Так, например, компилятор Intel (icc) по умолчанию использует «расслабленную» модель IEEE754, и в результате не все тесты выполняются. Опция «-fp-model precise» позволяет компилировать программу с точным соответствием стандарту. В компиляторе GCC есть опция «-ffast-math», использование которой приводит к несоответствию IEEE754.
Заключение
Напоследок поучительная история. Когда я работал над тестовым проектом на GPU, у меня была последовательная и параллельная версия одной программы. Сравнив время выполнения, я был очень обрадован, так как получил ускорение в 300 раз. Но позже оказалось, что вычисления на GPU «разваливались» и обращались в NaN, а работа с ними в GPU была быстрее, чем с обычными числами. Интересно было другое — одна и та же программа на эмуляторе GPU (на CPU) выдавала корректный результат, а на самом GPU – нет. Позже оказалось, что проблема была в том, что этот GPU не поддерживал полностью стандарт IEEE754 и прямой подход не сработал.
Сейчас арифметика с плавающей запятой почти совершенна. Практически всегда наивный подход сработает, и программа, не учитывающая все ее особенности, выдаст правильный результат, а описанные подводные камни касаются только экзотических случаев. Но нужно всегда оставаться бдительным: в таком вопросе как компьютерная математика легко наступить на грабли.