что такое hive и impala
Impala vs Hive vs Spark SQL: Выбор правильного SQL движка для правильной работы в Cloudera Data Warehouse
Нам всегда не хватает данных. И мы не просто хотим больше данных… мы хотим новые типы данных, которые позволят нам лучше понимать свою продукцию, клиентов и рынки. Мы все-время находимся в поиске новых данных, данных всех форм и размеров, структурированных и не очень. Мы хотим распахнуть свои двери для нового поколения бизнес-специалистов и технических специалистов, которые будут увлеченно вместе с нами открывать новые базы данных и технологии, которые впоследствии изменят характер того, как мы взаимодействуем с данными и какое влияние они оказывают на нашу жизнь.
Я приведу пример из жизни, чтобы вы лучше понимали, что я имею в виду. Примерно два года назад данные спасли жизнь дочери моего друга. Когда она родилась ей диагностировали семь пороков сердца. Благодаря новым технологиям, таким как интерактивная 3D графика, виртуальное моделирование, более интеллектуальный анализ ЭКГ, современные решения для мониторинга пациентов соблюдающих постельный режим и благодаря другим усовершенствованным медицинским процедурам, основанных на данных, она сумела пережить две операции на открытом сердце и сейчас живет здоровой жизнью. Данные спасли ей жизнь. Именно это и подталкивает меня каждый день к поиску новых инновационных решений и способов более быстрой передачи данных тем, кто в них нуждается больше остальных.
Я горжусь тем, что являюсь частью команды Cloudera Data Warehouse (CDW) работающей на платформе Cloudera Data Platform (CDP). CDP был создан с нуля как корпоративное облако данных или Enterprise Data Cloud (EDC). EDC это многофункциональный инструмент для реализации многих задач на одной платформе. Благодаря использованию гибридных и мульти-облачных систем, CDP может работать где угодно — как на платформе без операционной системы, так и в частном и публичном облаке. По мере внедрения большего количества облачных решений в рамках нашего плана развития цифровых технологий, мы видим, что гибридные и мульти-облачные решения становятся новой нормой. Однако эти комбинированные решения создают проблемы в управлении ими, что в свою очередь порождает новые риски в области безопасности, вероятность возникновения слежки за пользователем и впоследствии нарушение закона. Для решения этих проблем CDP обладает расширенными возможностями для обеспечения безопасности и контроля, которые позволят сделать доступ к данным открытым без риска нарушить чью либо политику безопасности или даже закона.
CDW on CDP — это новый сервис позволяющий создать self-service хранилища данных для команд BI аналитиков. Вы можете быстро создавать новые хранилища данных и пользоваться ими самостоятельно или предоставить к ним доступ группе лиц и пользоваться единой базой вместе c ними. Помните ли вы времена, когда можно было самостоятельно управлять хранилищем данных? Управлять им без участия платформ и необходимой для его работы инфраструктуры? Такого никогда не было. CDW сделал это возможным.
Благодаря CDW стали доступны различные движки SQL, однако с предоставлением больших возможностей выбора возникает и путаница. Давайте рассмотрим движки SQL доступные в CDW on CDP, и обсудим, какой вариант SQL больше подходит для выполнения определенной задачи.
Такой большой выбор! Impala? Hive LLAP? Spark? Что использовать и когда? Давайте разберемся.
Impala SQL Engine
Impala — это популярный движок MPP с открытым исходным кодом и широким спектром возможностей в Cloudera Distribution Hadoop (CDH ) и CDP. Impala заслужила доверие рынка благодаря low-latency highly interactive SQL-запросам. Возможности Impala очень широки, Impala не только поддерживает Hadoop Distributed File System (HDFS — распределенную файловую систему Hadoop) с Parquet, Optimized Row Columnar (ORC — оптимизированный узел хранения), JavaScript Object Notation (JSON), Avro, и текстовые форматы, но также имеет встроенную поддержку Kudu, Microsoft Azure Data Lake Storage (ADLS) и Amazon Simple Storage Service (S3). Impala обладает высоким уровнем безопасности при помощи either sentry или ranger и, как известно, может поддерживать тысячи пользователей с кластерами из сотен узлов на многпетабайтных датасетах. Давайте же рассмотрим общую архитектуру Impala.
