что такое ldo регуляторы напряжения

Стандартные линейные и LDO-стабилизаторы ON Semiconductor

Стандартные линейные стабилизаторы общего применения

Этот тип непрерывных стабилизаторов имеет довольно большое падение напряжения вход/выход для гарантированного обеспечения постоянного напряжения на выходе. Значение выходного напряжения находится в пределах 1,1…2,7 В. К этому параметру необходимо относиться очень внимательно, так как допустимое падение напряжения сильно зависит от выходного тока, поэтому желательно предварительно изучить графики зависимости этого параметра от тока нагрузки. Если есть возможность и выбор, то для достижения лучшей стабилизации нужно стараться выбирать прибор с запасом по току. В большинстве случаев такой подход обеспечивает лучшие характеристики стабилизации. Однако злоупотреблять таким методом нежелательно, так как коэффициент усиления схемы обратной связи для коррекции ошибки выходного напряжения может оказаться существенно меньше при меньших выходных токах. Если качество стабилизации при низких падениях напряжения вход/выход недостаточное, то приходится делать выбор среди LDO-стабилизаторов. Однако, последние имеют значительно большую цену по сравнению с обычными стабилизаторами. Этим и объясняется мирное сосуществование этих двух типов непрерывных регуляторов напряжения. Каждый из них имеет свои преимущества и недостатки. Основные параметры популярных линейных стабилизаторов со стандартным падением напряжения сведены в таблицу 1.

Таблица 1. Параметры популярных линейных стабилизаторов со стандартным падением напряжения ON Semiconductor

Максимальное выходное напряжение стабилизации среди приборов, представленных в таблице 1, составляет 24 В. Стабилизаторы с регулируемым выходом позволяют выбрать произвольное значение выходного напряжения. Регулируемые стабилизаторы незаменимы, когда требуется сформировать нестандартное значение выходного напряжения или осуществить компенсацию потерь на проводах для подключения нагрузки. Серии с отрицательным выходным напряжением часто используются для создания отрицательного плеча источника питания с двумя полярностями. Как показывает практика, регулируемые стабилизаторы почти всегда бывают на складе у поставщиков электронных компонентов. Конечно, стабилизаторы с фиксированным напряжением удобнее (не нужно устанавливать дополнительные резисторы для задания уровня выходного напряжения), но во многих случаях для повышения стабильности поставок разработчики выбирают именно регулируемые стабилизаторы. Выбор популярного корпуса дополнительно облегчает поиск и поставку нужных полупроводниковых приборов. Наглядное представление о сериях непрерывных стабилизаторов широкого применения со стандартным падением напряжения дает рисунок 1.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 1. Линейные стабилизаторы ON Semiconductor со стандартным падением напряжения
вход/выход

LDO-стабилизаторы для широкого применения

LDO-стабилизаторы имеют гораздо меньшее падение напряжения между входом и выходом. При этом обеспечиваются высокие параметры стабильности и точности выходного напряжения. Этот тип регуляторов в большинстве случаев используется для относительно низких выходных напряжений по сравнению со стабилизаторами со стандартным падением напряжения. Максимальное выходное напряжение для стабилизаторов с низким падением напряжения обычно не превышает 12 В. Это и понятно, так как для более высоких напряжений целесообразно применять обычные регуляторы, цена которых существенно ниже.

LDO-стабилизаторы ON Semiconductor можно разделить на несколько типов:

Упростить выбор LDO-стабилизатора для широкого применения читателю помогут рисунки 2 и 3. Основные параметры и функциональные особенности самых популярных регуляторов с низким падением напряжения ON Semiconductor сведены в таблицу 2.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 2. LDO-стабилизаторы ON Semiconductor с фиксированным выходным напряжением

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 3. LDO-стабилизаторы ON Semiconductor с регулировкой выходного напряжения и с несколькими выходами

Таблица 2. Параметры самых популярных LDO-стабилизаторов ON Semiconductor

Наимено-
вание
Выхо-
дной
ток, А
Выход и выходное напряжение, BТоч-
ность
(%)
Паде-
ние напря-
жения
вход-
выход
(типо-
вое), В
Мини-
маль-
ное
входное напря-
жение,
В
Макси-
маль-
ное
вход-
ное напря-
жение,
В
Корпус(а)Свой-
ства
Регу-
лиру-
емый
1,51,82,52,72,83,03,34,05,012,0SOT
-23
SOT
-89
SO
-8
SO
-16
DIP
-8
Mic-
ro8
DP
AK
D2P
AK
SOT-
223
TO-
92
TO-
220
MC78LCxx0,083,01,0 при 80 мА2,512Ultra Low Iq* = 1,1 мкА (тип.)
LM2931/A0,15,0/3,80,16 при 100 мА40Низкое падение напряжения «вход-выход»
LM2931C/AC0,15,0/2,0
LP2950C/AC0,11,0/0,50,38 при 100 мА30Ultra Low Iq* = 75 мкА (тип.)
LP2951C/AC0,1
MC78FCxx0,122,50,5 при 40 мА2,010Ultra Low Iq* = 1,1 мкА (тип.)
MC78PCxx0,152,00,2 при 100 мА8.0Наличие входа Enable
MC332690,81,01,1 при 800 мА20Высокая точность
NCP111711,01,07 при 800 мА2,720Высокая точность
Ultra Low Iq* — очень низкий собственный ток потребления.

Как видно из рисунков 2 и 3, выбор стабилизаторов с низким падением напряжения гораздо шире. Причем некоторые серии этих регуляторов обладают расширенными функциональными возможностями (наличие дополнительных входов управления и выходов для управления внешними устройствами). Большой интерес вызывают стабилизаторы с ультранизким собственным потреблением. Например, микросхемы серий MC78LCxx и MC78FCxx имеют собственный ток потребления всего около 1,1 мкА. Однако этот ток довольно сильно зависит от температуры окружающей среды и не очень сильно — от входного напряжения стабилизаторов. Типовые зависимости этих параметров для микросхем MC78LC30 в корпусах SOT23-5 и SOT-89 показаны на рисунке 4.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 4. Типовые зависимости собственного тока потребления LDO-стабилизаторов MC78LC30 от входного напряжения и температуры для корпусов SOT23-5 и SOT-89

Линейные стабилизаторы для автомобильных приложений

Отдельным разделом ON Semiconductor выделяет линейные стабилизаторы для автомобильных приложений.

Быстро сориентироваться при выборе стабилизатора для автомобильных приложений можно с помощью рисунка 5.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 5. Основные параметры и дополнительные функции линейных стабилизаторов ON Semiconductor для автомобильных приложений

Диапазон выходных токов стабилизаторов с расширенным диапазоном рабочих температур находится в пределах от 70 мА до 1,5 А. Некоторые из этих микросхем заменяют популярные серии стандартных стабилизаторов, выпускаемые другими известными производителями аналогичной продукции. В этом случае получается простая замена уже проверенной схемы, но для жестких условий эксплуатации. Отпадает необходимость в изменении печатной платы и дополнительном макетировании новой схемы питания. Точность выходных напряжений стабилизаторов этой группы в большинстве случаев составляет ±2 или ±4 процента во всем диапазоне рабочих температур.

Для предотвращения перегрева при коротком замыкании в некоторых стабилизаторах схема защиты обеспечивает значительное уменьшение выходного тока при коротком замыкании. Это проиллюстрировано на рисунке 6.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 6. Схемы защиты линейных стабилизаторов от короткого замыкания с ограничением на уровне максимального тока и с уменьшением выходного тока

На левой части рисунка 6 приведена структура схемы с ограничением тока при коротком замыкании на уровне максимального значения. Рассеиваемая мощность на проходном транзисторе в этом случае будет максимальна. В средней части рисунка 6 приведена схема с уменьшением выходного тока при коротком замыкании выхода, а на графике приведена характеристика при срабатывании защиты в этом случае. Такой облегченный режим при коротком замыкании обеспечивается с помощью генератора тока и дополнительных диодов. Понятно, что рассеиваемая мощность на регулирующем транзисторе при коротком замыкании теперь будет существенно ниже.

На главной странице сайта ON Semiconductor http://www.onsemi.com/ представлены ссылки на основные разделы продукции этого производителя. В скобках рядом с каждым названием раздела указано количество компонентов для соответствующей продукции, но самое большое число расположено в скобках рядом с линейными стабилизаторами. Таким образом, линейные регуляторы одно из основных направлений в производстве полупроводников компании ON Semiconductor.

Ответственный за направление в КОМПЭЛе — Валерий Куликов

Источник

LDO линейный стабилизатор напряжения с низким падением

Аббревиатура LDO применительно к стабилизаторам или регуляторам напряжения расшифровывается как: “low drop out” или по-русски низкое падение на выходе. И это означает что чтобы получить требуемое напряжение на выходе стабилизатора входное напряжение должно не превышать выходное. Например в широко распространенном LDO стабилизаторе LM1117 для нормального функционирования стабилизатора достаточно падения в 1,2В.

Что позволяет сделать применение стабилизаторов с низким падением напряжения?
Например:

Как я уже писал, LM1117 считается стабилизатором с низким падением напряжения, с величиной этого самого падения в 1,2В. Я подумал, зачем такое относительно большое напряжение терять, ведь это удвоенное напряжение на p-n переходе транзистора из кремния? Почему бы не использовать полевой транзистор: в открытом состоянии канал полевого транзистора представляем собой лишь небольшое активное сопротивление.
Погуглив я нашел схемы где регулирование осуществляется полевым транзистором с n-каналом включенным в положительный провод питания. Вот только эти схемы требовали дополнительного источника питания, для управления затвором. Чтобы открыть полевой транзистор, на его затвор нужно было приложить напряжение на несколько Вольт выше напряжения на истоке, а значит и на выходе.
А вот почему бы не использовать p-канальный транзистор, он открывается отрицательным напряжением, которое у нас уже есть. И я нарисовал схему LDO использующую регулируемый стабилитрон TL431:

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Эту схему я пока не собирал, возможно потребуются дополнительные RC-цепочки для предотвращения самовозбуждения схемы. Все таки TL431 склонна к самовозбуждению.

До применения полевого транзистора у меня были мысли использования биполярного p-n-p транзистора в качестве регулятора, в таком случае минимальное падение на стабилизаторе составило бы 0,6 В, что конечно поменьше чем 1,2 В.

Вот пара схем с биполярным транзистором.
что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Ещё я нагуглил на англоязычном форуме схему p-n-p транзистором, ту схему даже смоделировали и анализ частотной характеристики показал устойчивость схемы.
Если силовой биполярный транзистор заменить на полевой, то получим такую схему:

При указанных в перечне значениях VD1, R5, R6 напряжение на выходе стабилизатора составит 6 В.

18 thoughts on “ LDO линейный стабилизатор напряжения с низким падением ”

Автор молодец, он работает, а мы камешки подбрасываем )
Вот зачем, к примеру, полевиком стабилизацию наводить? И сложней и дороже. Если только токовая нагрузка стабильна, да и то жалковато. Но если экономичность электроэнергии поперед всего… ну, тогда да.
Но тогда надо большие падения экономить, чтоб экономического эффекта добиться. И не только по разнице напряжений, но и по потребляемому нагрузкой току. Но решение красивое, и интересное, как минимум.

Линейный стабилизатор с ультранизким падением напряжения я увидел в планшете Samsung Galaxy Tab P1000. Стабилизатор использовался для питания тачскрина напряжением 2,8 В при этом сам получал питание от литий-ионного аккумулятора, напряжение которого могло изменятся от 3.0 В до 4,2 В. Получалось что минимальное падение было всего 0,2 В.
Почему разработчики не поставили импульсный стабилизатор? Возможно было дорого городить импульсник ради питания тачскрина или таким образом избегали помех по питанию.
Я так и не нашел никакой информации по этому стабилизатору кроме его наименованию: IC-MULTI REG и номеру: 1203-006476.

есть хороший стабилизатор HT7333 ток минимальный.

Есть вопрос по последней схеме. Зачем нужен резистор R4? Источник опорного напряжения питается от входного напряжения, а напряжение на коллекторе VT3 появится по любому после включения. С ион в правой части схемы и с биполярным транзистором в качестве регулирующего R4 потребовался бы однозначно, а здесь он зачем?

Еще два вопроса которые и раньше не давали покоя, и напомнили о себе в ходе прочтения публикации.
1. Для чего нужны транзисторные фильтры по питанию, когда можно сделать стабилизатор? Стабилизатор точно так же подавит пульсации, попутно поддерживая напряжение стабильным. Какие такие преимущества есть у фильтров перед стабилизаторами?
2. Любопытно, существуют ли в природе биполярные кремниевые транзисторы с падением напряжения на переходе менее 0,6 вольта? Есть же диоды Шоттки с минимальным падением на переходе. Почему бы не быть биполярным транзисторам сделанным по схожему с диодами Шоттки принципу?

Через R4 идет основной стабильный ток со стабилизированного выхода, R1 тут только для запуска. Конечно можно уменьшить номинал R1, а R4 выкинуть, но тогда с изменением входного напряжения будет сильно меняться ток через стабилитрон и следовательно напряжение на нем.

1. Падение напряжения на активном фильтре небольшое следовательно не нужно мощное охлаждение. А вот стабилизатор обязан срезать не только пульсацию но и весь излишек, а излишек бывает очень не маленький.
Кроме того есть применение где не нужно стабильное напряжение, например тот же УМЗЧ.

2. Если кратко то работа диода Шоттки основана на выпрямляющем контакте металл-полупроводник. А биполярный транзистор работает благодаря неосновным носителям заряда. Грубо говоря запихиваем в базу основные носители, а они попадая в область коллектора становятся неосновными и снижают его сопротивления

Теперь все понятно с R4. Оригинальное решение запуска и стабилизации тока через стабилитрон 🙂
И с фильтром тоже ясно, борьба за КПД.

Обиделся насчет УМЗЧ. Там стабилизация необязательна (хоть и желательна для HiFi) лишь для выходного каскада. Поэтому, как правило, питание разных каскадов осуществляется разными источниками, и, некоторые каскады, запитаны не только стабилизированным, но и фильтрованным питанием. Полностью лишают стабилизации, обычно, лишь оконечник сабвуфера, ему она точно не нужна.

Да, конечно, конденсаторы нужны. Просто они не показаны на схеме. Как кашу маслом не испортишь, так и стабилизатор напряжения входными и выходными конденсаторами. Ну за редким исключением.
В первой схеме R1 необходим, чтобы VT1 хоть когда-то закрывался.
А в последней R1 нужен для первоначального запуска: пока нет напряжения на выходе — закрыт VT2, а пока он закрыт, то и VT1 закрыт, а пока VT1 закрыт, то нет напряжения на выходе. Замкнутый круг.

Кашу маслом не испортишь — если оно не машинное. По моему, как раз для низких падений напряжений они (конденсаторы) зачастую излишни. А генерирующие устройство, чем бы не запитывалось, фильтрует ее (помеху) сама… по крайней мере обязана это делать (и для себя в том числе), да и фильтры имеет посерьезнее и порасчитанее питающевого устройства., которое еще и неизвестно будет каким. Ну а дополнительно втулить пару кондеров — это уже та каша, которой, в принципе, не жалко… некоторым.

Подскажите какое падение напряжение или минимальное входное напряжение на КР1170ЕН6?

У стабилизатора КР1170ЕН6 есть аналог — LM2931 (Texas Instruments), так вот на аналог в документации пишут менее 0,6 В при выходном токе 100 мА и 0,2 В при 10 мА.
Скорее всего и у КР1170ЕН6 будет тоже самое.

Самая первая схема — неверная. Катод TL431 через базо-эмиттерный переход биполярного транзистора накоротко замыкается на шину питания. Должен быть ещё резистор.

На N канале делать стабилизацию в виде «повторителя» напряжения я бы не стал. Если биполяр грубо говоря это резистор, управляемый током базы, то MOS полевой транзистор таки источник тока, управляемый напряжением, И что бы оно пропустило большой ток ему нужно приличное напряжение затвор-подложка индуцирующее канал проводимости. Поэтому «повторитель» катит, только если как раз нужно попутное ограничение тока. А если нужен источник напряжения с минимальным внутренним сопротивлением, то для «+» в классической неизвращённой схеме линейника используем P-канал (как тут приводилось на схемах).

Возможно ли использовать последнюю схему для стабилизации 3,3 вольта, при входном напряжении от 3,6 до 4,2 вольт?

Источник

LDO-преобразователи с низким током собственного потребления и малым падением напряжения

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Увеличить срок службы комплекта батарей или заряда аккумулятора, просто добавив в схему линейные стабилизаторы напряжения? Увеличить стабильность напряжения и уменьшить пульсации после импульсного преобразователя практически без снижения КПД блока питания? Это реально, если использовать современные микромощные LDO-стабилизаторы от STMicroelectronics с малым падением напряжения производства.

Продолжительное время разработчикам электронной аппаратуры были доступны только классические стабилизаторы (например, LD1117 или стабилизаторы серий 78xx/79xx) с минимальным падением на регулирующем элементе от 0,8 В и выше. Связано это было с тем, что в качестве регулирующего элемента применялся n-p-n-транзистор, включенный по схеме с общим коллектором. Для того, чтобы открыть такой транзистор до насыщения, необходим дополнительный источник питания, напряжение которого превышает входное напряжение. Однако развитие технологий не стоит на месте, и с появлением мощных и компактных p-канальных полевых транзисторов их тоже начали использовать в стабилизаторах напряжения, включая по схеме с общим истоком. Такая схема позволяет при необходимости полностью открыть транзистор, и падение напряжения на его переходе фактически будет зависить только от сопротивления канала и тока нагрузки. Так появился стабилизатор LDO (Low DropOut).

Следует учитывать, что минимальное падение на канале транзистора LDO-стабилизатора практически линейно зависит от протекающего через него тока, так как канал фактически является электрически регулируемым резистором с некоторым минимальным сопротивлением. Поэтому при уменьшении выходного тока это напряжение тоже пропорционально уменьшается до некоторого предела, обычно равного 10…50 мВ. Лидерами же следует признать микросхемы LD3985 и LDS3985, у которых минимальное падение напряжения составляет всего 0,4 мВ. Если падение напряжения – одно из ключевых требований к стабилизатору, то следует присмотреться к стабилизаторам с большим запасом по току, так как у них из-за меньшего сопротивления канала регулирующего транзистора может быть гораздо меньшее падение напряжения на том же токе нагрузки.

Уникальная возможность LDO – его способность практически без ухудшения суммарного КПД блока питания стабилизировать напряжение, сглаживать выбросы и уменьшать шум на шине питания для высокочувствительных устройств, таких как радиоприемники, модули GPS, аудиоустройства, АЦП высокого разрешения, генераторы VCO, [1]. Например, для питания схемы напряжением 3,3 В мы выбрали LDO с минимальным падением 150 мВ и понижающий импульсный стабилизатор с пульсациями на выходе амплитудой 50 мВ (верхняя кривая на рисунке 1). Выходное напряжение импульсного стабилизатора можно приблизительно оценить по формуле:

где UИмп – выходное напряжение импульсного стабилизатора, UНагр. – выходное напряжение линейного стабилизатора (напряжение питания нагрузки), ∆UИмп – амплитуда пульсаций напряжения на выходе импульсного стабилизатора. Поэтому выберем его равным 3,6 В. В итоге КПД ухудшится всего на 8%, однако при этом значительно уменьшатся пульсации напряжения. Коэффициент подавления пульсаций напряжения питания (SVR) определяется по формуле:

При типовом коэффициенте порядка 50 дБ пульсации ослабляются примерно в 330 раз. То есть амплитуда пульсаций на выходе нашего источника питания уменьшится до сотен микровольт (нужно еще учитывать шум самого LDO, обычно он составляет десятки мкВ/В) – такой результат практически недостижим для большинства импульсных преобразователей без дополнительного стабилизатора или многозвенных LC-фильтров на выходе. Наилучшие характеристики стабилизации обеспечивают микросхемы LDLN015, LD59015 и микросхемы серии LD39xxx – у LDLN015 шум не превышает 10 мкВ/В, а коэффициент SVR доходит до 90 дБ.

Однако у LDO тоже есть недостатки, один из которых – склонность к самовозбуждению, причем не только при слишком большом ESR выходного конденсатора (или его слишком маленькой емкости), но и при слишком низком ESR. Связана эта особенность с тем, что каскад с общим эмиттером (общим истоком) имеет высокий выходной импеданс, поэтому на частотной характеристике стабилизатора появляется дополнительный низкочастотный полюс (его частота зависит от сопротивления нагрузки и емкости выходного конденсатора). В итоге уже на частотах в десятки килогерц сдвиг фазы может превысить 180° и отрицательная обратная связь превращается в положительную [2]. Для решения такой проблемы в частотную характеристику необходимо добавить нуль, и простейший способ сделать это – увеличить последовательное сопротивление (ESR) выходного конденсатора: это практически не увеличивает пульсации выходного напряжения, но является залогом стабильности всей схемы. Причем емкость и ESR конденсатора должны быть в строго очерченных пределах. Они указываются индивидуально для каждого LDO-стабилизатора. Увы, но стандартный подход «чем больше емкость и чем ниже ESR выходных конденсаторов – тем лучше», применимый к классическим линейным и импульсным стабилизаторам, здесь не работает.

В зависимости от компонентов внутренней корректирующей схемы, LDO-стабилизаторы можно условно разделить на три группы:

Для высокочастотных и/или сильноточных цифровых схем рекомендуется ставить фильтрующие керамические конденсаторы емкостью 0,1…1 мкФ возле каждой микросхемы, и они тоже могут нарушить стабильность LDO-стабилизатора. Чтобы этого не происходило, рекомендуется увеличивать длину и уменьшать толщину дорожек от стабилизатора до нагрузки (тем самым увеличивать индуктивность дорожек), ставить в разрыв цепи питания дроссели или резисторы, а также выбирать LDO-стабилизаторы, скомпенсированные под низкий ESR нагрузки [3].

Есть еще один способ увеличить стабильность преобразователя – использовать в качестве регулирующего n-канальный транзистор, включенный по схеме с общим стоком. Такая схема стабильна практически при любых характеристиках выходного конденсатора, и даже вообще без конденсатора (так называемые capless-стабилизаторы). Однако для ее корректной работы необходим внутренний умножитель напряжения, который будет повышать входное напряжение для возможности отпирания регулирующего транзистора до насыщения. По такой схеме изготовлен LDCL015 – благодаря более низкому сопротивлению канала n-канальных транзисторов той же площади удалось значительно снизить падение напряжения, однако из-за постоянно работающего умножителя резко возрос потребляемый микросхемой ток в активном режиме. Но, по мнению автора, за такими стабилизаторами – будущее LDO, поэтому проблема повышенного энергопотребления наверняка скоро решится.

Еще несколько особенностей LDO связаны со спецификой используемого в качестве регулирующего элемента MOSFET-транзистора – с его значительной емкостью затвора и со встроенным паразитным обратносмещенным диодом. Так, при резком пропадании напряжения питания (например, короткое замыкание на входе стабилизатора) и значительной емкости выходных конденсаторов выходное напряжение течет через диод на вход и, теоретически, стабилизатор может выйти из строя из-за ничем не ограниченного обратного тока. Особенно это критично для мощных стабилизаторов, работающих с токами в несколько ампер, поэтому в некоторых стабилизаторах (например, LD39200) встроена специальная схема защиты от обратного тока.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 1. Пульсации на входе (верхний график) и выходе LDO-стабилизатора

Из-за значительной емкости затвора ухудшается способность транзистора быстро реагировать на резкие изменения тока нагрузки. В итоге, при уменьшении тока нагрузки выходное напряжение стабилизатора по инерции повышается (до тех пор, пока встроенный операционный усилитель не сможет чуть закрыть транзистор), а при увеличении тока – выходное напряжение слегка проседает (нижняя кривая на рисунке 1). Увеличить нагрузочную способность стабилизатора можно посредством увеличения мощности выхода встроенного операционного усилителя, однако вслед за этим увеличивается потребляемый стабилизатором ток. Поэтому разработчику приходится выбирать: или использовать в схеме сверхмаломощные стабилизаторы (например, серий STLQ или ST715 с потребляемым током в единицы микроампер, но с очень высокой инерционностью и большими просадками напряжения при резких изменениях тока нагрузки), или стабилизаторы среднего и высокого быстродействия, но с потреблением до сотен микроампер. В качестве альтернативы существуют стабилизаторы с режимами экономии энергии (например, LD39130S), которые при уменьшении тока нагрузки автоматически переключаются в микромощный режим. Аналогично работают многие современные микроконтроллеры (например, семейств STM8 и STM32) – у последних имеется два встроенных LDO-стабилизатора, один из которых работает в микромощном, а второй – в активном режиме, что обеспечивает высокую энергоэффективность во всех режимах работы и во всем диапазоне напряжения питания.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 2. Типовая схема включения LDO-стабилизатора

Таблица 1. Основные электрические характеристики LDO-стабилизаторов ST

НаименованиеВходное
напряжение, В
Выходное
напряжение, В
Вых.
ток, мА
Падение
напряжения¹, мВ
Потреб. ток (min), мкАSVR², дБШум на выходе³, мкВRMS/ВEnable /Power GoodРекомендуемые характеристики
вых. конденсатора
Корпус
Емкость, мкфESR, Ом
LD39852,5…61,22; 1,8; 2,5; 2,6; 2,7; 2,8; 2,9; 3,0; 3,3; 4,71500,4…60855030+/-1…220,005…5SOT23-5L, TSOT23-5L, CSP (1,57×1,22 мм)
LDS39852,5…61,5; 1,8; 2,5; 2,8; 3,0; 3,3; 5,03000,4…150855030+/-2,2…220,005…5SOT23-5L, DFN6 (3×3 мм)
LD390151,5…5,50,8; 1,0; 1,2; 1,25; 1,5; 1,8; 2,5; 3,3150до 80186229+/-0,33…220,15…2SOT23-5L, SOT666, CSP (1,1×1,1 мм)
LD590152,4…5,50,8; 1,2; 1,5; 1,8; 2,5; 3,0; 3,3150до 150317620+/-0,33…220,05…8SOT323-5L
LD390201,5…5,50,8…5,0200до 200206545+/-0,22…220,05…0,9DFN4 (1×1 мм)
LD39115J1,5…5,51,0; 1,2; 1,4; 1,5; 1,8; 2,5; 2,8; 3,0; 3,315080 (100 мА)206730+/-1…220,1…1,8CSP4 (0,8×0,8 мм)
LD39130S41,5…5,51,0; 1,2; 1,8; 2,5; 2,9; 3,0; 3,3; 4,1; Adj300до 30055 (1)65 (48)38 (100)+/-0,33…220,1…4CSP4 (0,69х0,69 мм)/DFN6 (1,2×1,3 мм)
LD390501,5…5,52,5; 3,3; Adj500до 200206230+/+1…220,05…0,8DFN6 (3×3 мм)
LD391001,5…5,51,2; 2,5; 3,3; Adj1000до 200206585+/+1…220,05…0,15DFN6 (3×3 мм)
LD392001,25…6,03,3; Adj2000до 1351005024+/+1…220,05…1,2DFN6 (3×3 мм), DFN8 (4×4 мм)
LDK1201,9…5,50,8; 1,0; 1,1; 1,2; 1,5; 1,8; 2,5; 2,8; 2,9; 3,0; 3,1; 3,2; 3,3; 3,5; Adj200до 150305551+/-1…220…10SOT23-5L, SOT323-5L, DFN6 (1,2×1,3 мм)
LDK1301,9…5,50,8; 1,1; 1,2; 1,5; 1,8; 2,5; 2,9; 3,0; 3,2; 3,3; Adj300до 200305551+/-1…220…10SOT23-5L, SOT323-5L, DFN6 (1,2×1,3 мм)
LDK2202,5…13,21,2…1,8; 2,5…3,3; 3,6; 4,0; 4,2; 5,0; 6,0; 8,5; 9,0; Adj200до 200404520+/-1…220,05…0,9SOT23-5L, SOT323-5L, DFN6 (1,2×1,3 мм)
LDLN0152,1…5,51,0; 1,2; 1,5; 1,8; 2,5; 2,8; 3,0; 3,3150до 8617896,3…9,9+/-0,33…100,05…0,6DFN6 (2×2 мм)
LDCL0151,8…5,53,3; Adj150до 701205140+/-ЛюбаяЛюбойSOT23-5L
STLQ502,3…121,8; 2,5; 3,3; 5,0; Adj50до 350330560-/-0,22…4,70…10SOT323-5L
STLQ0151,5…5,51,2; 1,5; 1,8; 2,5; 2,8; 3,0; 3,1; 3,3150до 11213075+/-0,47…100,056…6SOT666
ST7152,5…242,5; 3,3; Adj85до 5004,154595-/-0,47…10…1,5SOT23-5L, SOT323-5L, DFN8 (3×3 мм)

Микромощные LDO-стабилизаторы

Как известно, у многих схем с широким диапазоном напряжения питания при повышении напряжения увеличивается потребляемый ток, поэтому для увеличения срока службы комплекта батарей следует стабилизировать напряжение на минимально допустимом уровне, при котором еще не нарушается работа схемы [4]. Однако при этом нужно учитывать ток потребления самого LDO – он должен быть гораздо ниже той разницы, которую мы пытаемся сэкономить. Также нужно учитывать минимальное падение напряжения на стабилизаторе, так как чем оно выше – тем раньше у нас сядут батарейки. И если лет 20 назад разработчикам были доступны только микросхемы семейства КРЕН с типовым потребляемым током более 3 мА, то сейчас выбор гораздо шире.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 3. Внутренняя схема типового LDO-стаби­лизатора (STLQ015)

Для работы в микромощном режиме лучше всего подходит STLQ015 – уникальный стабилизатор с потреблением порядка 1 мкА (до 2,4 мкА при максимальном токе нагрузки) и падением напряжения менее 112 мВ. При этом его выходное напряжение во всем рабочем диапазоне изменяется не более, чем на 3…5%. Схема стабилизатора – простейшая (рисунок 3), без каких-либо дополнительных опций. Чуть выше энергопотребление у STLQ50. Эта микросхема способна работать при входном напряжении до 12 В. А ST715, при потребляемом токе 4,5 мкА и сравнительно невысокой стоимости, способна выдерживать входное напряжение до 26 В. Микросхемы изготавливаются в корпусах средних размеров и идеально подходят для устройств с батарейным питанием – при токе нагрузки не более единиц микроампер даже маленькая батарейка CR2032 в устройстве с STLQ015 будет работать десятки лет!

Микросхема STLQ015 имеет вход включения EN – стабилизатор включается при напряжении на этом входе выше 0,7 В. Однако из-за утечек в канале регулирующего транзистора при работе микросхемы без нагрузки, в выключенном состоянии выходное напряжение может немного повышаться. При наличии нагрузки на выходе (ток порядка единиц…сотен нА и более) этого эффекта удается избежать.

STLQ015 устойчива при емкости выходного конденсатора 0,47…10 мкФ (ESR 0,056…6 Ом), STLQ50 – 0,22…4,7 мкФ (ESR 0…10 Ом), ST715 – 0,47…1 мкФ (ESR 0…1,5 Ом). Емкость входного конденсатора должна быть не менее 1 мкФ (0,1 мкФ для ST715). При удалении стабилизатора на расстояние более 5…10 см от источника питания емкость входного конденсатора рекомендуется значительно увеличить.

Отдельно следует упомянуть микросхему LD39130S – уникальный стабилизатор с автоматическим переключением в микромощный режим Green при снижении тока нагрузки (рисунок 4). На малых токах («спящий режим», ток нагрузки менее 1…2 мА) микросхема работает в экономичном режиме (Green) с типовым потребляемым током порядка 1 мкА. Как только ток нагрузки превысит 10 мА («просыпание» системы), микросхема переходит в нормальный режим с потреблением от 55 мкА и достаточно высокими динамическими характеристиками. Благодаря этой опции микросхема незаменима для устройств с автономным питанием, которые периодически «просыпаются» и в активном режиме требуют повышенной стабильности питающего напряжения.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 4. Внутренняя схема LD39130S

Микросхема оснащена функцией плавного старта с типовым временем включения порядка 100 мкс и способна выдавать в нагрузку до 300 мА с автоматическим ограничением тока на уровне 50 мА при коротком замыкании. Стабилизатор выпускается в четырехвыводном сверхминиатюрном корпусе типа CSP с неотключаемой функцией режима Green и в шестивыводном корпусе типа DFN6 с выводом для принудительного отключения этого режима. Емкость выходного конденсатора может быть в пределах 0,33…22 мкФ (рекомендуется 1 мкФ), его ESR – 0,1…4 Ом.

Малошумящие стабилизаторы с высоким коэффициентом подавления пульсаций напряжения

Для некоторых устройств является критичным не только падение напряжения на канале стабилизатора, но и амплитуда шума и пульсаций в цепях питания. И если раньше для снижения пульсаций приходилось устанавливать на выходе стабилизатора полосовые LC-фильтры, то сейчас в большинстве случаев достаточно просто выбрать более малошумящий LDO-стабилизатор с высоким коэффициентом SVR.

Один из лучших в своем классе – LDLN015. При сравнительно небольшом потребляемом токе (17 мкА) амплитуда шумов на его выходе равна примерно 6,3 мкВ/В, при увеличении тока нагрузки до 150 мА она увеличивается до 9,9 мкВ/В. SVR на частототах до 10 кГц превышает 85 дБ при любом токе нагрузки – достичь таких показателей удалось с помощью дополнительного RC-фильтра и буферного усилителя (рисунок 5). Благодаря использованию довольно мощного регулирующего транзистора минимальное падение на его канале не превышает 86 (максимум – 150) мВ на максимальном токе нагрузки и, при уменьшении тока до 50 мА, снижается примерно до 35 мВ. Микросхема сохраняет стабильность при емкости выходного конденсатора в пределах 0,33…10 мкФ с ESR в пределах 0,05…0,6 Ом или 4,7 мкФ с ESR 0…0,6 Ом, рекомендуется конденсатор емкостью 0,47 мкФ.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 5. Внутренняя схема малошумящего стабилизатора LDLN015

LD59015 при чуть худших характеристиках предъявляет гораздо менее жесткие требования к выходному конденсатору – его ESR может быть 0,05…8 Ом. В отличие от других малошумящих стабилизаторов, этот не содержит промежуточного фильтра и дополнительного усилителя. LD39015 при гораздо меньшем потребляемом токе имеет сходные характеристики и практически нулевое падение напряжения на канале при малых токах нагрузки. Для этого стабилизатора ESR выходного конденсатора должен быть в пределах 0,15…2 Ом.

Стабилизаторы со сверхнизким падением напряжения

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 6. LDO-стабилизаторы со сверхнизким падением напряжения

Единственный способ увеличить КПД линейного регулятора – это уменьшить до минимума падение напряжения на канале регулирующего элемента. Особенно критично это для миниатюрных мощных регуляторов, где каждые дополнительные 50 мВ падения напряжения превращаются в сотни мВт выделяемого тепла, которое весьма сложно рассеивать в компактном корпусе современных устройств. Поэтому для питания таких схем компания STMicroelectronics предлагает разработчикам микросхемы с падением напряжения менее 100 мВ.

Наилучшие характеристики имеет недавно анонсированная ST1L08 – при токе нагрузки до 800 мА минимальное падение на канале ее транзистора составляет всего 70 мВ (рисунок 6)! Из серийно выпускаемых стабилизаторов стоит отметить LD3985 и LDS3985, у которых при уменьшении тока нагрузки до наиболее низкого значения минимальное падение уменьшается до 0,4 мВ. Для снижения шумов эти микросхемы имеют дополнительный буферный усилитель с выводом для подключения внешнего фильтрующего конденсатора (рисунок 7) емкостью 0,01 мкф. Требования к выходному фильтрующему конденсатору минимальные – его емкость должна быть 1 (2,2 для LDS3985)…22 мкф, а ESR – от 0,005 до 5 Ом.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 7. Внутренняя схема LD3985 и LDS3985

Отдельного внимания заслуживает микросхема LDCL015 – при неплохих характеристиках и сверхнизком падении напряжения (до 70 мВ на максимальном токе и до 50 мВ при токе 100 мА) это один из немногих LDO-стабилизаторов, способных работать вообще без входного и выходного конденсаторов! Достичь этого удалось, используя схему на операционном усилителе с достаточным запасом по фазе при любой емкости выходного конденсатора. Но для улучшения динамических характеристик и снижения выходного шума рекомендуется поставить на входе и выходе стабилизатора конденсаторы емкостью от 0,1 мкФ (оптимально – 1 мкФ) с любым ESR.

Мощные стабилизаторы

Некоторые устройства (приемопередатчики, эхолоты, модули GSM, схемы с FPGA) нуждаются в довольно мощном и в то же время малошумящем источнике питания, поэтому для их питания, если нужна высокая энергоэффективность, обычно используют импульсный преобразователь с мощным LDO-стабилизатором на выходе. Учитывая обычно небольшое падение напряжения на канале такого стабилизатора, даже миниатюрная микросхема в корпусе DFN размером 3х3 мм способна без перегрева качественно стабилизировать напряжение при токе до нескольких ампер.

Одни из лучших в этой области – LD39050 (ток нагрузки до 0,5 А), LD39100 (до 1 А) и LD39200 (до 2 А) (рисунок 6). При значении падения напряжения менее 200 мВ они имеют превосходные характеристики – подавление пульсаций на критичных для мощных устройств частотах до 1 кГц достигает 70 дБ, а шум на выходе не превышает 100 мкВ (для LD39200 при токе нагрузки 10 мА – всего 24 мкВ, микросхема имеет промежуточный RC-фильтр). Микросхемы имеют значительный запас по току – у LD39050 ограничение тока происходит на уровне 0,8 А, у LD39100 – 2,5 А, а у LD39200 – 3,5 А. Это позволяет схеме выдерживать кратковременные значительные перегрузки. В дополнение к перечисленному LD39200 имеет защиту от обратного тока – когда выходное напряжение по какой-либо причине выше входного и ток начинает течь через паразитный диод регулирующего транзистора, микросхема переходит в режим ограничения тока. А в выключенном состоянии, при нулевом уровне на входе Enable, и если выходное напряжение больше нуля, LD39200 разряжает выходные конденсаторы небольшим током порядка нескольких микроампер.

Все микросхемы имеют выход Power Good для информирования управляющего микроконтроллера – как только напряжение на выходе превысит 0,92*VOUT – транзистор на этом выходе закрывается и внешняя подтяжка устанавливает высокий логический уровень. Откроется транзистор только после того, как выходное напряжение снизится примерно до 0,80*VOUT, сгенерировав тем самым прерывание для микроконтроллера. Выход представляет собой открытый коллектор, напряжение подтяжки – до 7 В, рекомендуемое сопротивление резистора подтяжки – 100…1000 кОм.

Как и все мощные LDO-стабилизаторы, эти микросхемы предъявляют повышенные требования к трассировке печатной платы – входной и выходной конденсаторы должны быть расположены не далее 10 мм от выводов микросхем. Для улучшения теплоотвода необходимо предусмотреть под центральным контактом микросхемы полигон максимально возможной ширины, который через переходные отверстия соединяется со сплошной землей на нижнем слое.

