что такое ide на материнской плате
Что такое IDE и PATA — одно и тоже или не??
Здравствуйте, серферы моего блога.
В этой статье вы получите ответ на вопрос «что такое IDE?». Зачем он может вам пригодиться? Чтобы, как другие продвинутые пользователи, с умным видом заявлять, что данный интерфейс уже не актуален. А если серьезно, то, к примеру, когда захотите поменять на компьютере жесткий диск, вам следует знать, какой разъем для него имеется на материнской плате (вдруг там IDE?).
Расшифровка аббревиатур
IDE означает Integrated Drive Electronics (электроника, встроенная в привод). Это маркетинговое название технологии, которое на момент ее появления (в 1986 году) отображало весомое нововведение — что контроллер привода теперь находится непосредственно в нем, а не является отдельной платой.
Но сейчас все это не важно, и интерфейс носит такую аббревиатуру по привычке. Ведь, по сути, так может называться не только он, а любое устройство с интегрированным контроллером. Даже современный электрочайник, который сам отключается после закипания. Что такое ide вроде поняли, а PATA?
Если вы имеете в виду разъем, то для его обозначения правильнее употреблять другую аббревиатуру — PATA. Ее расшифровка на английском языке звучит как Parallel Advanced Technology Attachment, что в дословном переводе означает Параллельное Усовершенствованное Технологическое Приложение.
Изначально первое слово в названии отсутствовало. Его добавили, когда появилась необходимость в отличии данной технологии от его модернизированной версии — последовательного интерфейса SATA.
Быстродействие последнего на порядок выше, поэтому он практически вытеснил своего предшественника. Судите сами: максимальная скорость передачи данных через IDE составляет приблизительно 130 Мб/с, а минимальная у SATA — 150 Мб/с.
Технические особенности
В названиях разобрались, теперь расскажу, что значит IDE на практике. Винчестеры с таким разъемом подключаются к материнке через 40 или 80-жильный шлейф. Он может иметь 2 или 3 коннектора: один предназначен для подсоединения к контроллеру на системной плате, а остальные — для накопителей.
Учтите, что при подсоединении двух винтов одновременно работать они не смогут. Точнее смогут, но с особенностями. У них есть своя иерархия: один будет ведущим (master), другой — ведомым (slave).
Дело в том, что IDE-контроллер принадлежит к южному мосту материнской платы и имеет 2 канала — primary и secondary (первичный и вторичный). Любым из них может пользоваться только один диск в определенный момент. HDD с интерфейсом PATA имеет специальную перемычку, посредством которой определяется, какой накопитель будет главным, а какой — второстепенным.
Питание устройств, поддерживающих IDE, осуществляется при помощи 4-контактного разъема molex.
Еще один нюанс: через данный интерфейс подключаются не только харды, но также оптические дисководы.
На этом мой рассказ о том, что такое IDE закончен.
Как подключить жесткий диск IDE встречающийся всё реже и реже, да уходят данные девайсы из обращения вместе с нашей молодостью. Не ценит их и молодёжь, всем Sata подавай, ну да ладно прогресс есть прогресс, надо идти вперёд, но вопрос о подключении устройств с IDE (ATA) интерфейсом возникает время от времени, поэтому мы решили посвятить этому свою статью.
Примечание : Друзья, если на Вашей материнской плате нет разъёмов IDE для подключения устаревших жёстких дисков, то Вы всё равно сможете подключить такой диск к Вашему компьютеру или ноутбуку с помощью вот таких переходников:
Как подключить жёсткий диск IDE
Нам на работу принесли компьютер с материнской платой Asus P5K SE с дисководом SATA, а жёсткий диск почему-то отдельно и слёзно попросили сделать его рабочим. Дисковый накопитель Maxtor-интерфейс подсоединения IDE (250 Гб, IDE) устанавливаем его в системный блок, правильно всё подключаем, но жёсткий диск IDE не определяется в BIOS. Может из-за неправильного положения перемычки? Или не был включен в BIOS-контроллер IDE, или… но обо всём по порядку.
Скажу вкратце: дисковые накопители интерфейса подсоединения IDE нужно сконфигурировать специальной перемычкой, контакты на которые насаживается перемычка находятся на торце накопителя, а инструкция по применению перемычек на верхней стороне корпуса винчестера.
Как правильно настраивать работу жёстких дисков с помощью перемычек, можете почитать у нас Перемычки на жёстком диске.
Согласно инструкции наш жёсткий диск настраивается как мастер при положении перемычки в крайне левом положении, ставим перемычку
И так вставляем на жёсткий диск в специальную корзину на нашем системном блоке и крепим его четырьмя винтами, винты для крепления жёстких дисков побольше чем винты для крепления CD/DVD приводов.
На нашей материнской плате присутствует один разъём IDE, к нему можно подключить два устройства, по правилам одно устройство на шлейфе настраивается как ведущее (Master), перемычка так же ставится как мастер, подключим его к разъёму на конце шлейфа, второе должно быть подчиненным (Slave), оно подключается к разъёму по середине шлейфа, но к нему мы ничего подсоединять не будем, жёсткий диск у нас один, а дисковод интерфейса Sata уже подсоединён.
Ещё одно правило не устанавливайте на один шлейф жесткий диск и CD/DVD привод.
Подключаем жесткий диск IDE к материнской плате с помощью 80-жильного шлейфа.
Кабель подсоединения винчестера IDE имеет один отсутствующий контакт,
на материнской плате для него имеется специальная прорезь и подсоединить неправильно практически невозможно,
если не применить грубую силу, подсоединили
Дальше подключаем питание к жёсткому диску и включаем компьютер, заходим в BIOS
Урок #8. Интерфейс IDE
Перед тем как перейти к более профессиональным инструментам диагностики жестких дисков, хочу рассказать о некоторых технических моментах, а именно о подключении жесткого диска к компьютеру или точнее — о вариантах подключения.
Есть такое понятие, как интерфейс подключения жесткого диска. Упрощенно можно сказать, что это способ соединения жесткого диска и материнской платы, хотя в более широком смысле это еще и способ взаимодействия жесткого диска с материнской платой, ведь понятие «интерфейс» изначально и подразумевает некоторый метод или способ взаимодействия кого-то (или чего-то) с чем-то.
Если углубиться чуть более детально, то стоит сказать, что при передаче данных в компьютерном мире используются протоколы, то есть некоторые правила передачи данных. Протоколы также являются неотъемлемой частью интерфейса.
Ну а нам, как простым пользователям, незачем знать все эти правила и тонкости передачи данных. Поэтому нас будет интересовать только физическая составляющая интерфейса — кабель подключения жесткого диска к компьютеру. Вы часто можете услышать вместо слова «кабель» другой термин, говорят — шлейф подключения жесткого диска к материнской плате.
Поскольку в настоящее время существует несколько интерфейсов, то и шлейфы несколько отличаются.
Давайте рассмотрим наиболее популярные в настоящее время интерфейсы.
И начну я с уже устаревшего интерфейса IDE. Я колебался с тем стоит ли о нем рассказывать или нет и решил что стоит, так как его все еще можно встретить в достаточно старых компьютерах.
Интерфейс IDE (Integrated Drive Electronics — «электроника, встроенная в привод») появился еще в 86-ом году прошлого века и в 90-ые был основным стандартом для подключения жестких дисков и приводов оптических дисков к компьютеру. В настоящее время новые жесткие диски им уже не оснащаются.
IDE-шлейф выглядит так:
Как видно из фото у него три разъема (хотя может быть и два) и он позволяет одновременно подключить до двух устройств к одному разъему на материнской плате.
Поскольку два однотипных устройства подключаются к компьютеру посредством одного кабеля, то должен быть механизм, позволяющий определить, какое из устройств будет обмениваться информацией с компьютером в тот или иной момент времени.
Появились понятия Master и Slave, что в данном случае можно перевести как «Ведущий» и «Ведомый». Разъемы на IDE-шлейфе обычно имеют разные цвета, поэтому понять что к чему подключать не сложно:
Если у вас в компьютере только один жесткий диск, а также устройство привода оптических дисков (CD, DVD), то их можно подключить так — жесткий диск как Master, и привод дисков, как Slave на тот же шлейф. Затем шлейф подключается к материнской плате к специальному разъему, коих обычно два:
На материнской плате разъемы обозначаются как IDE1 и IDE2. То есть к таким разъемам можно подключить четыре устройства — по два на каждый.
Для того, чтобы кабель всегда подключался правильно, в разъеме на материнской плате делается паз, а на разъеме шлейфа, соответственно, имеется отливка, которую называют кабельным ключом.
Именно поэтому перепутать что-то при подключении жесткого диска к компьютеру нельзя.
Интерфейс IDE еще называют ATA (Advanced Technology Attachment — усовершенствованная технология подключения) и данный интерфейс имел несколько вариаций, в том числе и конструктивных — шлейф был 40-ка и 80-ти жильным, а скорость передачи данных у разных стандартов варьировалась и у самых последних составляла 100-133 мегабайта в секунду, хотя это была максимальная скорость передачи данных, по факту она была значительно меньше. К тому же при подключении двух устройств к одному шлейфу скорость делится между устройствами.
Кроме достаточно низкой скорости передачи данных у интерфейса IDE есть еще один минус — громоздкие шлейфы, с которыми сложно манипулировать в небольшом корпусе. Также длина шлейфа ограничена 46 см, поэтому далеко не всегда удобно использовать один шлейф для подключения двух устройств, а использование второго шлейфа только усугубляет ситуацию с вентиляцией и без того нафаршированным проводами корпуса.
Подключение жесткого диска или привода оптических дисков с интерфейсом IDE производится следующим образом. Необходимо определиться с тем, ведущим (Master) или ведомым (Slave) будет устройство, подключаемое к компьютеру, затем выбрать соответствующий разъем на кабеле и подключить его к устройству. При этом необходимо следить за правильным совмещением ключа шлейфа с пазом в разъеме устройства, иначе можно повредить (погнуть) пины (контакты) на устройстве или материнской плате. После того, как разъем вставлен, следует с небольшим усилием «продавить» его по всей площади, чтобы убедиться, что разъем установлен ровно и до конца. Затем подключается кабель питания.
Управлять приоритетом устройств, подключенных к одному кабелю можно еще и с помощью самих устройств. Дело в том, что на всех устройствах, подключаемых через разъем IDE имеется еще один блок разъемов.
С помощью специальных джемперов (перемычек) можно сделать устройство либо мастером, либо слэйвом.
Схема подключения джемпера обычно присутствует на корпусе жесткого диска (на наклейке) и у разных моделей она может отличаться.
У последних моделей IDE-жестких дисков джемперов в комплекте не было и такой режим (без джемперов) назывался Cable Select, то есть приоритет определяется автоматически, в зависимости о того, к какому разъему на шлейфе подключено устройство. Но всегда можно воспользоваться джемпером, чтобы на самом устройстве задать приоритет.
На этом с интерфейсом IDE заканчиваю, а в следующем видео расскажу об интерфейсе SATA.
Введение в SSD. Часть 2. Интерфейсная
В прошлой части цикла «Введение в SSD» мы рассказали про историю появления дисков. Вторая часть расскажет про интерфейсы взаимодействия с накопителями.
Общение между процессором и периферийными устройствами происходит в соответствии с заранее определенными соглашениями, называемыми интерфейсами. Эти соглашения регламентируют физический и программный уровень взаимодействия.
Интерфейс — совокупность средств, методов и правил взаимодействия между элементами системы.
Физическая реализация интерфейса влияет на следующие параметры:
Параллельные и последовательные порты
По способу обмена данными порты ввода-вывода делятся на два типа:
Параллельные порты, на первый взгляд, отлично масштабируются: больше сигнальных линий — больше бит передается за раз и, следовательно, выше пропускная способность. Тем не менее, из-за увеличения количества сигнальных линий между ними возникает интерференционное взаимодействие, приводящее к искажению передаваемых сообщений.
Последовательные порты — противоположность параллельным. Отправка данных происходит по одному биту за раз, что сокращает общее количество сигнальных линий, но усложняет контроллер ввода-вывода. Контроллер передатчика получает машинное слово за раз и должен передавать по одному биту, а контроллер приемника в свою очередь должен получать биты и сохранять в том же порядке.
Малое количество сигнальных линий позволяет без помех увеличивать частоту передачи сообщения.
Small Computer Systems Interface (SCSI) появился в далеком 1978 году и был изначально разработан, чтобы объединять устройства различного профиля в единую систему. Спецификация SCSI-1 предусматривала подключение до 8 устройств (вместе с контроллером), таких как:
Изначально SCSI имел название Shugart Associates System Interface (SASI), но стандартизирующий комитет не одобрил бы название в честь компании и после дня мозгового штурма появилось название Small Computer Systems Interface (SCSI). «Отец» SCSI, Ларри Баучер (Larry Boucher) подразумевал, что аббревиатура будет произноситься как «sexy», но Дал Аллан (Dal Allan) прочитал «sсuzzy» («скази»). Впоследствии произношение «скази» прочно закрепилось за этим стандартом.
В терминологии SCSI подключаемые устройства делятся на два типа:
Используемая топология «общая шина» накладывает ряд ограничений:
Устройства на шине идентифицируются по уникальному номеру, называемому SCSI Target ID. Каждый SCSI-юнит в системе представлен минимум одним логическим устройством, адресация которого происходит по уникальному в пределах физического устройства номеру Logical Unit Number (LUN).
Команды в SCSI отправляются в виде блоков описания команды (Command Descriptor Block, CDB), состоящих из кода операции и параметров команды. В стандарте описано более 200 команд, разделенных в четыре категории:
Дальнейшее усовершенствование SCSI (спецификации SCSI-2 и Ultra SCSI) расширило список используемых команд и увеличило количество подключаемых устройств до 16-ти, а скорость обмена данными по шине до 640 МБ/c. Так как SCSI — параллельный интерфейс, повышение частоты обмена данными было сопряжено с уменьшением максимальной длины кабеля и приводило к неудобству в использовании.
Начиная со стандарта Ultra-3 SCSI появилась поддержка «горячего подключения» — подключение устройств при включенном питании.
Первым известным SSD диском с интерфейсом SCSI можно считать M-Systems FFD-350, выпущенный в 1995 году. Диск имел высокую стоимость и не имел широкой распространенности.
В настоящее время параллельный SCSI не является популярным интерфейсом подключения дисков, но набор команд до сих пор активно используется в интерфейсах USB и SAS.
ATA / PATA
Интерфейс ATA (Advanced Technology Attachment), так же известный как PATA (Parallel ATA) был разработан компанией Western Digital в 1986 году. Маркетинговое название стандарта IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод») подчеркивало важное нововведение: контроллер привода был встроен в привод, а не на отдельной плате расширения.
Решение разместить контроллер внутри привода решило сразу несколько проблем. Во-первых, уменьшилось расстояние от накопителя до контроллера, что положительным образом повлияло на характеристики накопителя. Во-вторых, встроенный контроллер был «заточен» только под определенный тип привода и, соответственно, был дешевле.
ATA, как и SCSI, использует параллельный способ ввода-вывода, что отражается на используемых кабелях. Для подключения дисков с использованием интерфейса IDE необходимы 40-жильные кабели, также именуемые шлейфами. В более поздних спецификациях используются 80-жильные шлейфы: более половины из которых — заземления для уменьшения интерференции на высоких частотах.
На шлейфе ATA присутствует от двух до четырех разъемов, один из которых подключается в материнскую плату, а остальные — в накопители. При подключении двух устройств одним шлейфом, одно из них должно быть сконфигурировано как Master, а второе — как Slave. Третье устройство может быть подключено исключительно в режиме «только чтение».
Положение перемычки задает роль конкретного устройства. Термины Master и Slave по отношению к устройствам не совсем корректны, так как относительно контроллера все подключенные устройства — Slaves.
Особенным нововведением в ATA-3 считается появление Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). Пять компаний (IBM, Seagate, Quantum, Conner и Western Digital) объединили усилия и стандартизировали технологию оценки состояния накопителей.
Поддержка твердотельных накопителей появилась с четвертой версии стандарта, выпущенной в 1998 году. Эта версия стандарта обеспечивала скорость обмена данными до 33.3 МБ/с.
Стандарт выдвигает жесткие требования к шлейфам ATA:
Стандарт Serial ATA (SATA) был представлен 7 января 2003 года и решал проблемы своего предшественника следующими изменениями:
Шестнадцать сигнальных линий для передачи данных в ATA были заменены на две витые пары: одна для передачи, вторая для приема. Коннекторы SATA спроектированы для большей устойчивости к множественным переподключениям, а спецификация SATA 1.0 сделала возможным «горячее подключение» (Hot Plug).
Некоторые пины на дисках короче, чем все остальные. Это сделано для поддержки «горячей замены» (Hot Swap). В процессе замены устройство «теряет» и «находит» линии в заранее определенном порядке.
Чуть более, чем через год, в апреле 2004-го, вышла вторая версия спецификации SATA. Помимо ускорения до 3 Гбит/с в SATA 2.0 ввели технологию Native Command Queuing (NCQ). Устройства с поддержкой NCQ способны самостоятельно организовывать порядок выполнения поступивших команд для достижения максимальной производительности.
Последующие три года SATA Working Group работала над улучшением существующей спецификации и в версии 2.6 появились компактные коннекторы Slimline и micro SATA (uSATA). Эти коннекторы являются уменьшенной копией оригинального коннектора SATA и разработаны для оптических приводов и маленьких дисков в ноутбуках.
Несмотря на то, что пропускной способности второго поколения SATA хватало для жестких дисков, твердотельные накопители требовали большего. В мае 2009 года вышла третья версия спецификации SATA с увеличенной до 6 Гбит/с пропускной способностью.
Особое внимание твердотельным накопителям уделили в редакции SATA 3.1. Появился коннектор Mini-SATA (mSATA), предназначенный для подключения твердотельных накопителей в ноутбуках. В отличие от Slimline и uSATA новый коннектор был похож на PCIe Mini, хотя и не был электрически совместим с PCIe. Помимо нового коннектора SATA 3.1 мог похвастаться возможностью ставить команды TRIM в очередь с командами чтения и записи.
Команда TRIM уведомляет твердотельный накопитель о блоках данных, которые не несут полезной нагрузки. До SATA 3.1 выполнение этой команды приводило к сбросу кэшей и приостановке операций ввода-вывода с последующим выполнением команды TRIM. Такой подход ухудшал производительность диска при операциях удаления.
Спецификация SATA не успевала за бурным ростом скорости доступа к твердотельным накопителям, что привело к появлению в 2013 году компромисса под названием SATA Express в стандарте SATA 3.2. Вместо того, чтобы снова удвоить пропускную способность SATA, разработчики задействовали широко распространенную шину PCIe, чья скорость превышает 6 Гбит/с. Диски с поддержкой SATA Express приобрели собственный форм-фактор под названием M.2.
«Конкурирующий» с ATA стандарт SCSI тоже не стоял на месте и всего через год после появления Serial ATA, в 2004, переродился в последовательный интерфейс. Имя новому интерфейсу — Serial Attached SCSI (SAS).
Несмотря на то, что SAS унаследовал набор команд SCSI, изменения были значительные:
Максимальное количество одновременно подключенных устройств в SAS-домене по спецификации превышает 16 тысяч, а вместо SCSI ID для адресации используется идентификатор World-Wide Name (WWN).
WWN — уникальный идентификатор длиной 16 байт, аналог MAC-адреса для SAS-устройств.
Несмотря на схожесть разъемов SAS и SATA, эти стандарты не являются полностью совместимыми. Тем не менее, SATA-диск может быть подключен в SAS-коннектор, но не наоборот. Совместимость между SATA-дисками и SAS-доменом обеспечивается при помощи протокола SATA Tunneling Protocol (STP).
Первая версия стандарта SAS-1 имеет пропускную способность 3 Гбит/с, а самая современная, SAS-4, улучшила этот показатель в 7 раз: 22,5 Гбит/с.
Peripheral Component Interconnect Express (PCI Express, PCIe) — последовательный интерфейс для передачи данных, появившийся в 2002 году. Разработка была начата компанией Intel, а впоследствии передана специальной организации — PCI Special Interest Group.
Последовательный интерфейс PCIe не был исключением и стал логическим продолжением параллельного PCI, который предназначен для подключения карт расширения.
PCI Express значительно отличается от SATA и SAS. Интерфейс PCIe имеет переменное количество линий. Количество линий равно степеням двойки и колеблется в диапазоне от 1 до 16.
Термин «линия» в PCIe обозначает не конкретную сигнальную линию, а отдельный полнодуплексный канал связи, состоящий из следующих сигнальных линий:
«Аппетиты» твердотельных накопителей растут очень быстро. И SATA, и SAS не успевают увеличивать свою пропускную способность, чтобы «угнаться» за SSD, что привело к появлению SSD-дисков с подключением по PCIe.
Хотя PCIe Add-In карты прикручиваются винтом, PCIe поддерживает «горячую замену». Короткие пины PRSNT (англ. present — присутствовать) позволяют удостовериться, что карта полностью установлена в слот.
Твердотельные накопители, подключаемые по PCIe регламентируются отдельным стандартом Non-Volatile Memory Host Controller Interface Specification и воплощены в множестве форм-факторов, но о них мы расскажем в следующей части.
Удаленные накопители
При создании больших хранилищ данных появилась потребность в протоколах, позволяющих подключить накопители, расположенные вне сервера. Первым решением в этой области был Internet SCSI (iSCSI), разработанный компаниями IBM и Cisco в 1998 году.
Идея протокола iSCSI проста: команды SCSI «оборачиваются» в пакеты TCP/IP и передаются в сеть. Несмотря на удаленное подключение, для клиентов создается иллюзия, что накопитель подключен локально. Сеть хранения данных (Storage Area Network, SAN), основанная на iSCSI, может быть построена на существующей сетевой инфраструктуре. Использование iSCSI значительно снижает затраты на организацию SAN.
У iSCSI существует «премиальный» вариант — Fibre Channel Protocol (FCP). SAN с использованием FCP строится на выделенных волоконно-оптических линиях связи. Такой подход требует дополнительного оптического сетевого оборудования, но отличается стабильностью и высокой пропускной способностью.
Существует множество протоколов для отправки команд SCSI по компьютерным сетям. Тем не менее, есть только один стандарт, решающий противоположную задачу и позволяющий отправлять IP-пакеты по шине SCSI — IP-over-SCSI.
Большинство протоколов для организации SAN используют набор команд SCSI для управления накопителями, но есть и исключения, например, простой ATA over Ethernet (AoE). Протокол AoE отправляет ATA-команды в Ethernet-пакетах, но в системе накопители отображаются как SCSI.
С появлением накопителей NVM Express протоколы iSCSI и FCP перестали удовлетворять быстро растущим требованиям твердотельных накопителей. Появилось два решения:
Протокол NVMe over Fabrics стал хорошей альтернативой iSCSI и FCP. В NVMe-oF используются волоконно-оптическая линии связи и набор команд NVM Express.
Стандарты iSCSI и NVMe-oF решают задачу подключения удаленных дисков как локальные, а компания Intel пошла другой дорогой и максимально приблизила локальный диск к процессору. Выбор пал на DIMM-слоты, в которые подключается оперативная память. Максимальная пропускная способность канала DDR4 составляет 25 ГБ/с, что значительно превышает скорость шины PCIe. Так появился твердотельный накопитель Intel® Optane™ DC Persistent Memory.
Для подключения накопителя в DIMM слоты был изобретен протокол DDR-T, физически и электрически совместимый с DDR4, но требующий специального контроллера, который видит разницу между планкой памяти и накопителем. Скорость доступа к накопителю меньше, чем к оперативной памяти, но больше, чем к NVMe.
Протокол DDR-T доступен только с процессорами Intel® поколения Cascade Lake или новее.
Заключение
Почти все интерфейсы прошли долгий путь развития от последовательного до параллельного способа передачи данных. Скорости твердотельных накопителей стремительно растут, еще вчера твердотельные накопители были в диковинку, а сегодня NVMe уже не вызывает особого удивления.
В нашей лаборатории Selectel Lab вы можете самостоятельно протестировать SSD и NVMe диски.