что такое температурный градиент атмосферы
Температурные градиенты. Стабильность и нестабильность атмосферы.
Очень часто мы слышим слово “градиент” от парапланеристов, давайте вкратце посмотрим, что это за понятие такое и какие они бывают, эти “градиенты”.
Графики изменения температуры от высоты, в метеорологии часто называют градиентом температуры (в математике “градиент” – вектор указывающий направление наибольшего возрастания некоторой величины, а по модулю равный скорости роста этой величины в этом направлении, в естественных науках же, например метеорологии, градиент температуры — увеличение или уменьшение по какому-то направлению температуры среды и т. д. ).
Причем таких градиентов существует несколько. Например адиабатический градиент (АГ) – вертикальный градиент температуры в идеальном газе, находящемся в состоянии гидростатического равновесия в поле силы тяжести в адиабатических условиях. В метеорологии направление вертикального градиента воздуха принято противоположным относительно направления градиента, определённого в математике. Например величину называют «сухоадиабатический градиент (САГ)» (температуры), он же DALR (Dry Adiabatic Lapse Rate) он же Гd.. Он идет со знаком “+”, хотя и показывает направление УМЕНЬШЕНИЯ температуры с высотой в сухоадиабатических условиях (при отсутствии конденсации влаги).
Адиабатический процесс в атмосфере – объем воздуха расширяется и охлаждается, или сжимается и нагревается, при условии отсутствия обмена теплом с окружающей средой.
Если процессы идут с фазовым переходом атмосферной влаги то градиент называется «влажноадиабатический градиент (ВАГ)» (температуры), он же SALR (Saturated Adiabatic Lapse Rate) и он же wet adiabat, moist adiabatic lapse rate (MALR) он же Гm. ВАГ сильно зависит от температуры воздуха и давления, усредненное значение в районе 5 градусов K на км., но в очень холодном воздухе ВАГ приближается к САГ.
t, oC | 40 | 20 | 10 | 0 | -10 | -20 | -30 |
1000мб | 0,32 | 0,44 | 0,54 | 0,66 | 0,78 | 0,88 | 0,98 |
500мб | 0,26 | 0,34 | 0,41 | 0,52 | 0,66 | 0,78 | 0,93 |
Усредненный по тропосфере (до 11 км высоты) градиент называют – стандартным градиентом атмосферы (СГ) или ISAELR (International Standard Atmosphere Environmental Lapse Rate) в ИКАО его принимают 6.49 градусов K на км.
Но это все усредненные градиенты и градиенты описывающие физические свойства воздуха, нас же больше интересует РЕАЛЬНОЕ состояние атмосферы “здесь и сейчас”, то есть истинное изменение температуры с высотой.
Так вот текущий, истинный градиент температуры – всегда изменяется с высотой. По сути температурный градиент это скорость изменения температуры, а значит это лишь разница между температурой на разных высотах, разделенная на расстояние по этим высотам (помним что в метеорологии направление градиента берется “вверх”). То есть фактический градиент считается на каких то отрезках высот, и по разным отрезкам он – разный и на графике температуры от высоты, градиент виден как наклон этого графика.
Кривая изменения температуры по высоте называется – кривой стратификации (КС) или атмосферным градиентом или ATM ELR (Atmospheric Environmental Lapse Rate).
Строится она по результатам исследования (зондирования) атмосферы метеорологическими шарами – зондами. (Отсюда часто название кривой – Sounding).
Зонд поднимаясь вверх делает измерения температуры и влажности на разных уровнях высоты. Обязательно измерения на уровнях стандартных давлений называемые – “стандартными поверхностями”, например давления 925, 850,700, 500, 400 гПа, но часто измерения более частые, что делает данные об атмосфере более точными. Начинается измерение с высоты запуска зонда (уровень земли в данной точке) и кончается в стратосфере. Точки измерения наносят на специальный бланк (Аэрологическая диаграмма) и соединяют отрезками, которые как раз и дают атмосферные градиенты между разными высотами. Соединенные точки на бланке аэрологической диаграммы называют – Кривая Стратификации атмосферы (КС). (хотя она конечно не совсем “кривая” – а ломанная линия)
Пример Кривой Стратификации (Temperature profile) на бланке АД (Тепиграмы)
Стабильность и нестабильность.
Соотношения между Атмосферными Градиентами на участках кривой стратификации и САГ и ВАГ расскажут нам о характере атмосферы – стабильна или не стабильна она.
Что такое стабильное или нестабильное состояние? Проще всего пояснить это на аналогии с состоянием шарика на какой-то поверхности. Оценка его состояния (положения) сводится к оценке действий шарика после разового воздействия на него (выведения из равновесия, например толчка).
Вернемся теперь к атмосфере, она, как и наш шарик, тоже может иметь 3 состояния, в зависимости от того, что произойдет с объемом воздуха (пузырем) если сдвинуть его, например вверх или вниз, вот только силы, действующие на объем воздуха будут другие, это – сила Архимеда (плавучести), сила тяжести, и сила трения (в случае воздуха – вязкостного).
Например, если сдвинуть объем воздуха вверх, то атмосфера будет:
Конечно в реальной атмосфере, из-за присутствия силы трения, перемешивания с окружающим воздухом и теплообменом, в стабильной атмосфере объем воздуха – не вернется сразу точно на прежний уровень а будет колебаться, а в нестабильной, не может все время двигаться с ускорением (в какой-то момент сила трения уравновесит разницу между силой Архимеда и тяжести, и ускорение – прекратится). Но обычно, в метеорологии, в анализе стабильности, этими явлениями пренебрегают.
Анализ нестабильности атмосферы.
Анализ стабильности атмосферы проводят сравнивая градиенты атмосферы со стандартными градиентами САГ (сухоадиабатическим) и ВАГ (влажноадиабатическим). Если подъем/опускание воздуха происходит без конденсации влаги (его температура выше точки росы) то атмосферный градиент сравнивается с сухоадиабатическим. Если атмосферный градиент находится между САГ и ВАГ, то такое состояние атмосферы называют кавазистабильным, так как пока движение воздуха происходит без конденсации – условия стабильные, а если начинается конденсация влаги и атмосферный градиент больше чем ВАГ то условия становятся не стабильными.
Еще раз наглядно:
Важный момент! Если в воздухе начался процесс конденсации то происходит разрыв характеристик при подъеме и при опускании, так как процесс конденсации (выпадения влаги) при перемещении вверх – может идти быстро, и “скрытое тепло” выделяется тоже быстро, перемещение воздуха идет по влажноадиабатическому градиенту, а вот процесс испарения влаги, с поглощением тепла, при обратном движении уже происходит намного медленнее, влага не успевает быстро испарятся с поверхности капелек. Часть капель изымается в виде осадков, часть выпадает в нижележащие слои и испаряется уже там, а те что остаются в объеме который начал опускание тоже не испаряются мгновенно, при опускании такого объема воздуха с капельками, воздух вначале нагревается практически сухоадиабатически, а капельки испаряются чуть позже, выравнивая его температуру. Поэтому, “космы с капельками” могут какое-то время висеть и ниже базы облака.
Так как кривая стратификации (ломанная) состоит из отрезков разных градиентов, то и состояние атмосферы может быть разным в разных слоях воздуха по высоте.
Рассмотрим график ниже. Кривая стратификации (данные зондирования атмосферы (Sounding)) тут обозначена красным, сухоадиабатический градиент представлен зеленым пунктиром, а температуры (изотермы) – сиреневыми сплошными линиями (косоугольные координаты).
Рассмотрим участок по высоте от 1050 до 1000 гПа.
Отрезок Кривой стратификации круче наклонен влево чем линия сухоадиабатического градиента. Значит на этом участке атмосферный градиент суперадиабатический, он больше сухоадиабатического – условия нестабильные (unstable)
Участок атмосферы с нестабильными условиями
Участок по высоте от 1000 до 890 гПа.
Отрезок Кривой Стратификации тут имеет тот же наклон что и линия сухоадиабатического градиента. Значит на этом участке атмосферный градиент сухоадиабатический – условия атмосферы – нейтральные (neutral)
Участок атмосферы с нейтральными условиями
Участок по высоте от 890 до 870 гПа.
Отрезок Кривой Стратификации имеет наклон больше вправо чем линия сухоадиабатического градиента. Более того, он имеет наклон больше вправо чем даже линия изотермы, а значит на этом участке атмосферный градиент изменяет знак – инвертирован. Условия атмосферы – очень стабильные так как это зона температурной инверсии.
Участок атмосферы с очень стабильными условиями (инверсия)
Участок по высоте от 870 до 750 гПа.
Отрезок Кривой Стратификации имеет наклон больше вправо чем линия сухоадиабатического градиента. Условия атмосферы – стабильные (stable).
Участок атмосферы со стабильными условиями
Резюмируя, хочется отметить, что стабильность/нестабильность не управляет погодой – будет ли воздух подниматься или тонуть, она управляет тем – будет ли ПОДНИМАЮЩИЙСЯ воздух продолжать подниматься или ОПУСКАЮЩИЙСЯ воздух продолжать опускаться и с каким ускорением.
Для оценки что именно буде происходить с объемом воздуха, температура которого отличается от температуры окружающей среды, важно знать его начальную скорость, влажность и закон изменения температуры окружающей среды (Кривую стратификации).
Про непосредственный анализ аэрологических диаграмм мы поговорим в следующий раз, но понимание явлений стабильности и нестабильности и термодинамических законов по которым происходит изменение состояние воздуха (градиентов), – это база, без которой нельзя двигаться дальше.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Вертикальный температурный градиент в атмосфере
В общем, мы знаем, что температура уменьшается с высотой. Этот вариант известен под названием вертикальный температурный градиент, и это потому, что источник тепла, излучающий атмосферу, исходит от земли. Таким образом, чем дальше вы удаляетесь от источника, тем холоднее будет воздух.
Этот градиент может быть изменен несколькими процессами: внезапным падением или повышением температуры почвы или сильным ветром. Чтобы лучше понять это, в этом выпуске мы увидим, какова структура атмосферы и почему температура меняется при повышении.
Структура атмосферы
Атмосфера состоит из 5 слоев: тропосфера, стратосфера, мезосфера, термосфера и экзосфера.
Вертикальный температурный градиент
Солнечные лучи не достигают всех частей земного шара одинаково, и они не достигают времен года. Таким образом, в умеренных зонах температурный градиент намного больше, чем в тропической зоне, 1ºC на каждые 155 м высотыиз-за меньшей инсоляции и меньшей толщины атмосферы. Также в этих же областях есть разные вариации, связанные с ориентацией рельефа и удаленностью от экватора, а также от полюсов.
В тропической зоне температура снижается на один градус на каждые 180 м высоты. примерно, поскольку атмосфера более плотная и находится очень близко к экватору. К этому, в дополнение к собственному вращательному движению планеты, создается теплый климат.
Температурные инверсии также происходят в верхней части стратосферы. Напротив, в мезосфере температура в среднем понижается при повышении, то есть вертикальный температурный градиент положительный.
В термосфере температура увеличивается с высотой и, следовательно, вертикальный градиент температуры снова становится отрицательным в этой области атмосферы.
Что такое тепловая инверсия?
Это явление возникает, когда земля быстро охлаждается радиацией, которая, в свою очередь, охлаждает соприкасающийся с ней воздух. И, в свою очередь, более холодный и тяжелый воздух в верхнем слое становится еще холоднее. Таким образом, скорость, с которой два слоя воздуха смешиваются, резко уменьшается.
Обычно это происходит особенно зимой, что приводит к стойким туманам и морозам. Хотя инверсия имеет тенденцию к разрыву через несколько часов, в неблагоприятных условиях может сохраняться несколько дней пока воздух, соприкасающийся с землей, не нагреется и не восстановит циркуляцию в тропосфере.
Яркий пример инвестиций можно увидеть в Известь, за счет тока Гумбольдта. Это океаническое течение охлаждает побережье, а верхние слои, которые более теплые, делают небо очень облачным, и в этом районе более прохладный и сухой климат, чем следовало бы, учитывая его широту.
Тем не менее, если нет изменений в воздушных массах, то есть если в атмосфере нет нестабильности или нет активных фронтов, температура будет увеличиваться по отношению к высоте, в некоторых местах больше, чем в других.
Знаете ли вы, что такое вертикальный температурный градиент и из чего он состоит? Это было вам полезно?
Содержание статьи соответствует нашим принципам редакционная этика. Чтобы сообщить об ошибке, нажмите здесь.
Полный путь к статье: Сетевая метеорология » Метеорология » Вертикальный температурный градиент в атмосфере
Градиент атмосферной температуры
Содержание
Градиент температуры в слоях земной атмосферы
Если вы посмотрите на всю атмосферу Земли в вертикальном направлении, градиент температуры атмосферы (см. Красную линию на соседнем графике) будет обращен в общей сложности три раза, как показано ниже:
В метеорологии ограничиваются температурным градиентом тропосферы и обычно учитывают только его вертикальную составляющую, то есть изменение температуры воздуха с увеличением расстояния от поверхности земли. Однако температурный профиль вышележащих слоев атмосферы не имеет большого значения для погоды.
Основы
теория
Связь между давлением и температурой зависит от изменения состояния. Уменьшение давления воздуха соответствует увеличению высоты и, наоборот, увеличение давления воздуха соответствует уменьшению высоты.
иллюстрация
По мере расширения воздушного шара кинетическая энергия молекул уменьшается, температура воздуха в воздушном шаре измеряется ниже.
С другой стороны, если вы рассматриваете воздушный пакет на постоянной высоте, который подвергается изменению давления воздуха, то это приводит к сжатию или расширению и, следовательно, всегда к изменению температуры, поскольку работа, выполняемая во время изменения объема, компенсируется изменением внутренней энергии газа. должен стать.
Изменения температуры и давления, в свою очередь, могут повлиять на физическое состояние компонентов воздуха, поскольку они возникают в виде газов только при определенных условиях. Это можно увидеть с водяным паром, потому что только он может конденсироваться в жидкую воду или повторно сублимироваться в лед при атмосферных условиях. Поскольку выделяемое тепло влияет на температуру, различают адиабатические градиенты температуры в сухом и влажном состоянии.
Сухой адиабатический температурный градиент
Температура воздуха на высотах
В первых разделах мы познакомились в общих чертах со структурой атмосферы по вертикали и с изменениями температуры с высотой.
Здесь рассмотрим некоторые интересные особенности режима температуры в тропосфере и в вышележащих сферах.
В теплое время года, когда прилегающий к поверхности земли слой воздуха достаточно нагрет, характерно понижение температуры с высотой. При сильном прогреве приземного слоя воздуха величина вертикального градиента температуры превышает даже 1° на каждые 100 м поднятия.
Зимой, при сильном охлаждении поверхности земли и приземного слоя воздуха, вместо понижения наблюдается повышение температуры с высотой, т. е. возникает инверсия температуры. Наиболее сильные и мощные инверсии наблюдаются в Сибири, особенно в Якутии зимой, где преобладает ясная и тихая погода, способствующая излучению и последующему охлаждению приземного слоя воздуха. Очень часто инверсия температуры здесь распространяется до высоты 2—3 км, а разность между температурой воздуха у поверхности земли и верхней границы инверсии нередко составляет 20—25°. Инверсии характерны и для центральных районов Антарктиды. Зимой они бывают в Европе, особенно в восточной ее части, Канаде и других районах. От величины изменения температуры с высотой (вертикального градиента температуры) в большой степени зависят условия погоды и виды движений воздуха по вертикальному направлению.
Устойчивая и неустойчивая атмосфера. Воздух в тропосфере нагревается от подстилающей поверхности. Температура воздуха изменяется с высотой и в зависимости от атмосферного давления. Когда это происходит без обмена тепла с окружающей средой, то такой процесс называется адиабатическим. Поднимающийся воздух производит работу за счет внутренней энергии, которая расходуется на преодоление внешнего сопротивления. Поэтому при поднятии воздух охлаждается, а при опускании нагревается.
Адиабатические изменения температуры происходят по сухоадиабатическому и влажноадиабатическому законам. Соответственно различают и вертикальные градиенты изменения температуры с высотой. Сухоадиабатический градиент — это изменение температуры сухого или влажного ненасыщенного воздуха на каждые 100 м поднятия и опускания его на 1°, а влажноадиабатический градиент — это понижение температуры влажного насыщенного воздуха на каждые 100 м поднятия меньше чем на 1°.
При подъеме или опускании сухого, или ненасыщенного, воздуха температура его изменяется по сухоадиабатическому закону, т. е. соответственно падает или растет на 1° каждые 100 м. Эта величина не изменяется до тех пор, пока воздух при поднятии не достигает состояния насыщения, т. е. уровня конденсации водяного пара. Выше этого уровня вследствие конденсации начинает выделяться скрытая теплота парообразования, которая идет на нагревание воздуха. Это дополнительное тепло уменьшает величину охлаждения воздуха при подъеме. Дальнейшее поднятие насыщенного воздуха происходит уже по влажноадиабатическому закону, и температура его понижается не на 1° на 100 м, а меньше. Так как влагосодержание воздуха зависит от его температуры, то, чем выше температура воздуха, тем больше тепла выделяется при конденсации, а чем ниже температура, тем тепла меньше. Поэтому влажноадиабатический градиент в теплом воздухе меньше, чем в холодном. Например, при температуре у поверхности земли поднимающегося насыщенного воздуха +20° влажноадиабатический градиент в нижней тропосфере составляет 0,33—0,43° на 100 м, а при температуре минус 20° значения его колеблются от 0,78° до 0,87° на 100 м.
Влажноадиабатический градиент зависит и от давления воздуха: чем меньше давление воздуха, тем меньше при одной и той же начальной температуре влажноадиабатический градиент. Это происходит оттого, что при малом давлении плотность воздуха также меньше, следовательно, освободившаяся теплота конденсации идет на нагревание меньшей массы воздуха.
В таблице 15 приведены осредненные величины влажноадиабатического градиента при различной температуре и значениях
давления 1000, 750 и 500 мб, что приблизительно соответствует поверхности земли и высотам 2,5—5,5 км.
В теплое время года вертикальный градиент температуры в среднем равен 0,6—0,7° на 100 м поднятия. Зная температуру у поверхности земли, можно вычислить приближенные значения температуры на различных высотах. Если, например, у поверхности земли температура воздуха равна 28°, то, приняв, что вертикальный градиент температуры в среднем равен 0,7° на 100 м или 7° на каждый километр, получим, что на высоте 4 км температура равна 0°. Температурный градиент зимой в средних широтах над сушей редко превышает 0,4—0,5° на 100 м: Нередки случаи, когда в отдельных слоях воздуха температура с высотой почти не изменяется, т. е. имеет место изотермия.
По величине вертикального градиента температуры воздуха можно судить о характере равновесия атмосферы — устойчивое или неустойчивое.
При устойчивом равновесии атмосферы массы воздуха не проявляют тенденции к вертикальным перемещениям. В этом случае если некоторый объем воздуха сместить вверх, то он возвратится в первоначальное положение.
Устойчивое равновесие бывает тогда, когда вертикальный градиент температуры ненасыщенного воздуха меньше сухоадиабатического градиента, а вертикальный градиент температуры насыщенного воздуха меньше влажноадиабатического. Если при этом условии небольшой объем ненасыщенного воздуха воздействием извне поднять на некоторую высоту, то как только прекратится действие внешней силы, этот объем воздуха возвратится в прежнее положение. Происходит это потому, что поднятый объем воздуха, затратив внутреннюю энергию на свое расширение, при подъеме охлаждался на 1° на каждые 100 м (по сухоадиабатическому закону). Но так как вертикальный градиент температуры окружающего воздуха был меньше сухоадиабатического, то оказалось, что поднятый объем воздуха на данной высоте имел более низкую температуру, чем окружающий воздух. Обладая большей плотностью в сравнении с плотностью окружающего воздуха, он должен опускаться, пока не достигнет первоначального состояния. Покажем это на примере.
Предположим, что у поверхности земли температура воздуха равна 20°, а вертикальный градиент температуры в рассматриваемом слое равен 0,7° на 100 м. При этой величине градиента температура воздуха на высоте 2 км будет равна 6° (рис. 19, а). Под воздействием внешней силы поднятый с поверхности земли на эту высоту объем ненасыщенного или сухого воздуха, охлаждаясь по сухоадиабатическому закону, т. е. на 1° на 100 м, охладится на 20° и примет температуру, равную 0°. Этот объем воздуха окажется на 6° холоднее окружающего воздуха, а значит, и тяжелее вследствие большей плотности. Поэтому он начнет
опускаться, стремясь достичь первоначального уровня, т. е. поверхности земли.
Аналогичный результат получится и в случае подъема насыщенного воздуха, если вертикальный градиент температуры окружающей среды меньше влажноадиабатического. Поэтому при устойчивом состоянии атмосферы в однородной массе воздуха не происходит бурное образование кучевых и кучево-дождевых облаков.
Наиболее устойчивое состояние атмосферы наблюдается при небольших величинах вертикального градиента температуры, и особенно при инверсиях, так как в этом случае над нижним холодным, а следовательно и тяжелым, воздухом располагается более теплый и легкий воздух.
При неустойчивом равновесии атмосферы поднятый с поверхности земли объем воздуха не возвращается в первоначальное положение, а сохраняет движение вверх до уровня, на котором выравниваются температуры поднимающегося и окружающего воздуха. Для неустойчивого состояния атмосферы характерны большие вертикальные градиенты температуры, что вызывается нагреванием нижних слоев воздуха. При этом прогретые внизу массы воздуха, как более легкие, устремляются вверх.
Предположим, например, что ненасыщенный воздух в нижних слоях до высоты 2 км стратифицирован неустойчиво, т. е. его температура
с высотой уменьшается на 1,2° на каждые 100 м, а выше воздух, став насыщенным, имеет устойчивую стратификацию, т. е. его температура понижается уже на 0,6° на каждые 100 м поднятия (рис. 19, б). Попав в такую среду, объем сухого ненасыщенного воздуха станет подниматься по сухоадиабатическому закону, т. е. охлаждаться на 1° на 100 м. Тогда, если его температура у поверхности земли 20°, то на высоте 1 км она станет равной 10°, в то время как температура окружающей среды 8°. Будучи теплее на 2°, а следовательно и легче, этот объем устремится выше. На высоте 2 км он будет теплее окружающей среды уже на 4°, так как его температура достигнет 0°, а температура окружающего воздуха равна —4°. Будучи снова легче, рассматриваемый объем воздуха продолжит свой подъем до высоты 3 км, где его температура станет равной температуре окружающей среды (—10°). После этого свободное поднятие выделенного объема воздуха прекратится.
Для определения состояния атмосферы используются аэрологические диаграммы. Это диаграммы с прямоугольными осями координат, по которым отложены характеристики состояния воздуха. На аэрологических диаграммах нанесены семейства сухих и влажных адиабат, т. е. кривые, графически представляющие изменение состояния воздуха при сухоадиабатическом и влажноадиабатическом процессах.
На рисунке 20 представлена такая диаграмма. Здесь по вертикали изображены изобары, по горизонтали — изотермы (линии одинакового давления воздуха), наклонные сплошные линии — сухие адиабаты, наклонные прерывистые — влажные адиабаты, пунктирные — линии удельной влажности. На приведенной диаграмме нанесены кривые изменения температуры воздуха с высотой в двух пунктах в один и тот же срок наблюдения — 15 часов 3 мая 1965 г. Слева — кривая температуры по данным радиозонда, выпущенного в Ленинграде, справа — в Ташкенте. Из формы левой кривой изменения температуры с высотой следует, что в Ленинграде воздух устойчив. При этом до изобарической поверхности 500 мб вертикальный градиент температуры в среднем равен 0,55° на 100 м. В двух небольших слоях (на поверхностях 900 и 700 мб) зарегистрирована изотермия. Это указывает, что над Ленинградом на высотах 1,5—4,5 км находится атмосферный фронт, разделяющий холодные массы воздуха в нижних полутора километрах от теплового воздуха, расположенного выше. Высота уровня конденсации, определяемая положением температурной кривой по отношению к влажной адиабате, находится около 1 км (900 мб).
В Ташкенте воздух имел неустойчивую стратификацию. До высоты 4 км вертикальный градиент температуры был близок к адиабатическому, т. е. на каждые 100 м поднятия температура уменьшалась на 1°, а выше, до 12 км — больше адиабатического. Вследствие сухости воздуха облакообразования не происходило.
Над Ленинградом переход в стратосферу происходил на высоте 9 км (300 мб), а над Ташкентом значительно выше — около 12 км (200 мб).
При устойчивом состоянии атмосферы и достаточной влажности могут образоваться слоистые облака и туманы, а при неустойчивом состоянии и большом влагосодержании атмосферы возникает термическая конвекция, приводящая к образованию кучевых и кучево-дождевых облаков. С состоянием неустойчивости связано образование ливней, гроз, града, малых вихрей, шквала и т. п. Так называемая «болтанка» самолета, т. е. броски самолета при полете, также вызывается неустойчивым состоянием атмосферы.
Летом обычна неустойчивость атмосферы после полудня, когда нагреваются близкие к земной поверхности слои воздуха. Поэтому ливневые дожди, шквалы и подобные опасные явления погоды чаще наблюдаются после полудня, когда вследствие разбивающейся неустойчивости возникают сильные вертикальные токи — восходящие и нисходящие движения воздуха. По этой причине самолеты, летающие днем на высоте 2—5 км над поверхностью земли, больше подвергаются «болтанке», чем при ночном полете, когда вследствие охлаждения приземного слоя воздуха устойчивость его увеличивается.
Влажность воздуха с высотой также уменьшаете. Почти половина всей влажности сосредоточена в первых полутора километрах атмосферы, а в первых пяти километрах содержится почти 9 /10 всего водяного пара.
Для иллюстрации ежедневно наблюдаемого характера изменения температуры с высотой в тропосфере и нижней стратосфере в различных районах Земли на рисунке 21 приведены три кривые стратификации до высоты 22—25 км. Эти кривые построены по наблюдениям радиозондов в 3 часа дня: две в январе — Олекминск (Якутия) и Ленинград, а третья в июле — Тахта-Базар (Средняя Азия). Для первой кривой (Олекминск) характерно наличие приземной инверсии, характеризующейся повышением температуры от —48° у поверхности земли до —25° на высоте около 1 км. В этот срок тропопауза над Олекминском находилась на высоте 9 км (температура —62°). В стратосфере наблюдалось повышение температуры с высотой, значение которой на уровне 22 км приближалось к —50°. Вторая кривая, представляющая изменение температуры с высотой в Ленинграде, указывает на наличие небольшой приземной инверсии, затем изотермии в большом слое и понижение температуры в стратосфере. На уровне 25 км температура равна —75°. Третья кривая (Тахта-Базар) сильно отличается от северного пункта — Олекминска. Температура у поверхности земли выше 30°. Тропопауза находится на высоте 16 км, а выше 18 км происходит обычное для южного лета повышение температуры с высотой.
Погосян, Х.П. Атмосфера Земли/ Х.П. Погосян [и д.р.]. – М.: Просвещение, 1970.- 318 с.