Для проверки работоспособности кластера Impala использует StateStore. Если узел Impala по какой-либо причине переходит в режим «оффлайн», то StateStore передаст сообщение об этом по всем узлам и пропустит недоступный узел. Служба каталога Impala управляет метаданными для всех инструкций SQL для всех узлов кластера. StateStore и служба каталогов обмениваются данными с хранилищем Hive MetaStore для размещения блоков и файлов, а затем передают метаданные рабочим узлам. При поступлении запроса он передается одному из многочисленных программ согласования, где выполняется компиляция и инициируется планирование. Фрагменты плана возвращаются, и программа согласования организует его выполнение. Промежуточные результаты передаются между службами Impala и затем возвращаются.
Такая архитектура идеально подходит для тех случаев, когда нам нужны витрины данных для бизнес-аналитики для получения ответов на запросы с низким временем задержки, как это обычно бывает в случаях с использованием ad-hoc, self-service и discovery types. При таком сценарии мы имеем клиентов сообщающих нам ответы на сложные запросы от менее одной секунды до пяти секунд.
Для данных Internet of Things (IoT) и связанных с ними сценариях, Impala вместе со streaming решениями, такими как NiFi, Kafka или Spark Streaming, и соответствующими хранилищами данных, такими как Kudu, может обеспечить непрерывную конвейерную обработку со временем задержки менее чем десять секунд. Благодаря встроенным функциям чтения/записи на S3, ADLS, HDFS, Hive, HBase и многим другим, Impala является превосходным SQL-движком для использования при запуске кластера до 1000 узлов, и более 100 триллионов строк в таблицах или датасетах размером в 50BP и более.
Hive LLAP
«Live Long And Process» или «Long Delay Analytics Processing», также известная как LLAP, является механизмом выполнения под управлением Hive, который поддерживает длительные процессы используя одни и те же ресурсы для кэширования и обработки. Этот механизм обработки дает нам ответ от SQL с очень низким временем задержки, так как у нас нет времени на запуск запрашиваемых ресурсов.
Кроме того, LLAP обеспечивает и устанавливает контроль над исполнением политики безопасности, поэтому вся работа LLAP для пользователя прозрачна, что помогает Hive конкурировать по показателям производительности рабочих нагрузок даже с наиболее популярными и традиционно используемыми средствами хранения данных на сегодняшний день.
Hive LLAP предлагает самый развитый движок SQL в экосистеме больших данных. Hive LLAP создан для огромного количества данных, предоставляя пользователям широкие возможности хранилища данных Enterprise Data Warehouse (EDW), которое поддерживает преобразование данных больших объемов, выполнение долгих запросов или тяжелых SQL запросов с сотней join-ов. Hive поддерживает materialized views, суррогатные ключи и различные ограничения, аналогичные традиционным реляционным системам управления базами данных, включая встроенное кэширование для получения запроса результатов и запросов данных. Hive LLAP может уменьшить нагрузку от повторяющихся запросов сократив время ответа до доли секунды. Hive LLAP может поддерживать федеративные запросы на HDFS (распределенную файловую систему Hadoop) и о object stores, а также потоковую передачу в реальном времени, работая с Kafka и Druid.
Таким образом Hive LLAP идеально подходит в качестве решения Enterprise Data Warehouse (EDW ), в котором мы будем вынуждены столкнуться с большим количеством длительных запросов, требующих крупных преобразований или множественных join-ов между таблицами и большими датасетами. Благодаря технологии кэширования, включенной в Hive LLAP, у нас появились клиенты, которые могут сделать join 330 миллиардов записей с 92 миллиардами других записей с partition key или без него и получить результат за секунды.
Spark SQL
Spark — это высокоэффективный движок обработки данных общего назначения, служащий для поддержки работы по обработке и распределению данных и который имеет широкий спектр областей применения. Существует множество библиотек данных Spark для специалистов data science и машинного обучения, которые поддерживают higher-level programming model для быстрой разработки. Уровнем выше Spark располагаются Spark SQL, MLlib, Spark Streaming и GrapX.
Spark SQL — это модуль для структурированной обработки данных, совместимый с различными источниками данных, с поддержкой Hive, Avro, Parquet, ORC, JSON и JDBC. Spark SQL эффективен на semi-structured наборах данных и интегрирован с Hive MetaStore и NoSQL хранилищами такими как HBase. Spark часто используется с различными программными API на наших любимых языках программирования, таких как Java, Python, R и Scala.
Spark может быть очень полезен при возникновении необходимости встраивания SQL-запросов вместе с программами Spark в случае его работы с большими объемами данных и высокой нагрузкой. Spark помогает многим нашим пользователям, работающим на предприятиях входящих в Global 100, сокращать обработку потоковых данных. Объединяя это с MLlib, мы видим, как многие наши клиенты положительно отзываются о Spark, как об отличной системе способной к машинному обучению при работе с приложениями хранилища данных. Благодаря высокой производительности, низкой задержке и отличной интеграции инструментов сторонних производителей, Spark SQL обеспечивает лучшие условия для переключения между программированием и SQL.
Так какой же движок SQL использовать?
Так как вы можете комбинировать одни и те же данные в CDW на CDP, Вы можете выбрать правильный движок для каждой из типов рабочих нагрузок, таких как data engineering, традиционный EDW, ad hoc аналитика, BI дашборды, Online Analytical Processing (OLAP) или Online Transaction Processing (OLTP). На приведенной ниже диаграмме представлены некоторые принципы направленные на упрощение выбора, в соответствии с которыми движки и их механизмы неплохо подходят для каждой из поставленных целей.
Вывод
Если вы используете EDW поддерживающую BI дашборды, Hive LLAP даст Вам наилучшие результаты. Когда вам нужен ad-hoc, self-service и исследовательское хранилище данных, обратите свой взор в сторону преимуществ Impala. Если вы посматриваете на Data Engineering с долго выполняющимися запросами и без высокого параллелизма, Spark SQL — отличный выбор. Если требуется поддержка высокого параллелизма, то можно взглянуть на Hive on Tez. Ищите поддержки OLAP с данными временного ряда, добавьте Druid, а если вы ищете OLTP с низким временем задержки и высокий параллелизмом, то возможно Вам стоит добавить Phoenix.
Итого — существует множество движков SQL в CDW на CDP, и это сделано нарочно. Предоставление выбора до принятия решения — это лучший способ оптимизации процессов для высокопроизводительных приложений с много поточным процессом обработки на массивных хранилищах данных. CDW в CDP обеспечивает общий доступ к данным и совместное их использование под единой системой безопасности, управления, отслеживания данных и метаданных, что позволяет сочетать компоненты SQL в оптимизированных хранилищах. Тем самым это дает пользователю свободу выбрать лучший движок SQL в зависимости от его рабочих нагрузок.
Hadoop: что, где и зачем
Развеиваем страхи, ликвидируем безграмотность и уничтожаем мифы про железнорождённого слона. Под катом обзор экосистемы Hadoop-а, тенденции развития и немного личного мнения.
Поставщики: Apache, Cloudera, Hortonworks, MapR
Hadoop является проектом верхнего уровня организации Apache Software Foundation, поэтому основным дистрибутивом и центральным репозиторием для всех наработок считается именно Apache Hadoop. Однако этот же дистрибутив является основной причиной большинства сожжённых нервных клеток при знакомстве с данным инструментом: по умолчанию установка слонёнка на кластер требует предварительной настройки машин, ручной установки пакетов, правки множества файлов конфигурации и кучи других телодвижений. При этом документация чаще всего неполна или просто устарела. Поэтому на практике чаще всего используются дистрибутивы от одной из трёх компаний:
Cloudera. Ключевой продукт — CDH (Cloudera Distribution including Apache Hadoop) — связка наиболее популярных инструментов из инфраструктуры Hadoop под управлением Cloudera Manager. Менеджер берёт на себя ответсвенность за развёртывание кластера, установку всех компонентов и их дальнейший мониторинг. Кроме CDH компания развивает и другие свои продукты, например, Impala (об этом ниже). Отличительной чертой Cloudera также является стремление первыми предоставлять на рынке новые фичи, пусть даже и в ущерб стабильности. Ну и да, создатель Hadoop — Doug Cutting — работает в Cloudera.
Hortonworks. Так же, как и Cloudera, они предоставляют единое решение в виде HDP (Hortonworks Data Platform). Их отличительной чертой является то, что вместо разработки собственных продуктов они больше вкладывают в развитие продуктов Apache. Например, вместо Cloudera Manager они используют Apache Ambari, вместо Impala — дальше развивают Apache Hive. Мой личный опыт с этим дистрибутивом сводится к паре тестов на виртуальной машине, но по ощущениями HDP выглядит стабильней, чем CDH.
MapR. В отличие от двух предыдущих компаний, основным источником доходов для которых, судя по всему, является консалтинг и партнёрские программы, MapR занимается непосредственно продажей своих наработок. Из плюсов: много оптимизаций, партнёрская программа с Amazon. Из минусов: бесплатная версия (M3) имеет урезанный функционал. Кроме того, MapR является основным идеологом и главным разработчиком Apache Drill.
Фундамент: HDFS
Когда мы говорим про Hadoop, то в первую очередь имеем в виду его файловую систему — HDFS (Hadoop Distributed File System). Самый простой способ думать про HDFS — это представить обычную файловую систему, только больше. Обычная ФС, по большому счёту, состоит из таблицы файловых дескрипторов и области данных. В HDFS вместо таблицы используется специальный сервер — сервер имён (NameNode), а данные разбросаны по серверам данных (DataNode).
В остальном отличий не так много: данные разбиты на блоки (обычно по 64Мб или 128Мб), для каждого файла сервер имён хранит его путь, список блоков и их реплик. HDFS имеет классическую unix-овскую древовидную структуру директорий, пользователей с триплетом прав, и даже схожий набор консольных комманд:
Почему HDFS так крута? Во-первых, потому что она надёжна: как-то при перестановке оборудования IT отдел случайно уничтожил 50% наших серверов, при этом безвозвратно было потеряно всего 3% данных. А во-вторых, что даже более важно, сервер имён раскрывает для всех желающих расположение блоков данных на машинах. Почему это важно, смотрим в следующем разделе.
Движки: MapReduce, Spark, Tez
При правильной архитектуре приложения, информация о том, на каких машинах расположены блоки данных, позволяет запустить на них же вычислительные процессы (которые мы будем нежно называть англицизмом «воркеры») и выполнить большую часть вычислений локально, т.е. без передачи данных по сети. Именно эта идея лежит в основе парадигмы MapReduce и её конкретной реализации в Hadoop.
Классическая конфигурация кластера Hadoop состоит из одного сервера имён, одного мастера MapReduce (т.н. JobTracker) и набора рабочих машин, на каждой из которых одновременно крутится сервер данных (DataNode) и воркер (TaskTracker). Каждая MapReduce работа состоит из двух фаз:
На самом деле между этими фазами есть ещё фаза combine, которая делает то же самое, что и reduce, но над локальными блоками данных. Например, представим, что у нас есть 5 терабайт логов почтового сервера, которые нужно разобрать и извлечь сообщения об ошибках. Строки независимы друг от друга, поэтому их разбор можно переложить на задачу map. Дальше с помощью combine можно отфильтровать строки с сообщением об ошибке на уровне одного сервера, а затем с помощью reduce сделать то же самое на уровне всех данных. Всё, что можно было распараллелить, мы распараллелили, и кроме того минимизировали передачу данных между серверами. И даже если какая-то задача по какой-то причине упадёт, Hadoop автоматически перезапустит её, подняв с диска промежуточные результаты. Круто!
Проблема в том, что большинство реальных задач гораздо сложней одной работы MapReduce. В большинстве случаев мы хотим делать параллельные операции, затем последовательные, затем снова параллельные, затем комбинировать несколько источников данных и снова делать параллельные и последовательные операции. Стандартный MapReduce спроектирован так, что все результаты — как конечные, так и промежуточные — записываются на диск. В итоге время считывания и записи на диск, помноженное на количество раз, которые оно делается при решении задачи, зачастую в несколько (да что там в несколько, до 100 раз!) превышает время самих вычислений.
И здесь появляется Spark. Спроектированный ребятами из университета Berkeley, Spark использует идею локальности данных, однако выносит большинство вычислений в память вместо диска. Ключевым понятием в Spark-е является RDD (resilient distributed dataset) — указатель на ленивую распределённую колекцию данных. Большинство операций над RDD не приводит к каким-либо вычислениям, а только создаёт очередную обёртку, обещая выполнить операции только тогда, когда они понадобятся. Впрочем, это проще показать, чем рассказать. Ниже приведён скрипт на Python (Spark из коробки поддерживает интерфейсы для Scala, Java и Python) для решения задачи про логи:
В этом примере реальные вычисления начинаются только на последней строчке: Spark видит, что нужно материализовать результаты, и для этого начинает применять операции к данным. При этом здесь нет никаких промежуточных стадий — каждая строчка поднимается в память, разбирается, проверяется на признак ошибки в сообщении и, если такой признак есть, тут же записывается на диск.
Такая модель оказалась настолько эффективной и удобной, что проекты из экосистемы Hadoop начали один за другим переводить свои вычисления на Spark, а над самим движком сейчас работает больше людей, чем над морально устаревшим MapReduce.
Но не Spark-ом единым. Компания Hortonworks решила сделать упор на альтернативный движок — Tez. Tez представляет задачу в виде направленного ациклического графа (DAG) компонентов-обработчиков. Планировщик запускает вычисление графа и при необходимости динамически переконфигурирует его, оптимизируя под данные. Это очень естественная модель для выполнения сложных запросов к данным, таких как SQL-подобные скрипты в Hive, куда Tez принёс ускорение до 100 раз. Впрочем, кроме Hive этот движок пока мало где используется, поэтому сказать, насколько он пригоден для более простых и распространённых задач, довольно сложно.
SQL: Hive, Impala, Shark, Spark SQL, Drill
Несмотря на то, что Hadoop является полноценной платформой для разработки любых приложений, чаще всего он используется в контексте хранения данных и конкретно SQL решений. Собственно, в этом нет ничего удивительного: большие объёмы данных почти всегда означают аналитику, а аналитику гораздо проще делать над табличными данными. К тому же, для SQL баз данных гораздо проще найти и инструменты, и людей, чем для NoSQL решений. В инфраструктуре Hadoop-а есть несколько SQL-ориентированных инструментов:
Hive — самая первая и до сих пор одна из самых популярных СУБД на этой платформе. В качестве языка запросов использует HiveQL — урезанный диалект SQL, который, тем не менее, позволяет выполнять довольно сложные запросы над данными, хранимыми в HDFS. Здесь надо провести чёткую линию между версиями Hive Личный опыт
NoSQL: HBase
Несмотря на популярность SQL решений для аналитики на базе Hadoop, иногда всё-таки приходится бороться с другими проблемами, для которых лучше приспособлены NoSQL базы. Кроме того, и Hive, и Impala лучше работают с большими пачками данных, а чтение и запись отдельных строк почти всегда означает большине накладные расходы (вспомним про размер блока данных в 64Мб).
И здесь на помощь приходит HBase. HBase — это распределённая версионированная нереляционная СУБД, эффективно поддерживающая случайное чтение и запись. Здесь можно рассказать про то, что таблицы в HBase трёхмерные (строковый ключ, штамп времени и квалифицированное имя колонки), что ключи хранятся отсортированными в лексиграфическом порядке и многое другое, но главное — это то, что HBase позволяет работать с отдельными записями в реальном времени. И это важное дополнение к инфраструктуре Hadoop. Представьте, например, что нужно хранить информацию о пользователях: их профили и журнал всех действий. Журнал действий — это классический пример аналитических данных: действия, т.е. по сути, события, записываются один раз и больше никогда не изменяются. Действия анализируются пачками и с некоторой периодичностью, например, раз в сутки. А вот профили — это совсем другое дело. Профили нужно постоянно обновлять, причём в реальном времени. Поэтому для журнала событий мы используем Hive/Impala, а для профилей — HBase.
При всём при этом HBase обеспечивает надёжное хранение за счёт базирования на HDFS. Стоп, но разве мы только что не сказали, что операции случайного доступа не эффективны на этой файловой системе из-за большого размера блока данных? Всё верно, и в этом большая хитрость HBase. На самом деле новые записи сначала добавляются в отсортированную структуру в памяти, и только при достижении этой структурой определённого размера сбрасываются на диск. Консистентность при этом поддерживается за счёт write-ahead-log (WAL), который пишется сразу на диск, но, естественно, не требует поддержки отсортированных ключей. Подробнее об этом можно прочитать в блоге компании Cloudera.
Ах да, запросы к таблицам HBase можно делать напрямую из Hive и Impala.
Импорт данных: Kafka
Обычно импорт данных в Hadoop проходит несколько стадий эволюции. Вначале команда решает, что обычных текстовых файлов будет достаточно. Все умеют писать и читать CSV файлы, никаких проблем быть не должно! Затем откуда-то появляются непечатные и нестандартные символы (какой мерзавец их вставил!), проблема экранирования строк и пр., и приходится перейти на бинарные форматы или как минимум переизбыточный JSON. Затем появляется два десятка клиентов (внешних или внутренних), и не всем удобно посылать файлы на HDFS. В этот момент появляется RabbitMQ. Но держится он недолго, потому что все вдруг вспоминают, что кролик старается всё держать в памяти, а данных много, и не всегда есть возможность их быстро забрать.
И тогда кто-то натыкается на Apache Kafka — распределённую систему обмена сообщениями с высокой пропускной способностью. В отличие от интерфейса HDFS, Kafka предоставляет простой и привычный интерфейс передачи сообщений. В отличие от RabbitMQ, он сразу пишет сообщения на диск и хранит там сконфигурированный период времени (например, две недели), в течение которого можно прийти и забрать данные. Kafka легко масштабируется и теоретически может выдеражать любой объём данных.
Вся эта прекрасная картина рушится, когда начинаешь пользоваться системой на практике. Первое, что нужно помнить при обращении с Kafka, это то, что все врут. Особенно документация. Особенно официальная. Если авторы пишут «у нас поддерживается X», то зачастую это значит «мы бы хотели, чтобы у нас поддерживалось X» или «в будущих версиях мы планиуем поддержку X». Если написано «сервер гарантирует Y», то скорее всего это значит «сервер гарантирует Y, но только для клиента Z». Бывали случаи, когда в документации было написано одно, в комментарии к функции другое, а в самом коде — третье.
Kafka меняет основные интерфейсы даже в минорных версиях и уже долгое время не может совершить переход от 0.8.x к 0.9. Сам же исходный код, как структурно, так и на уровне стиля, явно написан под влиянием знаменитого писателя, давшего название этому чудовищу.
Простой рецепт, к которому мы постепенно пришли, это запускать по одному потребителю на партицию очереди (topic, в терминологии Kafka) и вручную контролировать сдвиги.
Потоковая обработка: Spark Streaming
Если вы дочитали до этого абзаца, то вам, наверное, интересно. А если вам интересно, то вы, наверное, слышали про лямбда-архитектуру, но я на всякий случай повторю. Лямбда-архитектура предполагает дублирование конвеера вычислений для пакетной и потоковй обработки данных. Пакетная обработка запускается периодически за прошедший период (например, за вчера) и использует наиболее полные и точные данные. Потоковая обработка, напротив, производит рассчёты в реальном времени, но не гарантирует точности. Это бывает полезно, например, если вы запустили акцию и хотите отслеживать её эффективность ежечасно. Задержка в день здесь неприемлима, а вот потеря пары процентов событий не критична.
За потоковую обработку данных в экосистеме Hadoop-а отвечает Spark Streaming. Streaming из коробки умеет забирать данные из Kafka, ZeroMQ, сокета, Twitter и др… Разработчику при этом предоставляется удобный интерфейс в ввиде DStream — по сути, коллекции небольших RDD, собранной из потока за фиксированный промежуток времени (например, за 30 секунд или 5 минут). Все плюшки обычных RDD при этом сохраняются.
Машинное обучение
Картинка выше прекрасно выражает состояние многих компаний: все знают, что большие данные — это хорошо, но мало кто реально понимает, что с ними делать. А делать с ними нужно в первую очередь две вещи — переводит в знания (читать как: использовать при принятии решений) и улучшать алгоритмы. С первым уже помогают инструменты аналитики, а второе сводится к машинному обучению. В Hadoop для этого есть два крупных проекта:
Mahout — первая большая библиотека, реализовавшая многие популярные алгоритмы средствами MapReduce. Включает в себя алгоритмы для кластеризации, коллаборативной фильтрации, случайных деревьев, а также несколько примитивов для факторизации матриц. В начале этого года организаторы приняли решение перевести всё на вычислительное ядро Apache Spark, которое гораздо лучше поддерживает итеративные алгоритмы (попробуйте прогнать 30 итераций градиентного спуска через диск при стандартном MapReduce!).
MLlib. В отличие от Mahout, который пытается перенести свои алгоритмы на новое ядро, MLlib изначально является подпроектом Spark. В составе: базовая статистика, линейная и логистическая регрессия, SVM, k-means, SVD и PCA, а также такие примитивы оптимизации как SGD и L-BFGS. Scala интерфейс использует для линейной алгебры Breeze, Python интерфейс — NumPy. Проект активно развивается и с каждым релизом значительно прибавляет в функционале.
Форматы данных: Parquet, ORC, Thrift, Avro
Если вы решите использовать Hadoop по полной, то не помешает ознакомиться и с основными форматами хранения и передачи данных.
Parquet — колончатый формат, оптимизированный для хранения сложных структур и эффективного сжатия. Изначально был разработан в Twitter, а сейчас является одним из основных форматов в инфраструктуре Hadoop (в частности, его активно поддерживают Spark и Impala).
ORC — новый оптимизированный формат хранения данных для Hive. Здесь мы снова видим противостояние Cloudera c Impala и Parquet и Hortonworks с Hive и ORC. Интересней всего читать сравнение производительности решений: в блоге Cloudera всегда побеждает Impala, причём со значительным перевесом, а в блоге Hortonworks, как несложно догадаться, побеждает Hive, причём с не меньшим перевесом.
Thrift — эффективный, но не очень удобный бинарный формат передачи данных. Работа с этим форматом предполагает определение схемы данных и генерацию соответсвующего кода клинета на нужном языке, что не всегда возможно. В последнее время от него стали отказываться, но многие сервисы всё ещё используют его.
Avro — в основном позиционируется как замена Thrift: он не требует генерации кода, может передавать схему вместе с данными или вообще работать с динамически типизированными объектами.
Прочее: ZooKeeper, Hue, Flume, Sqoop, Oozie, Azkaban
Ну и напоследок коротко о других полезных и бесполезных проектах.
ZooKeeper — главный инструмент координации для всех элементов инфраструктуры Hadoop. Чаще всего используется как сервис конфигурации, хотя его возможности гораздо шире. Простой, удобный, надёжный.
Hue — веб-интерфейс к сервисам Hadoop, часть Cloudera Manager. Работает плохо, с ошибками и по настроению. Пригоден для показа нетехническим специалистам, но для серьёзной работы лучше использовать консольные аналоги.
Flume — сервис для организации потоков данных. Например, можно настроить его для получения сообщений из syslog, агрегации и автоматического сбрасывания в директорию на HDFS. К сожалению, требует очень много ручной конфигурации потоков и постоянного расширения собственными Java классами.
Sqoop — утилита для быстрого копирования данных между Hadoop и RDBMS. Быстрого в теории. На практике Sqoop 1 оказался, по сути, однопоточным и медленным, а Sqoop 2 на момент последнего теста просто не заработал.
Oozie — планировщик потоков задач. Изначально спроектирован для объединения отдельных MapReduce работ в единый конвеер и запуска их по расписанию. Дополнительно может выполнять Hive, Java и консольные действия, но в контексте Spark, Impala и др., этот список выглядит довольно бесполезным. Очень хрупкий, запутанный и практически не поддаётся отладке.
Azkaban — вполне годная замена Oozie. Является частью Hadoop-инфраструктуры компании LinkedIn. Поддерживает несколько типов действий, главное из которых — консольная команда (а что ещё надо), запуск по расписанию, логи приложений, оповещения об упавших работах и др. Из минусов — некоторая сыроватость и не всегда понятный интерфейс (попробуйте догадаться, что работу нужно не создавать через UI, а заливать в виде zip-архива с текстовыми файлами).