Для стабильной работы микросхемам необходим выходной конденсатор емкостью 1…22 мкФ, его ESR для LD39050 должен быть в пределах 0,05…0,8 Ом, для LD39100 – 0,05…0,15 Ом. LD39200 менее требовательна – ей достаточно конденсатора с ESR 0,05…1,2 Ом. Рекомендуется использовать входной и выходной конденсаторы емкостью 1 мкФ, максимальная емкость входного конденсатора не ограничена.

Миниатюрные стабилизаторы

Глобальная миниатюризация устройств предъявляет новые требования к стабилизаторам, и LDO производства компании STMicroelectronics достойно их выдерживают – на рынке представлены стабилизаторы в корпусах STAMP и CSP размером от 0,47х0,47 мм (меньше макового зерна), и в пластиковом корпусе DFN размером от 1х1 мм (рисунок 8). Только благодаря переходу на такие корпуса промышленность смогла уменьшить современные мобильные устройства до действительно мобильных размеров.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 8. Сверхминиатюрные LDO-стабилизаторы

Наименьшие размеры имеет стабилизатор LDBL20 в запатентованном компанией корпусе STAMP – при размерах всего 0,47х0,47 мм он способен выдавать в нагрузку ток до 200 мА! Малошумящий стабилизатор LD39115J изготовлен в чуть большем корпусе и при потребляемом токе 20…35 мкА (в зависимости от выходного тока) способен выдавать в нагрузку до 150 мА с линейной зависимостью минимального падения напряжения практически от нуля до 80 мВ при токе 0…100 мА. При этом, когда ток нагрузки изменяется от 1 до 100 мА (длительность фронтов тока равна 5 мкс), просадка выходного напряжения не превышает 40 мВ («пик-пик») – весьма неплохой результат для такого стабилизатора. Микросхема стабильна при емкости выходного конденсатора 1…22 мкФ с ESR в пределах 0,1…1,8 Ом.

Стабилизатор LD39020 имеет встроенный промежуточный RC-фильтр на выходе источника опорного напряжения, поэтому обеспечивает великолепное подавление пульсаций питающего напряжения: на частотах до 1 кГц коэффициент SVR превышает 70 дБ для тока нагрузки 0…100 мА, а на частотах до 10 кГц – превышает 60 дБ для тока 0…200 мА. Микросхема выпускается как со стандартной погрешностью установки выходного напряжения ±2% (LD39020) так и с повышенной до ±0,5% (LD39020А) при температуре 25°С и токе нагрузки 1 мА. Опционально может иметь встроенный транзистор с сопротивлением канала 100 Ом для разряда выходных конденсаторов при нулевом уровне на входе Enable (LD39020D, LD39020AD). Несмотря на миниатюрные размеры корпуса (всего 1х1 мм), его строение достаточно удобное даже для ручного монтажа.

Емкость выходного конденсатора для LD39020 должна быть в пределах 0,22…22 мкФ (рекомендуется по 1 мкФ для входного и выходного), его ESR должен быть 0,05…0,9 Ом.

Также к разряду миниатюрных можно отнести рассмотренный ранее энергоэффективный стабилизатор LD39130 – микросхема имеет версию LD39130SJ в корпусе CSP размером 0,69х0,69 мм.

Стандартные LDO-стабилизаторы

Иногда к стабилизатору не предъявляется никаких особенных требований – подойдет практически любая микросхема с малым падением напряжения, и тогда разработчик просто сортирует по цене список вариантов. Рассмотрим семейства недорогих стабилизаторов производства компании STMicroelectronics, которые способны на равных конкурировать с предложениями от других производителей.

LDK120 и LDK130 – недорогие LDO-стабилизаторы 200 и 300 мА соответственно (рисунок 9), с падением напряжения до 100 мВ при токе нагрузки 100 мА и с довольно неплохими остальными характеристиками. С помощью опционального фильтрующего конденсатора можно значительно улучшить электрические характеристики микросхемы – уменьшить амплитуду выходного шума с примерно 150 до 51 мкВ/В и увеличить подавление пульсаций напряжения питания с 35…30 дБ до 55…50 дБ (на частотах 10…100 кГц). Однако всех этих преимуществ лишена версия микросхемы с нефиксированным выходным напряжением, так как она не имеет входа для подключения фильтрующего конденсатора. Микросхемы выпускаются как в миниатюрных корпусах типа DFN6, так и в подходящих для ручной пайки корпусах SOT23-5L и SOT323-5L, и для нормальной работы им достаточно входного конденсатора емкостью от 1 мкФ и более и выходного – емкостью 1…22 мкФ с ESR практически от нуля до 10 Ом.

что такое ldo регуляторы напряжения. Смотреть фото что такое ldo регуляторы напряжения. Смотреть картинку что такое ldo регуляторы напряжения. Картинка про что такое ldo регуляторы напряжения. Фото что такое ldo регуляторы напряжения

Рис. 9. Внутренняя схема LDK120 и LDK130

LDK220 – малошумящий стабилизатор 200 мА с максимальным входным напряжением до 13,2 В. Один из немногих сравнительно высоковольтных LDO-стабилизаторов, имеющих версию в миниатюрном корпусе размером 1,2х1,3 мм. Емкость выходного конденсатора должна быть в пределах 1…22 мкФ, его ESR – 0,05…0,9 Ом, причем при емкости от 4,7 мкФ его ESR может быть равен практически нулю.

Заключение

LDO-стабилизаторы прочно заняли свое место под солнцем, вытеснив из низковольтных схем классические линейные стабилизаторы. Только с их помощью можно с минимальными затратами увеличить срок службы батарей миниатюрного устройства, одновременно обеспечив его компоненты стабилизированным питанием. Компания STMicroelectronics не останавливается на достигнутом и анонсирует новые микросхемы с еще лучшими характеристиками.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *