что такое lim в физике
Пределы в математике для чайников: объяснение, теория, примеры решений
Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.
В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Понятие предела в математике
Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.
Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.
Звучит громоздко, но записывается очень просто:
Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.
Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:
Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.
В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:
Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.
Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!
Неопределенности в пределах
Неопределенность вида бесконечность/бесконечность
Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?
Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:
Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Еще один вид неопределенностей: 0/0
В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:
Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:
Сократим и получим:
Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.
Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:
Правило Лопиталя в пределах
Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?
Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.
Наглядно правило Лопиталя выглядит так:
Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.
А теперь – реальный пример:
Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:
Вуаля, неопределенность устранена быстро и элегантно.
Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос «как решать пределы в высшей математике». Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Пределы
Пределы — одни из самых трудных сущностей в математике для понимания. Сложно объяснить просто, что такое предел, поэтому чаще всего этого никто и не делает.
И тем более, мало к то из преподавателей может привести пример из жизни, когда пределы все-таки могут пригодится. Но мы попытаемся объяснить так, чтобы было и понятно и несложно и по сути. Как обычно «на пальцах».
Что такое пределы простыми словами
Наверное самое наглядное, что можно вспомнить из истории, это знаменитый парадокс Зенона «Ахиллес и черепаха». Зенон был философом, а не математиком, поэтому мог вполне свободно упражняется в остроумии не заботясь о доказательствах.
Ахиллес и черепаха бегут на перегонки. Черепаха начинает первой, человек догоняет. Ахиллес бежит быстрее, но когда он пробегает 100 шагов, черепаха все рано проползает один. Еще 100 шагов и еще один. Таким образом Ахиллес приближается к черепахе но и она чуть-чуть отдаляется от него. Зенон делает вывод, что Ахиллес будет бесконечно к ней приближаться, но никогда не догонит черепаху!
В этой истории важно не то, что на самом деле она не реальна, а ее «математический смысл». Человек приближается к черепахе но никогда ее не настигает. То есть некий предел (черепаха) к которому стремится Ахиллес.
Говоря простым языком, предел это такое значение, которое нельзя достичь, но можно бесконечно близко к нему приблизится.
То есть, в пределе определенного промежутка времени Ахиллес действительно не догонит черепаху (времени не хватит), но приблизится к ней на бесконечно малое расстояние.
Пределы в математике
Стоит сразу сказать, что определение пределов больше чем одно, потому, что они бывают разные. Есть придел последовательности, а есть предел функции.
Давайте разделим число 10 пополам:
10/2=5, и еще раз, 5/2=2,5 и еще…
Это последовательность n/2: 10…2,5…1,25…
Если делать это 20 раз получится вот такое значение: 0,000019
А если сделать 100 раз, то вот такое: 0,000000000000000000000000000016
Если делить пополам бесконечно, результат будет уменьшатся, в реальной жизни, это будет уже фактически ноль, но в математике, все еще не ноль… Предел этой последовательности будет стремиться к нолю.
Если взять другу последовательность, например n+1. 2…3…4…5… и снова устремимся в бесконечность. Предел этого множества тоже будет стремится к бесконечности.
Еще один пример
Бросаем монетку. Может выпасть «орел», а может и «решка». Теория вероятности утверждает, что шансы всегда 50/50, то есть вероятность «орла» — 1/2=0,5.
Каждый раз, значение реальной вероятности, приближается к расчетным 0,5. Чтобы получить вероятность ровно 0,5 нужно подбросить монетку бесконечное количество раз.
То есть, при условии, что количество бросков стремится к бесконечности предел предел будет равен 0,5.
Это именно та бесконечность из матанализа о которой было сказано в статьях об интегралах и делении на ноль. Это не какое-то определенное число — это понятие.
Предел последовательности
Предел последовательности — это пространство которое содержит все все элементы последовательности начиная с какого-то значения.
А простыми словами, предел последовательности, простыми словами, это такая «область» куда попадают все значения после определенного порога (в нашем случае – А). На изображении ниже она условно показана синей полоской.
ε — это произвольное положительное число.
Можно заметить, что при продолжении вверх последовательности ее значения все равно будут оставаться в пределах «синей полосы».
Можно сказать и так:
Предел числовой последовательности, это число (s на графике) в окрестности которого попадает бесконечно много значений. При этом вне предела, количество значений явно конечно.
Чтобы было еще понятнее: предел последовательности это значение (точка А) выше которого все будет попадать в область не больше s+ε и s-ε. Бесконечное количество таких значений будет «лежать» внутри синей полоски.
Математическим языком можно записать так: s-ε Предел функции простыми словами объяснить также просто. Предел в какой-то произвольной точке — это величина к которой значение функции приближается. Например, f(x)=2x, а х→0 (икс стремится к нулю).
В этом случае предел функции будет равен lim 2x=0. Или в случае если х→2 то предел равен lim 2x=4. Пока все просто. Вот только зачем вычислять пределы, если можно просто выбросить «lim» и расчеты останутся те ми же?….
Зачем нужны пределы
Пределы как раз и нужны тогда, когда мы имеем дело с бесконечностью. Например, бесконечно большими или бесконечно малыми значениями.
Непонятно, что такое «бесконечно большое» или «бесконечно долго», это не какое-то определенное число. С бесконечно малыми значениями та же ситуация, это не «ноль» но как-то очень близко к нему. Тут и выручают пределы.
В точке х=2 — пусто. Потому, что получается 0/0, то есть неопределенность. Но стоит вместо 2 подставить 1,9999999999(9) или 2,000000001(1). Значения бесконечно близкие к 2, но не «два», как график превратится в прямую.
В этом случае речь идет о пределе функции при «икс» стремящемуся к двум, функция стремится к 4.
Такой своеобразный «трюк» в расчетах с заменой знака равенства на стрелочку.
Нет, не совсем. Когда речь идет о пределах, имеется в виду процесс, не важно функция это или множество, но предел описывает процесс в динамике. Тогда как знак «равно» означает статическое состояние.
x=1 и x→1, это совсем не одно и то же.
Примеры из жизни
Зачем все это нужно где применяется пределы в реальных расчетах?
Простое объяснение пределов невозможно, если не привести наглядный пример. Но только где его взять? Существует ли какой-то физический смысл пределов? Не точный аналог но что-то похожее есть.
Можно провести простой эксперимент, взять, например, спичку. Или что-угодно, чего не жалко. Начинаем пытаться сломать спичку, сначала одно усилие, потом чуть больше и еще больше. В один из моментов спичка треснет пополам.
Поздравляем, вы достигли предела прочности. Можно повторить эксперимент с другими спичками и установить, значение при котором спичка ломается.
Что тут общего с пределами из математики, кроме названия.
Есть множество значений силы до предела прочности и оно ограничено, и множество значений после предела прочности, их неограниченное множество. Ведь спичка уже сломана, любое усилие выше предела прочности будет ломать новую и новую спичку. Точно так же как и с пределом функции или множества.
Все, что лежит за пределом, уже не имеет практического значения — спичка не устоит.
Еще один пример, это «практический потолок» летательного аппарата. Это максимальная высота на которую может «взобраться» самолет, чтобы подняться выше будет уже не хватать подъемной силы. Хотя на есть еще и понятие «динамический потолок» — это высота на которую можно подняться хорошенько разогнавшись.
Но, выскочив на эту высоту, через некоторое время самолет все равно опустится на свой «потолок».
Посмотрите на картинку ниже, это наглядный пример такого явления как резонанс.
Колебание моста из-за резонанса
Мост так раскачивается из-за того, что собственная частота колебания совпадает с той частотой с которой его раскачивает ветер, амплитуда колебаний постоянно возрастает и мост разрушается. В этом случае амплитуда стремится к бесконечности, так как в знаменателе формулы находится выражение w0-w (собственная частота колебаний минус вынужденная частота), а так как обе w равны, получается то самое деление на ноль, а значит амплитуда → ∞.
Самое понятное объяснений пределов в реальности, с которым может столкнуться каждый — это сложные банковские проценты по кредиту. И если вы не умеете рассчитывать сложны проценты, не берите кредит. Для тех, кто силен в матанализе совет будет не лишним.
Также может понадобится рассчитать предельную стоимость товара, зная зависимость (функцию) цены от объема продаж или предельный объем производства или много еще чего.
Самый наглядный пример, возможно, это предел в маркетинге. Вот зависимость стоимости клика от количества кликов в контекстной рекламе.
И все же в повседневной жизни обыватель редко встречается с таким понятием как предел функции или последовательности. Поэтому и так сложно понять и принять абстрактные математические формулировки.
Но, если постараться, математика может открыть новые грани реальности, по крайней мере, все это уже не будет казаться таким скучным и непонятным.
Что такое предел функции и как его найти
Общее понятие предела
При каком условии Вам будут совсем не страшны любые задачи, где требуется найти предел функции? Условие следующее: у Вас есть базовый навык деления одних чисел на другие, на очень-очень маленькие числа и на очень-очень большие числа. Успех придет в процессе решения.
А теперь посмотрим, что о пределе функции гласит теория. Впрочем, можно зайти чуть-чуть вперед и сразу перейти к задачам, а потом вернуться к теории. Как удобнее.
Обобщённое понятие предела: число a есть предел некоторой переменной величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a.
Поясним это на примере, который также проиллюстрируем. А после примера приведём общий алгоритм решения пределов.
Запишем приведённый пример на языке формул. Итак, номер окружности возрастает и стремится к бесконечности, то есть . Допустим, существует такой равнобедренный треугольник, что длина диаметра каждой вписанной в него окружности расчитывается по формуле
Величина, которую нам требуется найти, будет записана так:
Lim это и есть предел, а под ним указывается переменная, которая стремится к определённому значению – нулю, любому другому числу, бесконечности.
Теперь вычислим предел, присвоив переменной x значение бесконечность (в более строгом определении это называется «доопределить функцию», с этим определением вы можете ознакомиться в последующих частях главы «Предел»). Примем, что конечная величина, поделенная на бесконечность, равна нулю:
С рассмотренной последовательностью окружностей свяжем другую переменную величину — последовательность сумм их диаметров:
Рассмотрев рисунок снова, обнаружим, что предел последовательности равен h – высоте равнобедренного треугольника. Вообще, предел может быть равен нулю, любому другому числу или бесконечности.
Теперь более строгие определения предела функции, которые Вас могут спросить на экзамене, и для понимания которых потребуется чуть больше внимания.
Предел функции
Предел функции при
Пусть функция f(x) определена на некотором множестве X и пусть дана точка . Возьмём из X последовательность точек, отличных от
:
(1)
сходящуюся к . Значения функции в точках этой последовательности также образуют числовую последовательность
(2)
и можно ставить вопрос о существовании её предела.
Определение 1. Число A называется пределом функции f(x) в точке (или при
), если для любой сходящейся к
последовательности (1) значений аргумента x, отличных от
, соответствующая последовательность (2) сходится к числу A.
Символически это записывается так:
Это означает: чтобы найти предел функции, нужно в функцию вместо x подставить то значение, к которому стремится x.
Пример 1. Найти предел функции при
.
Решение. Подставляем вместо x значение 0. Получаем:
.
Итак, предел данной функции при равен 1.
Кроме того, решённые в этом уроке примеры и любые другие задачи на пределы, можно на проверить на калькуляторе пределов онлайн.
Предел функции при , при
и при
Кроме рассмотренного понятия предела функции при существует также понятие предела функции при стремлении аргумента к бесконечности.
Определение 2. Число A называется пределом функции f(x) при , если для любой бесконечно большой последовательности (1) значений аргумента соответствующая последовательность (2) значений функции сходится к A.
Символически это записывается так: .
Определение 3. Число A называется пределом функции f(x) при (
), если для любой бесконечно большой последовательности значений аргумента, элементы
которой положительны (отрицательны), соответствующая последовательность (2) значений функции сходится к A.
Символически это записывается так: (
).
Это, как и в случае определения 1, означает: чтобы найти предел функции, нужно в функцию вместо x подставить бесконечность, плюс бесконечность или минус бесконечность.
Пример 2. Найти предел функции при
.
Решение. Подставляем вместо x бесконечность. Получаем, что последовательность значений функции является бесконечно малой величиной и поэтому имеет предел, равный нулю:
.
Для наглядности и убедительности, решая данный пример в черновике, можете подставить вместо x супербольшое число. При делении получите супермалое число.
А проверить решение задачи на пределы можно на калькуляторе пределов онлайн.
Основные теоремы о пределах
Теорема 1. (о единственности предела функции). Функция не может иметь более одного предела.
Следствие. Если две функции f(x) и g(x) равны в некоторой окрестности точки , за исключением, может быть, самой точки
, то либо они имеют один и тот же предел при
, либо обе не имеют предела в этой точке.
Теорема 2. Если функции f(x) и g(x) имеют пределы в точке , то:
1) предел алгебраической суммы функций равен алгебраической сумме пределов слагаемых, т.е.
(3)
2) предел произведения функций равен произведению пределов сомножителей, т.е.
(4)
3)предел частного двух функций равен частному от деления предела делимого на предел делителя, если предел делителя не равен нулю, т.е.
(5)
Замечание. Формулы (3) и (4) справедливы для любого конечного числа функций.
Следствие 1. Предел постоянной равен самой постоянной, т.е.
Следствие 2. Постоянный множитель можно выносить за знак предела, т.е.
Пример 3. Найти предел:
А проверить решение задачи на пределы можно на калькуляторе пределов онлайн.
Пример 4. Найти предел:
Решение. Предварительно убедимся, что предел делителя не равен нулю:
Таким образом, формула (5) применима и, значит,
А проверить решение задачи на пределы можно на калькуляторе пределов онлайн.
Теорема 3 (о пределе сложной функции). Если существует конечный предел
а функция f(u) непрерывна в точке , то
Другими словами, для непрерывных функций символы предела и функции можно поменять местами.
Непосредственное применение теорем о пределах, однако, не всегда приводит к цели. Например, нельзя применить теорему о пределе частного, если предел делителя равен нулю. В таких случаях необходимо предварительно тождественно преобразовать функцию, чтобы иметь возможность применить следствие из теоремы 1.
Пример 5. Найти предел:
Решение. Теорема о пределе частного здесь неприменима, так как
Преобразуем заданную дробь, разложив числитель и знаменатель на множители. В числителе получим
корни квадратного трёхчлена (если Вы забыли, как решать квадратные уравнения, то Вам сюда). Теперь сократим дробь и, используя следствие из теоремы 1, вычислим предел данной функции:
Найти предел самостоятельно, а затем посмотреть решение
Пример 6. Найти предел:
Пример 7. Найти предел:
.
Пример 8. Найти предел:
.
Пример 9. Найти предел:
.
Пример 10. Найти предел:
.
Пример 11. Найти пределы:
Решение пределов через раскрытие неопределённостей
При решении примеров 5 и 8 нам уже встретилась неопределённость вида . Эта неопределённость и неопределённость вида
— самые распространённые неопределённости, которые требуется раскрывать при решении пределов.
БОльшая часть задач на пределы, попадающихся студентам, как раз несут в себе такие неопределённости. Для их раскрытия или, точнее, ухода от неопределённостей существует несколько искусственных приёмов преобразования вида выражения под знаком предела. Эти приёмы следующие: почленное деление числителя и знаменателя на старшую степень переменной, домножение на сопряжённое выражение и разложение на множители для последующего сокращения с использованием решений квадратных уравнений и формул сокращённого умножения.
Освоим эти приёмы на примерах.
Неопределённость вида
Пример 12. Раскрыть неопределённость и найти предел
.
Решение. Здесь старшая степень переменной n равна 2. Поэтому почленно делим числитель и знаменатель на :
.
Комментарий к правой части выражения. Стрелками и цифрами обозначено, к чему стремятся дроби после подстановки вместо n значения бесконечность. Здесь, как и в примере 2, степень n в знаменателя больше, чем в числителе, в результате чего вся дробь стремится к бесконечно малой величине или «супермалому числу».
Получаем ответ: предел данной функции при переменной, стремящейся к бесконечности, равен .
Проверить решение задачи на пределы можно на калькуляторе пределов онлайн.
Пример 13. Раскрыть неопределённость и найти предел
.
Решение. Здесь старшая степень переменной x равна 1. Поэтому почленно делим числитель и знаменатель на x:
.
Комментарий к ходу решения. В числителе загоняем «икс» под корень третьей степени, а чтобы его первоначальная степень (1) оставалась неизменной, присваиваем ему ту же степень, что и у корня, то есть 3. Стрелок и дополнительных чисел в этой записи уже нет, так что попробуйте мысленно, но по аналогии с предыдущим примером определить, к чему стремятся выражения в числителе и знаменателе после подстановки бесконечности вместо «икса».
Получили ответ: предел данной функции при переменной, стремящейся к бесконечности, равен нулю.
Проверить решение задачи на пределы можно на калькуляторе пределов онлайн.
Неопределённость вида
Пример 14. Раскрыть неопределённость и найти предел
.
.
Запишем выражение, полученное в результате преобразований и найдём предел функции:
Проверить решение задачи на пределы можно на калькуляторе пределов онлайн.
Пример 15. Раскрыть неопределённость и найти предел
Решение. Теорема о пределе частного здесь неприменима, поскольку
Поэтому тождественно преобразуем дробь: умножив числитель и знаменатель на двучлен, сопряжённый знаменателю, и сократим на x +1. Согласно следствию из теоремы 1, получим выражение, решая которое, находим искомый предел:
Пример 16. Раскрыть неопределённость и найти предел
Решение. Непосредственная подстановка значения x = 0 в заданную функцию приводит к неопределённости вида 0/0. Чтобы раскрыть её, выполним тождественные преобразования и получим в итоге искомый предел:
Раскрыть неопределённости самостоятельно, а затем посмотреть решения
Пример 17. Раскрыть неопределённость и найти предел
.
Пример 18. Раскрыть неопределённость и найти предел
.
Пример 19. Раскрыть неопределённость и найти предел
.