что такое smart dust

«Умная пыль»: как устроен самый маленький компьютер Michigan Micro Mote

В марте прошлого года программа AlphaGo, разработанная Google DeepMind, одержала победу над одним из лучших мастеров го в мире — Ли Седолем (Lee Sedol). Эта серия игр стала показателем того, на что способны нейронные сети. И они находят применение в других (менее глобальных) приложениях, например программах для обнаружения вредоносного ПО или перевода текста на изображениях.

Ожидается, что в ближайшее время стоимость рынка программного обеспечения, использующего возможности глубокого обучения, превысит 1 миллиард долларов. Поэтому исследователи занимаются проектированием специальных чипов, способных справиться с такими приложениями.

Среди них выделяются Google, Nvidia, Qualcomm и др. Но сегодня мы бы хотели поговорить о разработке ученых Мичиганского университета — проекте Michigan Micro Mote — компьютере объемом в один кубический миллиметр.

Генеральный директор SoftBank Масаёси Сон (Masayoshi Son) предположил, что к 2035 году количество гаджетов Интернета вещей достигнет 1 триллиона. Однако у современных устройств, например камер, микрофонов, замков, термостатов, есть недостаток — они не способны анализировать информацию самостоятельно, потому постоянно передают её в облако, затрачивая энергию.

Исследователи из Мичиганского университета поставили перед собой задачу решить эту проблему и сделать умные и маленькие компьютеры с сенсорами для IoT.

«Сложно представить, сколько данных сгенерирует триллион устройств, — говорит профессор Мичиганского университета Дэвид Блааув (David Blaauw). — Создав маленькие энергоэффективные сенсоры, способные проводить анализ «на лету», мы сделаем наше окружение более безопасным и сэкономим электричество»

Именно проблему энергопотребления должен решить компьютер Michigan Micro Mote, который настолько маленький, что сопоставим размерами с рисовым зернышком.

Тем не менее он является полнофункциональной вычислительной системой, способной действовать как умный датчик. Например, его используют для мониторинга внутриглазного давления.

Удивительно маломощный

В основе решения лежит крошечный процессор Phoenix с очень низким энергопотреблением. Процессор Phoenix разделен на ядро и периферию. Ядро состоит из 8-битного CPU, 52-х 40-битных ЗУ с произвольным доступом для данных (DMEM), 64-х 10-битных ЗУ с произвольным доступом (IMEM) и 64-х 10-битных ПЗУ (IROM) для команд, а также блока управления электропитанием.

Периферия включает в себя контрольный таймер и датчик температуры, но к их числу можно добавить еще 8 сенсоров, в зависимости от требуемого функционала.

что такое smart dust. Смотреть фото что такое smart dust. Смотреть картинку что такое smart dust. Картинка про что такое smart dust. Фото что такое smart dust

Схема процессора Phoenix (Источник)

Ядро и периферия взаимодействуют с помощью системной шины, использующей простой асинхронный протокол. Большую часть времени процессор Phoenix проводит в режиме готовности. Контрольный таймер, который является осциллятором с низким потреблением тока, «будит» процессор и запускает процесс обработки и сохранения показаний температурного датчика. После выполнения задачи, процессор возвращается в режим готовности и ожидает следующей команды — такой подход позволяет серьезно сократить энергопотребление.

CPU и другие логические модули могут быть отключены от источников питания, когда их услуги не требуются, а вот память (IMEM и DMEM) — нет, поскольку она должна хранить записанные в неё данные. Поэтому модули SRAM остаются главными потребителями энергии. По этой причине разработчики применяют методики, призванные снизить утечки тока, например высокий уровень напряжения на входах транзисторов. С той же целью была увеличена длительность стробирующего импульса.

что такое smart dust. Смотреть фото что такое smart dust. Смотреть картинку что такое smart dust. Картинка про что такое smart dust. Фото что такое smart dust

Архитектура памяти данных (DMEM) с ячейкой SRAM (Источник)

Чтобы еще сильнее снизить энергопотребление, DMEM работает с так называемым списком свободной памяти. Этот список, управляемый CPU, содержит информацию об используемых строках в памяти DMEM. DMEM имеет 26 переключателей (каждый подключен к 2 строкам), которые выборочно отключают подачу тока в режиме готовности, учитывая состояние списка свободной памяти.

Разработчики также оптимизировали работу CPU с IMEM и DMEM. Для работы с IMEM используется минимальный набор базовых команд. Длина команды ограничена 10 битами, при этом популярные операции используют гибкие способы адресации, а менее популярные — неявные операнды. Также в процессоре имеется аппаратная поддержка сжатия, чтобы максимизировать емкость памяти.

Отображение адресов виртуальной памяти в DMEM выполняется с использованием фиксированного алгоритма Хаффмана. Сама DMEM разделена на статические и динамически определяемые блоки. Каждые 16 байт виртуальной памяти получают одну строку статического раздела. Если запись в память вызывает переполнение, избыток переносится в динамический раздел по указателю.

что такое smart dust. Смотреть фото что такое smart dust. Смотреть картинку что такое smart dust. Картинка про что такое smart dust. Фото что такое smart dust

Схема температурного датчика (Источник)

Что касается встроенного температурного датчика, то его схема представлена на рисунке выше. Температуронезависимый источник тока (Iref) и источник тока, показания которого меняются согласно абсолютной температуре (Iptat), подключены к кольцевому генератору, переводящему температурную информацию в импульсы. Затем эти сигналы поступают на суммирующий счетчик, генерирующий цифровые данные. Поскольку значение температурного датчика сохранять надолго не требуется, он отключается во время простоев, чтобы дополнительно сэкономить энергию.

В своей работе ученые провели тестирование процессора Phoenix и установили, что он потребляет 297 нВт в активном режиме и всего 29,6 пВт в режиме готовности.

Из чего сделан «бутерброд»

Помимо процессора, Michigan Micro Mote имеет несколько других «слоев», выполняющих свои функции. Одним из них являются солнечные панели — солнечная батарея площадью 1 квадратный миллиметр способна производить 20 нВт мощности.

что такое smart dust. Смотреть фото что такое smart dust. Смотреть картинку что такое smart dust. Картинка про что такое smart dust. Фото что такое smart dust

Разрез Michigan Micro Mote (Источник)

Помимо солнечных батарей, устройство состоит из управляющего модуля, радиомодуля, интерфейса сенсорной системы, самого процессора, батареи и элемента регулирования мощности.

Слои общаются между собой с помощью специально разработанного универсального интерфейса, названного MBus. При этом ученые могут просто заменить один из слоев на другой, реализовав новый тип следящего устройства. Такой дизайн значительно снижает стоимость производства.

Путь в микробудущее

«Сейчас мы работаем над улучшением технологии обмена сообщениями между компьютерами, — говорит Блааув. — Пока что нам удалось достигнуть расстояния в 20 метров. Это серьезное улучшение, поскольку первые версии устройства могли передавать информацию лишь на 50 сантиметров»

Возможности технологии ученые из Мичигана продемонстрировали на конференции ISSCC.

Камнями преткновения к расширению зоны покрытия остаются размер антенны и необходимость увеличения мощности для передачи информации на большие расстояния, что сказывается на энергопотреблении.

Исследователи предпринимают и другие шаги к улучшению микрокомпьютера. Например, они постоянно совершенствуют память устройства — предыдущие поколения Micro Mote использовали лишь 8 килобайт SRAM, что делало их непригодными для обработки звука и видео. Поэтому команда ученых снабдила новые компьютеры флеш-памятью в 1 мегабайт.

Более того, одно из устройств Micro Mote, представленных на ISSCC, имело на борту процессор для глубокого обучения. Микрогаджет оказался способен управлять нейронной сетью, потребляя при этом всего 288 мкВт. Обычно такие задачи требуют больших банков памяти и вычислительных мощностей, предоставляемых современными GPU.

Блааув говорит, что их стартап CubeWorks уже занимается прототипированием устройств и исследованием рынков. Ученые надеются, что через 2 года появятся камеры наблюдения, способные вычислить разыскиваемого правонарушителя прямо среди проходящих мимо людей, и другие умные устройства из мира IoT.

Источник

Оккультные Новости

альтернативный канал новостей

«Умная пыль»: технологии на грани фантастики

Понятие умной пыли (smartdust) ввел Кристофер Пистер из Калифорнийского университета Беркли в 2001 году.

Не совсем привычным для высоких технологий термином «умная пыль» называются миниатюрные сенсоры, которые обладают возможностями вычислений и беспроводной связи, а также памятью для хранения данных и чувствительными элементами для измерения параметров окружающей среды.
«Умная пыль» прекрасно подходит для организации беспроводных сетей, в которых узлы связываются друг с другом по мере надобности. Такая сеть обладает распределенными вычислительными возможностями, полоса пропускания сети растет с ростом ее размеров. Помимо собственно сенсоров, сенсорные сети включают в себя и некоторое количество «шлюзов». Последние нужны для того, чтобы собирать, обрабатывать и направлять дальше информацию с окружающих их сенсоров. На первом этапе развития концепции «умной пыли», создатели сенсоров усиленно стремились к уменьшению их размеров. Однако, опыт их внедрения показал, что миниатюризация не всегда приветствуется в промышленности. Поэтому первые образцы «умной пыли», созданные корпорацией Intel, представляют собой платы размером 3 х 3 см.
Еще одно, уже реализованное применение новых сенсоров, – контроль за системами водоснабжения. Сенсоры устанавливаются на водопроводных трубах и сигнализируют о дрожании трубы, о влажности окружающей среды специальному шлюзу, расположенному где-то на фонаре или на доме в пределах досягаемости беспроводной связи сенсоров. Энергопитание сенсоров – от батареек, а шлюзов – от сети. В Бостоне такая сеть уже успешно эксплуатируется.

Сейчас создается второе поколение сенсоров «умной пыли». В их основе — 32-битный процессор XScale, а для сжатия информации используется специальный процессор, так же как и для обеспечения безопасности. Размеры новых сенсоров меньше, чем у предыдущего поколения почти в два раза. В новых сенсорах – большая RAM и FLASH-память и они могут работать на основе операционной системы Linux. Кроме этого, они обладают высокоскоростными возможностями ввода информации, например, с видеокамер.

Отдельное направление исследований – вопрос энергопитания. Есть, например, проекты питания сенсоров от солнечных батарей размером 10х10 см. Исследуются возможности преобразования вибрации механизмов в электроэнергию. С помощью сенсоров нового поколения планируется реализовать свою идею «проактивных, или упреждающих вычислений».
До сих пор компьютеры делают только то, что им говорит человек. А вот в будущем, наши ПК будут сами предугадывать наши потребности и самостоятельно действовать в наших интересах. Компьютер будет анализировать текущую обстановку, производить упреждающие вычисления и предлагать нам те или иные варианты возможных дальнейших действий, а в ряде случаев даже будет действовать сам, освобождая нас от необходимости совершения рутинных процедур.

Сенсорные сети, состоящие из множества самостоятельных миниатюрных автономных устройств, обладающих возможностями беспроводной связи, будут способны самоорганизовываться в сети и взаимодействовать друг с другом и с «центром», обладая при этом внушительным запасом надежности.

Умная пыль для войны

Концепция «умной пыли» позаимствована из повести Станислава Лема «Непобедимый» и еще недавно рассматривалась как дело далекого будущего. В ее основе лежит идея микроробота — механизма, размер которого исчисляется миллиметрами, а то и микронами. Одиночный микроробот, как и один муравей, практически ни на что не способен. Однако множество их, собранных в одном месте, становится похожим на семью из миллиардов тропических муравьев, уничтожающих все живое на своем пути.

Более мирное применение, к примеру, разведка местности и шпионаж, требует гораздо более сложных программных алгоритмов и возможности использования сложных средств наблюдения и связи. Поэтому, по прогнозам специалистов, оно станет осуществимо с помощью умной пыли не ранее, чем в 2014-2017 гг. Сценарий действий здесь будет следующим. Распыленное в окрестностях важного объекта облако незаметно перемещается в его сторону, попутно выбирая оптимальные места для размещения специализированных субоблачков. Облако видеонаблюдения, каждая пылинка которого представляет собой отдельный пиксель матрицы с интерфейсом связи с соседями, стремится занять лучшую позицию для большего обзора пространства. Жучки (или, возможно, «мошки») устанавливают контроль за звуками. Самая сложная часть, передача информации в штаб разведки, в ближайшее время вряд ли сможет обойтись без засылки агента с устройством, считывающим ее как в современных RFID-системах.

А что в России?

что такое smart dust. Смотреть фото что такое smart dust. Смотреть картинку что такое smart dust. Картинка про что такое smart dust. Фото что такое smart dust

В Британии объединили в рой 50 устройств.

Свои разработки в это области представили недавно британские ученые. Их научный интерес сосредоточился в области исследования иных планет: «умные» устройства размером с песчинку, которые будут разлетаться по ветру, могут помочь, в частности, в изучении Марса.
Такие устройства будут представлять собой компьютерный микрочип, покрытый пластиковой оболочкой, которая сможет менять свою форму при подаче электрического импульса и таким образом двигаться в направлении, определенном оператором. Электронную «пыль» можно помещать в носовую часть космических зондов и выпускать в атмосфере других планет, где они будут разноситься ветром.

С результатами разработок в этой области эксперты из университета Глазго в Шотландии познакомили коллег на собрании Национальной ассоциации астрономов. Доктор Джон Баркер, профессор Центра исследований в области наноэлектроники в Глазго, говорит, что при помощи беспроводных сетей из таких микроустройств радиусом в миллиметр можно будет в случае необходимости формировать рои. По словам Баркера, чипы подходящего размера и устройства существуют уже сегодня.

Если при помощи определенного электрического заряда полимерную оболочку такого устройства «сморщить», то пылинка станет подниматься выше, а если расплющить, то она пойдет вниз. А беспроводные сети позволят сбивать микроустройства в «стаи», и доктор Баркер с коллегами создали математическую модель этого процесса.

«Мы убедились в том, что большинство частиц могут «разговаривать» только с ближайшими соседями, но когда их много, они могут общаться на куда больших расстояниях, — объяснял шотландский ученый. — В ходе моделирования мы добились объединения 50 устройств в единый рой — и сумели это сделать, несмотря на сильный ветер».

Ученые уже продемонстрировали возможности «умной пыли», в которой — в объеме несколько кубических сантиметров — умещаются датчики, источники энергии, устройства цифровой связи и сетевые ячейки. Но если их применять для исследования других планет, то им нужны будут сенсоры, а нынешние химические сенсоры слишком велики, чтобы уместиться в летающую электронную «песчинку». Исследователи надеются, однако, что уже в ближайшие десятилетия появятся датчики куда меньших размеров.

В апреле 2007 года Джон Баркер изучил возможность исследования поверхности Марса с помощью множества миниатюрных беспроводных датчиков, «умной пыли», которые могут перемещаться по поверхности от одной точки к другой, изменяя свою форму. Д-р Баркер разработал компьютерную модель, с помощью которой рассматривал перемещение 30 тыс. миниатюрных датчиков по поверхности Марса. Каждый прибор в модели мог определять свое местоположение, а также изменять свою форму, меняя гладкую поверхность на неровную и наоборот. Датчики гладкой формы легко могут подхватываться и переноситься марсианским ветром, а, приобретая неровную форму, они снова попадают на поверхность Марса за счет увеличения сопротивления среды. Таким образом, изменяя форму приборов, можно управлять их движением. Результаты расчетов показали, что около 70% датчиков смогут успешно преодолеть заданный маршрут длиной 20 км.

Между тем, межпланетные исследования — далеко не единственная сфера применения «умной пыли». В числе других может быть использование микроустройств для сбора информации на поле боя или их внедрение в цемент с тем, чтобы изнутри наблюдать за «здоровьем» мостов, зданий и других сооружений.

Русское решение.

Впрочем, у роботов могут быть и мирные задачи, например исследование околоземного пространства с помощью стаек микроспутников. При этом возникает сложная проблема: как одновременно управлять множеством механизмов. Представим себе, что десятками тысяч роботов нужно управлять из одного центра. Там должен стоять мощный сверхкомпьютер, способный отследить положение каждого робота и дать ему инструкцию. Это требует огромных затрат времени, а кроме того, весьма небезопасно: управляющий центр может выйти из строя. Значительно проще дать возможность каждому роботу принимать самостоятельные решения и координировать свои действия с действиями соседей.

Алгоритм действия, придуманный российскими исследователями из Таганрогского радиотехнического института в 2003 году, таков. Сначала роботы образуют единое облако. Ему сообщают координаты целей. Каждый робот, зная свои координаты и координаты целей, выбирает ближайшую цель и принимает решение, стоит ли к ней двигаться. Для этого он узнает, сколько роботов уже направилось к этой цели. Если их число вполне достаточно, он начинает искать другую цель или остается в резерве. Если — нет, принимает решение об атаке, о чем и оповещает соседей. Так облако весьма быстро распадается на фрагменты, кластеры, которые перемещаются к своим целям.

Процесс кластеризации необходимо периодически возобновлять. Это нужно, чтобы учесть изменения оперативной обстановки. Например, если какой-то робот выбыл из игры, облако должно об этом узнать и быстро заменить его резервным. Точно так же нужно учитывать изменения координат цели — она может слишком сильно удалиться от каких-то роботов кластера. Значит, нужно будет к нему подтянуть дополнительные силы.

Компьютерное моделирование показало, что предложенный подход очень эффективен, а алгоритм принятия решений микророботами столь прост, что его легко воплотить в маленьких электронных мозгах этих миниатюрных созданий. Кроме того, вся процедура оказывается чрезвычайно гибкой, способной быстро учитывать и потери микророботов, и изменения в поведении целей.

США уже активно испытывают «умную пыль».

Разработками так называемой «умной пыли» занимаются и в США. Еще в 2002 году директор исследовательского отдела Intel в Калифорнийском университете в Беркли Ганс Малдер сообщил, что они представляют собой «микроскопические устройства-сенсоры с автономным питанием, обладающие функцией беспроводной связи». По его словам устройства уже существуют и более того, проходят испытания.

«Умная пыль» уже в продаже

Устройства связаны беспроводными линиями передачи и могут передавать данные с сенсоров, контролирующих температуру, скорость ветра, влажность либо иные параметры. Фактически они представляют собой беспроводные роутеры с батарейным питанием. С их помощью можно создавать, например, системы управления производственными процессами либо охранные системы. Скорость обмена данными у «пылинок» относительно низка, что позволяет обеспечить низкое энергопотребление и питание от автономных источников. Это, в свою очередь, позволяет существенно снизить стоимость эксплуатации систем на их основе, поскольку отпадает необходимость в проводке сетей электропитания, а также обеспечивает беспрецедентную гибкость системы.
SmartMesh представляет собой «слой», позволяющий организовать обмен данными между двумя другими «слоями» — датчиками, с одной стороны, и информационной системой, в рамках которой они функционируют, с другой. Каждая «пылинка» представляет собой узел беспроводной сети обмена данными с ультранизким энергопотреблением. Передача данных осуществляется от узла к узлу, аналогично тому, как происходит передача пакетов в сети интернет — за исключением того, что в системе умной пыли применяется вместо TCP/IP, ставшего фактическим промышленным стандартом, иной протокол передачи данных. Еще одно отличие — в том, что разработана технология, позволяющая держать устройства в выключенном состоянии большую часть времени. «Если держать радио все время включенным, — резонно отмечает Крис Пистер, — батарейки протянут лишь считанные недели». Новая технология позволила добиться ошеломляющего результата — отдельная «пылинка» на батарейках АА без их замены может проработать три года. Программное обеспечение Business 2.0, поставляемое в комплекте с «пылинками», позволяет им самим организовать сеть и обеспечить столь низкое энергопотребление.

Недалекое будущее.

Вообще же, сценариев, в которых могли бы быть рационально использованы сенсорные сети, великое множество: от наблюдения за состоянием виноградника (влажность, температура, зрелость, наличие вредоносных насекомых) до полноценной системы обеспечения безопасности, которая сможет контролировать буквально все: от наличия нарушителей в подконтрольной зоне до мониторинга атмосферы на предмет радиации и ядовитых веществ. В идеале же в будущем сенсорами будет оборудовано все — от городских зданий и автомобилей до тела человека.

Американские физики открыли, что нанотрубка резонирует с радиополем. На базе этого они построили приемник, который может принимать сигналы извне на частоте порядка 300-400 мегагерц, то есть радиодиапазон трубки можно настраивать. Трубка служит и антенной, и приемником. Следующая задача для сенсорных сетей в перспективе – это их внедрение на микро— и наноуровне. В организм человека, в здание, в сооружение и так далее. Лет через десять нанотехнологии с нанопередатчиками войдут в нашу повседневную жизнь.

Пока «пылинки» из «умной пыли» если и напоминают традиционную пыль, то только если смотреть на них с очень большого расстояния. Хотя маленькие коробочки микроконтроллеров уже достаточно миниатюрны, чтобы широко использоваться. Но это, как обычно, лишь начало пути.

Хотелось бы, чтобы в России успешно продолжались разработки сетей «умной пыли», потому что мир не стоит на месте. Речь идет о появлении нового сверхчеловека-завоевателя, с встроенным микрочипом в голове и искусственным сердцем, который пока еще топчется на восточных и ближневосточных задворках, но скоро придет в Россию во всем своем нечеловеческом величии.

Источник

Заменит ли «умная пыль» «мыслящий тростник»?

«Мыслящий тростник» — известное словосочетание, которое, характеризуя совокупный умственный потенциал человечества, сформулировал знаменитый французский философ, естествоиспытатель и писатель Блез Паскаль. Сегодня, похоже, для коллективного искусственного интеллекта американскими исследователями придумано новое схожее определение — «умная пыль»!

что такое smart dust. Смотреть фото что такое smart dust. Смотреть картинку что такое smart dust. Картинка про что такое smart dust. Фото что такое smart dust

Заметим, что само понятие «умная пыль» — smartdust введено в научный обиход американским ученым Кристофером Пистером из Калифорнийского университета еще в 2001 году. Впрочем, еще до этого, а именно в 1992 году, в США под эгидой ДАРПА было создано бюро «Microsystems технологическое бюро» (МТО) целью которого являлось создание компактных микроэлектронных и фотонных устройств, таких как, например, микропроцессоры, а также различного рода микроэлектромеханических систем. Работы велись очень активно, в результате чего в Национальной лаборатории Сандиа в тех же 90-х годах была создана модель робота MARV (Miniature Autonomous Robotic Vehicle), объемом всего лишь около одного кубического дюйма.

Дальше, как говорится — больше и уже в 2000 году его размеры удалось уменьшить в четыре раза! Причем, несмотря на свои размеры «машинка» имеет процессор с памятью 8 Кбайт, датчик температуры, микрофон, видеокамеру, химический сенсор. В дальнейшем планировалось оборудовать этого робота беспроводной связью, чтобы несколько таких микророботов могли бы объединяться для решения какой-нибудь общей задачи.

Существует так называемый закон Мура, по которому электронные чипы в процессе совершенствования постоянно уменьшаются, причем не просто абы как, а в два раза каждый 18 месяцев. Но если это так, то очень скоро появятся чипы размером с пылинку, а микроэлектродвигатель размером с маковое зерно будет восприниматься рядом с новыми его образцами, как… слон, стоящий рядом с козявкой, причем «козявка» эта будет работать! Вот и целью МТО, как раз и ориентирующегося на закон Мура, является создание целого класса новых устройств, ориентированных на потребности национальной безопасности, а также частного сектора, как внутри страны, так и за рубежом. Планируется проведение симпозиума в июле месяце этого года, с тем, чтобы провести на нем широкую дискуссию по различным проблемам технологии всех этих микроустройств и поделиться идеями по дальнейшему продвижению в области разработки все более и более совершенных образцов этой «умной пыли».

Читайте также: Пистолет в 3D сможет иметь каждый

Ну, а нужна она, например, может быть для того, чтобы (как это предполагают американские военные) в виде облака окутать, скажем, танк, затем проникнуть через щели и неплотности внутрь машины, ну, а потом по команде взорваться! Добавив такие микродатчики в краску, которой окрашивают самолеты, мы получим возможность получать сведения о состоянии его поверхностей. А если они будут в краске внутри помещений, то они смогут сигнализировать о пожаре, задымлении и даже превышении объемов содержания углекислоты. Конечно, подобная краска будет существенно дороже обычной, так что ее использование в жилых помещениях дело не слишком-то и близкого будущего, но вот на атомных подводных лодках и электростанциях ее вполне можно применять буквально уже завтра — дело лишь за «малым» — создать такие микроустройства и обеспечить им питание. Кстати, образец, размером в один кубический миллиметр, снабженный сенсором температуры, движения и радиопередатчиком сигналов, уже существует. А что такое один миллиметр?!

Очень заманчиво, считает Джошуа Смит, руководитель Лаборатории сенсорных систем при Вашингтонском университете в Сиэтле, покрыть все вокруг такими датчиками и дать им команду отслеживать интересующие нас явления и объекты. Но тут встает проблема их энергетического обеспечения. Впрочем, над этой проблемой сегодня тоже работают, причем сразу в нескольких направлениях. Это могут быть и крошечные солнечные батареи, расположенные прямо на «спине» у этих крошечных роботов, и также термоэлектрогенераторы, преобразующие тепло в электрический ток.

Работы над «умной пылью» идут не только за границей, но и в России. В частности, ученые из Таганрогского государственного радиотехнического института создали математическую модель, позволяющую в принципе понять и как управлять облаками таких микророботов, и как они должны все вместе действовать, чтобы выполнить поставленную задачу. Первоначально они образуют единую массу, которая и получает задание от управляющего компьютера. Каждый робот, определяя свои координаты и координаты цели, прежде всего, узнает, сколько роботов находятся к ней ближе всего и достаточно ли их для выполнения полученной задачи. Если «да», то он ищет другую цель, если «нет» — то устремляется к объекту. Таким образом, из роботов формируются группы, каждая из которых будет выполнять свою задачу.

Красивое решение, что и говорить, вот только оно, как это очень часто бывает в науке, порождает уже совершенно другую проблему. Дело в том, что связь этих микропылинок с центром управления и друг с другом потребует огромных энергозатрат. Впрочем, выход вроде бы тоже уже найден, причем доктором Джоном Байкером из Центра наноэлектроники в Глазго. По его мнению, информацию от одного робота к другому можно передавать по цепочке, что существенно сократит расходы энергии.

Кстати, перемещаться в пространстве они опять-таки могут силой электричества. Например, по твердой поверхности такие устройства смогут передвигаться подобно червячкам-листомерам и даже совершать небольшие прыжки. Ну, а крошечный магнит, встроенный в этого микроробота, позволит им намертво прилипнуть к любой металлической поверхности и по характеру вибрации, уровню шума и прочим показателям сразу же определить и передать на базу, что механизм является его носителем — чья-нибудь «легковушка», сельскохозяйственный комбайн или… танк!

Скорее всего в будущем, причем уже совсем недалеком, тысячи, десятки, сотни тысяч и миллионы таких беспроводных сенсоров могут быть размещены буквально повсюду, работать от различных источников питания многие годы и давать самую различную информацию о происходящем в окружающей нас среде. Но пока такие сенсорные цепи состоят всего лишь из нескольких сотен «пылинок», поскольку их стоимость и трудоемкость изготовления остаются все еще очень высокими. Да и длительность их работы не так уж и велика и исчисляется всего лишь несколькими днями.

Как это всегда бывает в таких случаях, есть немало людей, которые опасаются, что в один далеко не прекрасный день может случиться сбой управления или что-то вроде компьютерного вируса, и вся эта «умная пыль» одновременно выйдет из-под нашего контроля. Не исключают они и злой умысел, поскольку, несмотря на прогресс в области техники, люди в целом добрее друг к другу не становятся. С другой стороны, что три старых добрых закона робототехники, придуманные другим писателем-фантастом Айзеком Азимовым, тоже никто не отменял, и они вполне могут быть заложены и в программу этих микроустройств, и управляющего ими суперкомпьютера. В любом случае прогресс в этой области уже не остановить. И очень может быть, что совсем скоро система охраны вашего авто не только оповестит вас о покушении на него громкими воплями на всю улицу, но и совершенно точно зафиксирует, кто именно пытается вашу машину угнать, вплоть до номера страхового свидетельства и даже цвета глаз.

Ну, а что касается симпозиума, который МТО намеревается провести в июле, то… поживем — узнаем, о чем там будут говорить ученые мужи, и к каким новым и важным выводам они в итоге придут!

Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен

Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *