что такое gcd в питоне

Функции теории чисел модуля math в Python.

Функции относящиеся к теории чисел.

Содержание:

math.factorial(x) :

Данная функция всегда возвращает число типа int и поддерживает длинную арифметику, т.е. величина обрабатываемого числа x и возвращаемого результата ограничивается только возможностями компьютера.

Изменено в Python 3.9. Не рекомендуется передавать числа с плавающей запятой с целыми значениями (например, 5.0).

math.gcd(*integers) :

Изменено в Python 3.9: Добавлена ​​поддержка произвольного количества аргументов. Раньше поддерживалось только два аргумента.

math.frexp(x) :

Данная функция используется тогда, когда представление чисел типа float не должно зависеть от архитектуры машины.

math.ldexp(x, i) :

math.fabs(x) :

Данная функция в отличии от встроенной функции abs() не обрабатывает комплексные числа.

math.fmod(x) :

math.modf(x) :

math.fsum(iterable) :

Может показаться, что эта сумма будет точной всегда, но на самом деле это не так:

math.copysign(x, y) :

math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) :

Функция math.isclose() возвращает True если в пределах указанной точности, числа a и b близки настолько, что их можно считать равными.

Аргумент abs_tol это минимальный абсолютный допуск. полезен для сравнений, близких к нулю. Значение abs_tol должно быть не меньше нуля.

Источник

Как найти НОД двух чисел в Python – 4 способа

НОД – это математический термин, обозначающий наибольший общий делитель, который может идеально разделить два числа. НОД также известен как наибольший общий фактор(HCF).

Например, HCF / GCD двух чисел 54 и 24 равен 6. Поскольку 6 – это наибольший общий делитель, который полностью делит 54 и 24.

Разберемся как найти НОД двух чисел в Python. что такое gcd в питоне. Смотреть фото что такое gcd в питоне. Смотреть картинку что такое gcd в питоне. Картинка про что такое gcd в питоне. Фото что такое gcd в питоне

НОД с использованием функции gcd()

gcd() в python – это встроенная функция, предлагаемая математическим модулем для поиска наибольшего общего делителя двух чисел.

Где a и b – два целых числа, которые передаются в качестве аргумента функции gcd().

Давайте создадим программу для печати НОД двух чисел, используя встроенную функцию math.gcd() в python.

что такое gcd в питоне. Смотреть фото что такое gcd в питоне. Смотреть картинку что такое gcd в питоне. Картинка про что такое gcd в питоне. Фото что такое gcd в питоне

В приведенном выше примере функция math.gcd() генерирует НОД двух заданных чисел. В функции gcd() a и b передаются в качестве аргумента, который возвращает наибольший общий делитель двух целых чисел, полностью разделяя числа.

НОД с использованием рекурсии

Рекурсия – это функция, потребляющая память, определенная в Python, которая вызывает себя через самореферентное выражение. Это означает, что функция будет постоянно вызывать и повторять себя до тех пор, пока не будет выполнено определенное условие для возврата наибольшего общего делителя числа.

Псевдокод алгоритма

Шаг 1: Возьмите два входа, x и y, от пользователя.

Шаг 2: Передайте входной номер в качестве аргумента рекурсивной функции.

Шаг 3: Если второе число равно нулю(0), возвращается первое число.

Шаг 4: В противном случае он рекурсивно вызывает функцию со вторым числом в качестве аргумента, пока не получит остаток, который делит второе число на первое число.

Шаг 5: Вызовите или назначьте gcd_fun() переменной.

Шаг 6: Отобразите НОД двух чисел.

Шаг 7: Выйдите из программы.

Разберемся с программой для нахождения НОД двух чисел с помощью рекурсии.

что такое gcd в питоне. Смотреть фото что такое gcd в питоне. Смотреть картинку что такое gcd в питоне. Картинка про что такое gcd в питоне. Фото что такое gcd в питоне

Нахождение НОД с помощью цикла

Давайте создадим программу для нахождения НОД двух чисел в Python с помощью циклов.

что такое gcd в питоне. Смотреть фото что такое gcd в питоне. Смотреть картинку что такое gcd в питоне. Картинка про что такое gcd в питоне. Фото что такое gcd в питоне

Как мы видим в приведенной выше программе, мы берем два значения в качестве входных и передаем эти числа в функцию GCD_Loop(), чтобы вернуть GCD.

Алгоритм Евклида

Алгоритм Евклида – эффективный метод нахождения наибольшего общего делителя двух чисел. Это самый старый алгоритм, который делит большее число на меньшее и берет остаток. Опять же, он делит меньшее число от остатка, и этот алгоритм непрерывно делит число, пока остаток не станет 0.

Например, предположим, что мы хотим вычислить HCF двух чисел, 60 и 48. Затем мы делим 60 на 48; он возвращает остаток 12. Теперь мы снова делим число 24 на 12, а затем он возвращает остаток 0. Таким образом, мы получаем HCF равным 12.

Псевдокод алгоритма Евклида

Шаг 1: Есть два целых числа, например a и b.

Шаг 2: Если a = 0, то НОД(a, b) равен b.

Шаг 3: Если b = 0, НОД(a, b) равен a.

Шаг 5: Предположим, что a = b и b = R.

Шаг 6: Повторяйте шаги 4 и 3, пока mod b не станет равным или большим 0.

Шаг 7: GCD = b и затем распечатайте результат.

Шаг 8: Остановите программу.

Найдем HCF или GCD двух чисел, используя алгоритм Евклида в python.

Источник

Модуль math предоставляет доступ к математическим функциям и константам. Несмотря на то что числа комплексного типа (complex) являются встроенными, данный модуль их не поддерживает и всегда вызывает исключение при их использовании. Для того что бы использовать математические функции с комплексными числами обратитесь к модулю cmath.

Теория чисел

Данная функция всегда возвращает число типа int и поддерживает длинную арифметику, т.е. величина обрабатываемого числа x и возвращаемого результата ограничивается только мощностью вашего компьютера.

Если x не является целым числом (int) или если x является отрицательным, то будет вызвано исключение ValueError.

Если оба числа отличны от нуля, то будет возвращено число, которое всегда делит оба эти числа:

В случае если числа a и b являются взаимно простыми, то будет возвращена \(1\):

Если одно из чисел равно нулю, то будет возвращено, другое, отличное от \(0\) число:

Если оба числа равны \(0\), то функция вернет \(0\):

Указанные числа должны быть целыми (тип int), но могут быть как положительными, так и отрицательными:

Доступно в Python с версии 3.5.

Чаще всего данная функция используется тогда, когда представление чисел типа float не должно зависеть от архитектуры используемой машины.

Данная функция в отличии от встроенной функции abs() не обрабатывает комплексные числа:

Может показаться, что эта сумма будет точной всегда, но на самом деле это не так:

Многое зависит от используемой платформы, точнее от сборки компилятора языка C, который используется на данной платформе. Если вам нужны точные арифметические операции с десятичными дробями, то воспользуйтесь модулем decimal.

Если используемой платформой поддерживаются нули со знаком, то знак второго аргумента так же будет копироваться:

Допустим у нас есть два числа и мы знаем, что по сути это одно и то же число, а все мизерные различия связаны с ошибками округления и двоичной арифметикой. Мы то понимаем что это как бы одно и то же число, а вот компьютер считает иначе:

Для таких ситуаций, в которых мы готовы считаться с некоторой погрешностью и подходит функция isclose() :

Параметр abs_tol (absolute tolerances) – это минимальный абсолютный допуск, который определяет как сравнивать значения близкие к нулю. Данный параметр должен быть не меньше нуля:

Округление чисел

Степени, логарифмирование, экспоненцирование

В ситуациях pow(x, 0.0) или pow(0.0, x) данная функция всегда возвращает \(1\) даже если x равен NaN, Inf или -Inf. Однако, если x и y являются конечными числами, причем x отрицательное, а y не целое, то будет вызвано исключение ValueError:

По сути, команда log(x, base) равносильна команде log(x)/log(base) :

Тригонометрические функции

Преобразование меры углов

Гиперболические функции

Константы и специальные значения

Доступно в Python начиная с версии 3.5.

Доступно в Python начиная с версии 3.5.

Специальные функции

Доступно в Python начиная с версии 3.2.

Доступно в Python начиная с версии 3.2.

Данная функция обобщает понятие факториала, на действительные числа (и на комплексные, но в данном случае используются только действительные числа). Если \(x = 0\) то это вызовет исключение ValueError.

Источник

Модуль Math в Python

P ython библиотека math содержит наиболее применяемые математические функции и константы. Все вычисления происходят на множестве вещественных чисел.

Синтаксис и подключение

Чтобы подключить модуль, необходимо в начале программы прописать следующую инструкцию:

Теперь с помощью точечной нотации можно обращаться к константам и вызывать функции этой библиотеки. Например, так:

Константы модуля Math

math.pi Представление математической константы π = 3.141592…. «Пи» — это отношение длины окружности к её диаметру.

math.tau Число τ — это отношение длины окружности к её радиусу. Т.е

math.inf Положительная бесконечность.

math.nan NaN означает — «не число».

Список функций

Теоретико-числовые функции и функции представления

math.ceil() Функция округляет аргумент до большего целого числа.

Решим задачу : На столе лежат шесть рубинов. Сколько существует способов выбрать два из них?

💭 Можете подставить числа в формулу, и самостоятельно проверить правильность решения.

math.copysign() Функция принимает два аргумента. Возвращает первый аргумент, но со знаком второго.

print(math.copysign(-6, 2)) > 6.0

math.fabs() Функция возвращает абсолютное значение аргумента:

math.factorial() Вычисление факториала. Входящее значение должно быть целочисленным и неотрицательным.

print(math.fmod(75, 4)) > 3.0

math.frexp(num) Возвращает кортеж из мантиссы и экспоненты аргумента. Формула:

, где M — мантисса, E — экспонента.

print(math.frexp(10)) > (0.625, 4) # проверим print(pow(2, 4) * 0.625) > 10.0

math.fsum() Вычисляет сумму элементов итерируемого объекта. Например, вот так она работает для списка:

summable_list = [1, 2, 3, 4, 5] print(math.fsum(summable_list)) > 15.0

a = 5 b = 15 print(math.gcd(a, b)) > 5

norm = 3 inf = float(‘inf’) print(math.isfinite(norm)) > True print(math.isfinite(inf)) > False

not_inf = 42 inf = math.inf print(math.isinf(not_inf)) > False print(math.isinf(inf)) > True

not_nan = 0 nan = math.nan print(math.isnan(not_nan)) > False print(math.isnan(nan)) > True

math.isqrt() Возвращает целочисленный квадратный корень аргумента, округлённый вниз.

math.ldexp(x, i) Функция возвращает значение по формуле:

возвращаемое значение = x * (2 ** i) print(math.ldexp(3, 2)) > 12.0

math.modf() Результат работы modf() — это кортеж из двух значений:

Задача : Посчитать количество вариантов распределения трёх билетов на концерт Стаса Михайлова для пяти фанатов.

print(math.perm(5, 3)) > 60

Целых 60 способов! Главное — не запутаться в них, и не пропустить концерт любимого исполнителя!

math.prod() Принимает итерируемый объект. Возвращает произведение элементов.

multiple_list = [2, 3, 4] print(math.prod(multiple_list)) > 24

math.remainder(m, n) Возвращает результат по формуле:

Результат = m – x * n,

где x — ближайшее целое к выражению m/n число.

math.trunc() trunc() вернёт вам целую часть переданного в неё аргумента.

Степенные и логарифмические функции

1 аргумент: вернёт значение натурального логарифма (основание e ):

2 аргумента: вернёт значение логарифма по основанию, заданному во втором аргументе:

print(math.log(16, 4)) > 2.0

math.log1p() Это натуральный логарифм от аргумента (1 + x) :

print(math.log(5) == math.log1p(4)) > True

math.pow(a, b) Функция выполняет возведение числа a в степень b и возвращает затем вещественный результат.

что такое gcd в питоне. Смотреть фото что такое gcd в питоне. Смотреть картинку что такое gcd в питоне. Картинка про что такое gcd в питоне. Фото что такое gcd в питоне

math.sqrt() Возврат квадратного корня из аргумента

что такое gcd в питоне. Смотреть фото что такое gcd в питоне. Смотреть картинку что такое gcd в питоне. Картинка про что такое gcd в питоне. Фото что такое gcd в питоне

Тригонометрические функции

math.acos() Функция возвращает арккосинус в радианах:

math.asin() Возврат арксинуса (угол в радианах):

# π/2 print(math.asin(1)) > 1.5707963267948966

# π/4 print(math.atan(1)) > 0.7853981633974483

math.cos() Косинус угла, который следует указывать в радианах:

print(math.hypot(3, 4)) > 5.0

math.sin() Функция вернёт синус угла. Угол следует задавать в радианах:

math.tan() Тангенс угла. Аргумент указываем в радианах.

Угловые преобразования

math.degrees() Функция переводит радианное значение угла в градусы.

math.radians() Наоборот: из градусов — в радианы.

# функция отрабатывает прямо, как по табличке синусов =) print(math.radians(30)) > 0.5235987755982988 print(math.pi / 6) > 0.5235987755982988

Гиперболические функции

Гиперболические функции являются аналогами тригонометрических и тесно с ними связаны. Но тригонометрические функции основаны на окружностях, а гиперболические, соответственно, на гиперболах.

Для Python все они принимают один аргумент — точку, в которой вычисляется значение функции.

Источник

Алгоритм Евклида — реализация на Python

Алгоритм Евклида — это алгоритм, который используется для нахождения наибольшего делителя двух целых чисел. Он часто используется как в обучающих целях, так и в прикладных задачах.

Существует несколько видов алгоритма: обычный, расширенный и бинарный. Все виды алгоритма Евклида легко реализуются на языке программирования Python.

Классический алгоритм Евклида

Этот вид алгоритма Евклида является самым простым, он был придуман более 1300 лет назад. С появлением электронно-вычислительных машин расширились возможности по применению алгоритма Евклида, возникли новые более эффективные его реализации.

Алгоритм состоит из определенного количества шагов, количество которых зависит от размера входных данных.

Реализация на Python

Существует несколько реализаций классического алгоритма Евклида, которые основаны на использовании различных операторов и возможностей языка Python (остаток от деления, вычитание, рекурсия). Эти реализации отличаются незначительно, сильные различия в эффективности наблюдаются только при специфических входных данных.

Реализация с помощью остатка от деления

Код алгоритма Евклида на Python:

В каждой новой итерации большее число становится меньшим и наоборот. Возьмём числа 168 и 105 и распишем работу программы вручную:

После 4 итерации алгоритм завершает свою работу, так как одно из чисел равно нулю, второе же число равно наибольшему общему делителю, в нашем случае это 21. Проверим работу программы:

Реализация с помощью вычитания

Идея этой реализации схожа с предыдущей, однако здесь числа уменьшаются до нуля и делителя с помощью вычитания.

Код вычисления НОД на Python:

Также распишем работу программы с числами 168 и 105:

Видно, что до 4 итерации результаты работы обоих версий алгоритма полностью совпадают. Отличия начинаются, когда в 4 итерации вместо 0 и 21, получается числа 21 и 21, из-за чего в алгоритме с вычитанием добавляется дополнительная итерация, но это не значит, что он работает менее эффективнее.

Проверка работы программы:

Реализация с помощью рекурсии

Суть алгоритма схожа с реализацией через остаток от деления, однако вместо цикла while используется рекурсия.

Код программы на Python нахождения НОД с помощью рекурсии:

Особенности алгоритма: простые числа

Если два переданных числа не имеют общих делителей, то алгоритм возвращает единицу. Действительно, ведь каждое число делится на единицу. Например, числа 35 и 18 не имеют общих делителей:

Алгоритм будет возвращать единицу, если оба переданных числа являются простыми и не равны друг другу. Простые числа делятся только на себя и на единицу.

Если алгоритм получает на вход одно простое число, это не значит, что он обязательно вернет единицу:

Расширенный алгоритма Евклида

Расширенным алгоритм называется не из-за более высокой скорости работы или более сложной реализации, а потому что он позволяет извлекать из входных данных дополнительную информацию.

Расширенный алгоритм также находит наибольший общий делитель, а ещё он определяет два коэффициента x и y, такие что:

ax + by = gcd(a,b), где gcd – это функция по нахождения НОД.

Иными словами, алгоритм находит наибольший делитель и его линейное представление.

gcd – это аббревиатура, которую часто используют для обозначения функции по назначению НОД:

Реализация на Python

Код программы выглядит так:

Проверяем работу кода:

Подставим полученные коэффициенты в формулу, тогда:

Действительно, коэффициенты и делитель найдены правильно. Но как работает алгоритм?

Сначала проверяется, равно ли первое число нулю, если это так, то второе число является делителем, а коэффициенты равны 0 и 1, так как «num1 * x + num2 * y = y» в том случае, если y = 1, а левое произведение равно нулю.

Функция возвращает три числа: делитель, коэффициент x и коэффициент y. Для её реализации используется рекурсия, делитель получается тем же образом, что и в классическом рекурсивным алгоритме, а коэффициенты рекурсивно вычисляются по формулам:

Бинарный алгоритм Евклида

Суть бинарного алгоритма точно такая же — найти наибольший делитель. От классического он отличается только способом реализации.

Сложность алгоритма по прежнему определяется функций O(h 2 ), однако реальные тесты показывают, что бинарный алгоритм эффективнее классического на 60%, это обусловлено различиями в реализациях обычных арифметических операций и сдвигов.

Реализация на Python

Бинарный алгоритм имеет довольно сложную реализацию по сравнению со всеми предыдущими, однако это окупается его эффективностью.

Код на Python:

Результат выполнения не будет отличаться от результатов, полученных другими реализациями.

Тест скорости выполнения

Для выполнения теста воспользуемся функцией monotonic модуля time. Подробнее про неё и про то, как засечь время выполнения программы описано здесь.

Мы будем делать проверку, используя функцию выше описанного бинарного алгоритма Евклида и описанную в самом начале функцию классического.

Код проверки следующий:

Результат теста выглядит следующим образом:

Из результатов видно, что реализация классического алгоритма на Python быстрее, чем бинарного. Так что лучше на Python использовать классический алгоритм Евклида, а если программировать на C++ и важна скорость выполнения, то тогда использовать бинарный.

Заключение

Алгоритм Евклида позволяет эффективно находить общие делители чисел. За много лет его существования было придумано несколько различных видов, которые могут отличаться по способу реализации и эффективности.

Любой вид алгоритма Евклида можно реализовать на языке Python без использования сторонних библиотек.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *