что такое sin угла
Тригонометрия простыми словами
Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».
Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).
Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.
Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.
Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.
Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.
Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.
Значения тригонометрических функций
для первой четверти круга (0° – 90°)
Принцип повтора знаков тригонометрических функций
Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.
В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.
Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.
Тригонометрический круг
Углы в радианах
Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.
Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.
Синус, косинус, тангенс и котангенс. Определения
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Определения тригонометрических функций
Данные определения даны для острого угла прямоугольного треугольника!
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.
Угол поворота
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.
Синус (sin) угла поворота
При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Тригонометрические функции углового и числового аргумента
Основные функции тригонометрии
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.
В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.
sin α = A 1 H O A 1 = y 1 = y
Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.
Таблица СИНУСОВ для углов от 0° до 360° градусов
СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.
α (радианы) | 0 | π/6 | π/4 | π/3 | π/2 | π | √3π/2 | 2π |
---|---|---|---|---|---|---|---|---|
α (градусы) | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
SIN α (СИНУС) | 0 | 1/2 | √ 2/2 | √3 /2 | 1 | 0 | -1 | 0 |
Угол в градусах | Sin (Синус) |
---|---|
0° | 0 |
1° | 0.0175 |
2° | 0.0349 |
3° | 0.0523 |
4° | 0.0698 |
5° | 0.0872 |
6° | 0.1045 |
7° | 0.1219 |
8° | 0.1392 |
9° | 0.1564 |
10° | 0.1736 |
11° | 0.1908 |
12° | 0.2079 |
13° | 0.225 |
14° | 0.2419 |
15° | 0.2588 |
16° | 0.2756 |
17° | 0.2924 |
18° | 0.309 |
19° | 0.3256 |
20° | 0.342 |
21° | 0.3584 |
22° | 0.3746 |
23° | 0.3907 |
24° | 0.4067 |
25° | 0.4226 |
26° | 0.4384 |
27° | 0.454 |
28° | 0.4695 |
29° | 0.4848 |
30° | 0.5 |
31° | 0.515 |
32° | 0.5299 |
33° | 0.5446 |
34° | 0.5592 |
35° | 0.5736 |
36° | 0.5878 |
37° | 0.6018 |
38° | 0.6157 |
39° | 0.6293 |
40° | 0.6428 |
41° | 0.6561 |
42° | 0.6691 |
43° | 0.682 |
44° | 0.6947 |
45° | 0.7071 |
46° | 0.7193 |
47° | 0.7314 |
48° | 0.7431 |
49° | 0.7547 |
50° | 0.766 |
51° | 0.7771 |
52° | 0.788 |
53° | 0.7986 |
54° | 0.809 |
55° | 0.8192 |
56° | 0.829 |
57° | 0.8387 |
58° | 0.848 |
59° | 0.8572 |
60° | 0.866 |
61° | 0.8746 |
62° | 0.8829 |
63° | 0.891 |
64° | 0.8988 |
65° | 0.9063 |
66° | 0.9135 |
67° | 0.9205 |
68° | 0.9272 |
69° | 0.9336 |
70° | 0.9397 |
71° | 0.9455 |
72° | 0.9511 |
73° | 0.9563 |
74° | 0.9613 |
75° | 0.9659 |
76° | 0.9703 |
77° | 0.9744 |
78° | 0.9781 |
79° | 0.9816 |
80° | 0.9848 |
81° | 0.9877 |
82° | 0.9903 |
83° | 0.9925 |
84° | 0.9945 |
85° | 0.9962 |
86° | 0.9976 |
87° | 0.9986 |
88° | 0.9994 |
89° | 0.9998 |
90° | 1 |
Угол в градусах | Sin (Синус) |
---|---|
91° | 0.9998 |
92° | 0.9994 |
93° | 0.9986 |
94° | 0.9976 |
95° | 0.9962 |
96° | 0.9945 |
97° | 0.9925 |
98° | 0.9903 |
99° | 0.9877 |
100° | 0.9848 |
101° | 0.9816 |
102° | 0.9781 |
103° | 0.9744 |
104° | 0.9703 |
105° | 0.9659 |
106° | 0.9613 |
107° | 0.9563 |
108° | 0.9511 |
109° | 0.9455 |
110° | 0.9397 |
111° | 0.9336 |
112° | 0.9272 |
113° | 0.9205 |
114° | 0.9135 |
115° | 0.9063 |
116° | 0.8988 |
117° | 0.891 |
118° | 0.8829 |
119° | 0.8746 |
120° | 0.866 |
121° | 0.8572 |
122° | 0.848 |
123° | 0.8387 |
124° | 0.829 |
125° | 0.8192 |
126° | 0.809 |
127° | 0.7986 |
128° | 0.788 |
129° | 0.7771 |
130° | 0.766 |
131° | 0.7547 |
132° | 0.7431 |
133° | 0.7314 |
134° | 0.7193 |
135° | 0.7071 |
136° | 0.6947 |
137° | 0.682 |
138° | 0.6691 |
139° | 0.6561 |
140° | 0.6428 |
141° | 0.6293 |
142° | 0.6157 |
143° | 0.6018 |
144° | 0.5878 |
145° | 0.5736 |
146° | 0.5592 |
147° | 0.5446 |
148° | 0.5299 |
149° | 0.515 |
150° | 0.5 |
151° | 0.4848 |
152° | 0.4695 |
153° | 0.454 |
154° | 0.4384 |
155° | 0.4226 |
156° | 0.4067 |
157° | 0.3907 |
158° | 0.3746 |
159° | 0.3584 |
160° | 0.342 |
161° | 0.3256 |
162° | 0.309 |
163° | 0.2924 |
164° | 0.2756 |
165° | 0.2588 |
166° | 0.2419 |
167° | 0.225 |
168° | 0.2079 |
169° | 0.1908 |
170° | 0.1736 |
171° | 0.1564 |
172° | 0.1392 |
173° | 0.1219 |
174° | 0.1045 |
175° | 0.0872 |
176° | 0.0698 |
177° | 0.0523 |
178° | 0.0349 |
179° | 0.0175 |
180° | 0 |
Угол | Sin (Синус) |
---|---|
181° | -0.0175 |
182° | -0.0349 |
183° | -0.0523 |
184° | -0.0698 |
185° | -0.0872 |
186° | -0.1045 |
187° | -0.1219 |
188° | -0.1392 |
189° | -0.1564 |
190° | -0.1736 |
191° | -0.1908 |
192° | -0.2079 |
193° | -0.225 |
194° | -0.2419 |
195° | -0.2588 |
196° | -0.2756 |
197° | -0.2924 |
198° | -0.309 |
199° | -0.3256 |
200° | -0.342 |
201° | -0.3584 |
202° | -0.3746 |
203° | -0.3907 |
204° | -0.4067 |
205° | -0.4226 |
206° | -0.4384 |
207° | -0.454 |
208° | -0.4695 |
209° | -0.4848 |
210° | -0.5 |
211° | -0.515 |
212° | -0.5299 |
213° | -0.5446 |
214° | -0.5592 |
215° | -0.5736 |
216° | -0.5878 |
217° | -0.6018 |
218° | -0.6157 |
219° | -0.6293 |
220° | -0.6428 |
221° | -0.6561 |
222° | -0.6691 |
223° | -0.682 |
224° | -0.6947 |
225° | -0.7071 |
226° | -0.7193 |
227° | -0.7314 |
228° | -0.7431 |
229° | -0.7547 |
230° | -0.766 |
231° | -0.7771 |
232° | -0.788 |
233° | -0.7986 |
234° | -0.809 |
235° | -0.8192 |
236° | -0.829 |
237° | -0.8387 |
238° | -0.848 |
239° | -0.8572 |
240° | -0.866 |
241° | -0.8746 |
242° | -0.8829 |
243° | -0.891 |
244° | -0.8988 |
245° | -0.9063 |
246° | -0.9135 |
247° | -0.9205 |
248° | -0.9272 |
249° | -0.9336 |
250° | -0.9397 |
251° | -0.9455 |
252° | -0.9511 |
253° | -0.9563 |
254° | -0.9613 |
255° | -0.9659 |
256° | -0.9703 |
257° | -0.9744 |
258° | -0.9781 |
259° | -0.9816 |
260° | -0.9848 |
261° | -0.9877 |
262° | -0.9903 |
263° | -0.9925 |
264° | -0.9945 |
265° | -0.9962 |
266° | -0.9976 |
267° | -0.9986 |
268° | -0.9994 |
269° | -0.9998 |
270° | -1 |
Угол | Sin (Синус) |
---|---|
271° | -0.9998 |
272° | -0.9994 |
273° | -0.9986 |
274° | -0.9976 |
275° | -0.9962 |
276° | -0.9945 |
277° | -0.9925 |
278° | -0.9903 |
279° | -0.9877 |
280° | -0.9848 |
281° | -0.9816 |
282° | -0.9781 |
283° | -0.9744 |
284° | -0.9703 |
285° | -0.9659 |
286° | -0.9613 |
287° | -0.9563 |
288° | -0.9511 |
289° | -0.9455 |
290° | -0.9397 |
291° | -0.9336 |
292° | -0.9272 |
293° | -0.9205 |
294° | -0.9135 |
295° | -0.9063 |
296° | -0.8988 |
297° | -0.891 |
298° | -0.8829 |
299° | -0.8746 |
300° | -0.866 |
301° | -0.8572 |
302° | -0.848 |
303° | -0.8387 |
304° | -0.829 |
305° | -0.8192 |
306° | -0.809 |
307° | -0.7986 |
308° | -0.788 |
309° | -0.7771 |
310° | -0.766 |
311° | -0.7547 |
312° | -0.7431 |
313° | -0.7314 |
314° | -0.7193 |
315° | -0.7071 |
316° | -0.6947 |
317° | -0.682 |
318° | -0.6691 |
319° | -0.6561 |
320° | -0.6428 |
321° | -0.6293 |
322° | -0.6157 |
323° | -0.6018 |
324° | -0.5878 |
325° | -0.5736 |
326° | -0.5592 |
327° | -0.5446 |
328° | -0.5299 |
329° | -0.515 |
330° | -0.5 |
331° | -0.4848 |
332° | -0.4695 |
333° | -0.454 |
334° | -0.4384 |
335° | -0.4226 |
336° | -0.4067 |
337° | -0.3907 |
338° | -0.3746 |
339° | -0.3584 |
340° | -0.342 |
341° | -0.3256 |
342° | -0.309 |
343° | -0.2924 |
344° | -0.2756 |
345° | -0.2588 |
346° | -0.2419 |
347° | -0.225 |
348° | -0.2079 |
349° | -0.1908 |
350° | -0.1736 |
351° | -0.1564 |
352° | -0.1392 |
353° | -0.1219 |
354° | -0.1045 |
355° | -0.0872 |
356° | -0.0698 |
357° | -0.0523 |
358° | -0.0349 |
359° | -0.0175 |
360° | 0 |
Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.
Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».
Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.
Чему равен синус 45? …
— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071
Что такое синус
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы поговорим о том, что такие СИНУС.
Наверняка многие знают, что это понятие относится к математике. Все мы учились в школе и проходили тригонометрию.
С понятиями СИНУС, КОСИНУС, ТАНГЕНС и КОТАНГЕНС школьники знакомятся в 8 классе.
И сейчас без этих знаний не обойтись на ЕГЭ. И задачки по тригонометрии обязательно входят в программу тестов единого государственного экзамена.
Так что эта статья будет в первую очередь полезна старшеклассникам. А читателям более старшего возраста будет полезно лишний раз освежить давно забытые знания.
Что такое тригонометрия
Но давайте начнем совсем с азов. Раз уж мы сказали, что СИНУС – это некая тригонометрическая функция, давайте расскажем и что такое тригонометрия.
Тригонометрия – это раздел математики, который был основан еще в Древней Греции. Само слово состоит из двух половин «τρίγωνον» и «μετρέω», что можно дословно перевести как «изучение треугольников».
Впервые нечто похожее на тригонометрические функции появилось в Древней Греции. Во всяком случае, их можно отследить по трудам Евклида и Архимеда, то есть в III веке до нашей эры.
Хотя ученые не исключают, что похожими вычислениями пользовались и при строительстве Египетских пирамид. А это уже 2-2,5 тысячи лет до нашей эры.
И опять же, пирамиды ведь имеют треугольную форму (в плоскости). И тригонометрия связана напрямую с треугольниками. Возможно совпадение, а возможно и нет.
Правда, в тригонометрии рассматривают конкретные треугольники – прямоугольные. Напомним, это такие фигуры, у которых две стороны из трех пересекаются друг с другом под углом 90 градусов.
Выглядит такой треугольник вот так:
У такого треугольника стороны имеют определенные названия:
КАТЕТЫ – это стороны, которые пересекаются под прямым углом.
В нашем случае это стороны АВ и ВС. Это название также имеет древнегреческие корни. Так, слово «káthetos» переводится как «перпендикуляр, опущенный, ответственный».
ГИПОТЕНУЗА – сторона, которая идет под наклоном и соединяет между собой два катета.
В нашем случае это отрезок АС. Слово также родом из Древней Греции, «ὑποτείνουσα» означает «натянутая». И это очень хорошо характеризует этот отрезок, ведь он действительно выглядит как натянутая струна между двух опор. И даже если перевернуть треугольник, это ощущение не изменится.
А вот теперь мы подобрались к самому главному, определению СИНУСА. Это величина не существует сама по себе. Она имеет отношение к какому-то углу треугольника. А конкретно к углам α (альфа) и β (бета), которые наглядно показаны на следующем рисунке.
А вот теперь долгожданное определение:
СИНУС угла – это отношение противолежащего катета к гипотенузе.
Чтобы было понятно, о чем речь, взгляните еще раз на наш рисунок прямоугольного треугольника. В данном случае, противолежащим катетом к углу α будет сторона ВС. А противолежащим катетом к углу β будет сторона АС.
Соответственно, катет ВС для угла α будет прилежащим. И точно таким же будет катет ВС для угла β.
Конкретные формулы синусов будут такими:
Значения синусов
Чаще всего школьники имеют дело с определенными углами. Например, 30, 45, 60, 90 градусов и так далее. И чтобы не высчитывать каждый раз значение тригонометрических функций через стороны треугольника, есть уже готовые таблицы:
Вместо заключения
СИНУС – это не единственная тригонометрическая функция, которую проходят в школе. Есть еще и другие, и все они также связаны с прямоугольным треугольником.
А называются они вот так:
Вот и все, что мы хотели рассказать о тригонометрической функции СИНУС.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (3)
Вот я вроде школу давно окончил, а вот все равно помню все. Потому что учили нас на совесть, а не спустя рукава. Вот скажите мне, а где в школах есть такое, что если ученик не понял, то учитель был готов потратить на него субботу и воскресенье чтобы объяснить дополнительно? Именно поэтому даже ярые троешники что-то знали.
Сейчас если ты в школе не понял, то все. Я дочери сам объяснял все по синусам, хотя и не учитель вообще. И кстати в современных учебниках материал очень плохо подан. Качаю старые советские, там куда понятнее. У вас кстати в статье хорошо рассказано. Я кстати в свое время так и запоминал, что это противоположный катет к гипотенузе.
Вспомнить никогда не будет лишним. Согласна с вами, Владимир, учили нам на совесть, спасибо нашим учителям.
«Соответственно, катет ВС для угла α будет прилежащим.»
Ошибка, для угла α прилежащим будет катет AC!