что такое sin угла

Тригонометрия простыми словами

Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».

Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).

Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.

Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.

Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.

Значения тригонометрических функций
для первой четверти круга (0° – 90°)

Принцип повтора знаков тригонометрических функций

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.

В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.

Тригонометрический круг

Углы в радианах

Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.

Источник

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Данные определения даны для острого угла прямоугольного треугольника!

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Угол поворота

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

Синус (sin) угла поворота

При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Основные функции тригонометрии

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Источник

Таблица СИНУСОВ для углов от 0° до 360° градусов

СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
SIN α (СИНУС)01/2 2/23 /210-10

Полная таблица синусов для углов от 0° до 360° с шагом всего в 1°

Угол в градусахSin (Синус)
0
0.0175
0.0349
0.0523
0.0698
0.0872
0.1045
0.1219
0.1392
0.1564
10°0.1736
11°0.1908
12°0.2079
13°0.225
14°0.2419
15°0.2588
16°0.2756
17°0.2924
18°0.309
19°0.3256
20°0.342
21°0.3584
22°0.3746
23°0.3907
24°0.4067
25°0.4226
26°0.4384
27°0.454
28°0.4695
29°0.4848
30°0.5
31°0.515
32°0.5299
33°0.5446
34°0.5592
35°0.5736
36°0.5878
37°0.6018
38°0.6157
39°0.6293
40°0.6428
41°0.6561
42°0.6691
43°0.682
44°0.6947
45°0.7071
46°0.7193
47°0.7314
48°0.7431
49°0.7547
50°0.766
51°0.7771
52°0.788
53°0.7986
54°0.809
55°0.8192
56°0.829
57°0.8387
58°0.848
59°0.8572
60°0.866
61°0.8746
62°0.8829
63°0.891
64°0.8988
65°0.9063
66°0.9135
67°0.9205
68°0.9272
69°0.9336
70°0.9397
71°0.9455
72°0.9511
73°0.9563
74°0.9613
75°0.9659
76°0.9703
77°0.9744
78°0.9781
79°0.9816
80°0.9848
81°0.9877
82°0.9903
83°0.9925
84°0.9945
85°0.9962
86°0.9976
87°0.9986
88°0.9994
89°0.9998
90°1

Полная таблица синусов для углов от 91° до 180°

Угол в градусахSin (Синус)
91°0.9998
92°0.9994
93°0.9986
94°0.9976
95°0.9962
96°0.9945
97°0.9925
98°0.9903
99°0.9877
100°0.9848
101°0.9816
102°0.9781
103°0.9744
104°0.9703
105°0.9659
106°0.9613
107°0.9563
108°0.9511
109°0.9455
110°0.9397
111°0.9336
112°0.9272
113°0.9205
114°0.9135
115°0.9063
116°0.8988
117°0.891
118°0.8829
119°0.8746
120°0.866
121°0.8572
122°0.848
123°0.8387
124°0.829
125°0.8192
126°0.809
127°0.7986
128°0.788
129°0.7771
130°0.766
131°0.7547
132°0.7431
133°0.7314
134°0.7193
135°0.7071
136°0.6947
137°0.682
138°0.6691
139°0.6561
140°0.6428
141°0.6293
142°0.6157
143°0.6018
144°0.5878
145°0.5736
146°0.5592
147°0.5446
148°0.5299
149°0.515
150°0.5
151°0.4848
152°0.4695
153°0.454
154°0.4384
155°0.4226
156°0.4067
157°0.3907
158°0.3746
159°0.3584
160°0.342
161°0.3256
162°0.309
163°0.2924
164°0.2756
165°0.2588
166°0.2419
167°0.225
168°0.2079
169°0.1908
170°0.1736
171°0.1564
172°0.1392
173°0.1219
174°0.1045
175°0.0872
176°0.0698
177°0.0523
178°0.0349
179°0.0175
180°0

Таблица синусов для углов 181° — 270°

УголSin (Синус)
181°-0.0175
182°-0.0349
183°-0.0523
184°-0.0698
185°-0.0872
186°-0.1045
187°-0.1219
188°-0.1392
189°-0.1564
190°-0.1736
191°-0.1908
192°-0.2079
193°-0.225
194°-0.2419
195°-0.2588
196°-0.2756
197°-0.2924
198°-0.309
199°-0.3256
200°-0.342
201°-0.3584
202°-0.3746
203°-0.3907
204°-0.4067
205°-0.4226
206°-0.4384
207°-0.454
208°-0.4695
209°-0.4848
210°-0.5
211°-0.515
212°-0.5299
213°-0.5446
214°-0.5592
215°-0.5736
216°-0.5878
217°-0.6018
218°-0.6157
219°-0.6293
220°-0.6428
221°-0.6561
222°-0.6691
223°-0.682
224°-0.6947
225°-0.7071
226°-0.7193
227°-0.7314
228°-0.7431
229°-0.7547
230°-0.766
231°-0.7771
232°-0.788
233°-0.7986
234°-0.809
235°-0.8192
236°-0.829
237°-0.8387
238°-0.848
239°-0.8572
240°-0.866
241°-0.8746
242°-0.8829
243°-0.891
244°-0.8988
245°-0.9063
246°-0.9135
247°-0.9205
248°-0.9272
249°-0.9336
250°-0.9397
251°-0.9455
252°-0.9511
253°-0.9563
254°-0.9613
255°-0.9659
256°-0.9703
257°-0.9744
258°-0.9781
259°-0.9816
260°-0.9848
261°-0.9877
262°-0.9903
263°-0.9925
264°-0.9945
265°-0.9962
266°-0.9976
267°-0.9986
268°-0.9994
269°-0.9998
270°-1

Таблица синусов для углов от 271° до 360°

УголSin (Синус)
271°-0.9998
272°-0.9994
273°-0.9986
274°-0.9976
275°-0.9962
276°-0.9945
277°-0.9925
278°-0.9903
279°-0.9877
280°-0.9848
281°-0.9816
282°-0.9781
283°-0.9744
284°-0.9703
285°-0.9659
286°-0.9613
287°-0.9563
288°-0.9511
289°-0.9455
290°-0.9397
291°-0.9336
292°-0.9272
293°-0.9205
294°-0.9135
295°-0.9063
296°-0.8988
297°-0.891
298°-0.8829
299°-0.8746
300°-0.866
301°-0.8572
302°-0.848
303°-0.8387
304°-0.829
305°-0.8192
306°-0.809
307°-0.7986
308°-0.788
309°-0.7771
310°-0.766
311°-0.7547
312°-0.7431
313°-0.7314
314°-0.7193
315°-0.7071
316°-0.6947
317°-0.682
318°-0.6691
319°-0.6561
320°-0.6428
321°-0.6293
322°-0.6157
323°-0.6018
324°-0.5878
325°-0.5736
326°-0.5592
327°-0.5446
328°-0.5299
329°-0.515
330°-0.5
331°-0.4848
332°-0.4695
333°-0.454
334°-0.4384
335°-0.4226
336°-0.4067
337°-0.3907
338°-0.3746
339°-0.3584
340°-0.342
341°-0.3256
342°-0.309
343°-0.2924
344°-0.2756
345°-0.2588
346°-0.2419
347°-0.225
348°-0.2079
349°-0.1908
350°-0.1736
351°-0.1564
352°-0.1392
353°-0.1219
354°-0.1045
355°-0.0872
356°-0.0698
357°-0.0523
358°-0.0349
359°-0.0175
360°0

Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.

Чему равен синус 45? …

— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071

Источник

Что такое синус

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы поговорим о том, что такие СИНУС.

Наверняка многие знают, что это понятие относится к математике. Все мы учились в школе и проходили тригонометрию.

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

С понятиями СИНУС, КОСИНУС, ТАНГЕНС и КОТАНГЕНС школьники знакомятся в 8 классе.

И сейчас без этих знаний не обойтись на ЕГЭ. И задачки по тригонометрии обязательно входят в программу тестов единого государственного экзамена.

Так что эта статья будет в первую очередь полезна старшеклассникам. А читателям более старшего возраста будет полезно лишний раз освежить давно забытые знания.

Что такое тригонометрия

Но давайте начнем совсем с азов. Раз уж мы сказали, что СИНУС – это некая тригонометрическая функция, давайте расскажем и что такое тригонометрия.

Тригонометрия – это раздел математики, который был основан еще в Древней Греции. Само слово состоит из двух половин «τρίγωνον» и «μετρέω», что можно дословно перевести как «изучение треугольников».

Впервые нечто похожее на тригонометрические функции появилось в Древней Греции. Во всяком случае, их можно отследить по трудам Евклида и Архимеда, то есть в III веке до нашей эры.

Хотя ученые не исключают, что похожими вычислениями пользовались и при строительстве Египетских пирамид. А это уже 2-2,5 тысячи лет до нашей эры.

И опять же, пирамиды ведь имеют треугольную форму (в плоскости). И тригонометрия связана напрямую с треугольниками. Возможно совпадение, а возможно и нет.

Правда, в тригонометрии рассматривают конкретные треугольники – прямоугольные. Напомним, это такие фигуры, у которых две стороны из трех пересекаются друг с другом под углом 90 градусов.

Выглядит такой треугольник вот так:

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

У такого треугольника стороны имеют определенные названия:

КАТЕТЫ – это стороны, которые пересекаются под прямым углом.

В нашем случае это стороны АВ и ВС. Это название также имеет древнегреческие корни. Так, слово «káthetos» переводится как «перпендикуляр, опущенный, ответственный».

ГИПОТЕНУЗА – сторона, которая идет под наклоном и соединяет между собой два катета.

В нашем случае это отрезок АС. Слово также родом из Древней Греции, «ὑποτείνουσα» означает «натянутая». И это очень хорошо характеризует этот отрезок, ведь он действительно выглядит как натянутая струна между двух опор. И даже если перевернуть треугольник, это ощущение не изменится.

А вот теперь мы подобрались к самому главному, определению СИНУСА. Это величина не существует сама по себе. Она имеет отношение к какому-то углу треугольника. А конкретно к углам α (альфа) и β (бета), которые наглядно показаны на следующем рисунке.

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

А вот теперь долгожданное определение:

СИНУС угла – это отношение противолежащего катета к гипотенузе.

Чтобы было понятно, о чем речь, взгляните еще раз на наш рисунок прямоугольного треугольника. В данном случае, противолежащим катетом к углу α будет сторона ВС. А противолежащим катетом к углу β будет сторона АС.

Соответственно, катет ВС для угла α будет прилежащим. И точно таким же будет катет ВС для угла β.

Конкретные формулы синусов будут такими:

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

Значения синусов

Чаще всего школьники имеют дело с определенными углами. Например, 30, 45, 60, 90 градусов и так далее. И чтобы не высчитывать каждый раз значение тригонометрических функций через стороны треугольника, есть уже готовые таблицы:

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

Вместо заключения

СИНУС – это не единственная тригонометрическая функция, которую проходят в школе. Есть еще и другие, и все они также связаны с прямоугольным треугольником.

А называются они вот так:

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

что такое sin угла. Смотреть фото что такое sin угла. Смотреть картинку что такое sin угла. Картинка про что такое sin угла. Фото что такое sin угла

Вот и все, что мы хотели рассказать о тригонометрической функции СИНУС.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (3)

Вот я вроде школу давно окончил, а вот все равно помню все. Потому что учили нас на совесть, а не спустя рукава. Вот скажите мне, а где в школах есть такое, что если ученик не понял, то учитель был готов потратить на него субботу и воскресенье чтобы объяснить дополнительно? Именно поэтому даже ярые троешники что-то знали.

Сейчас если ты в школе не понял, то все. Я дочери сам объяснял все по синусам, хотя и не учитель вообще. И кстати в современных учебниках материал очень плохо подан. Качаю старые советские, там куда понятнее. У вас кстати в статье хорошо рассказано. Я кстати в свое время так и запоминал, что это противоположный катет к гипотенузе.

Вспомнить никогда не будет лишним. Согласна с вами, Владимир, учили нам на совесть, спасибо нашим учителям.

«Соответственно, катет ВС для угла α будет прилежащим.»

Ошибка, для угла α прилежащим будет катет AC!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *