что такое термистор и для чего он нужен
Термистор и его принцип действия
Для начинающих радиолюбителей этот тип радиодеталей практически не знаком. Хотя они появились еще 1930-х годах, благодаря ученому Самуэлю Рубену. Так что такое терморезистор? Если коротко, то это этот элемент, по сути, одна из разновидностей резистора. Другие названия: термистор, термосопротивление.
Какая его конструкция, какие задачи он выполняет и как он устроен — об этом в этой статье.
Назначение
Если есть в названии этой радиодетали термин «термо» логично предположить, что его назначение необходимо в тех сферах электроники, которые зависимы от температурных режимов:
Это основные области применения, где очень нужны такие детали.
Наибольшее применение типовых терморезисторов нашлось для лимитирования пусковых токов, при запуске различного оборудования.
Как один из примеров можно привести процесс при запуске разного рода аппаратов. Когда подается напряжение к блоку питания, конденсатор моментально начинает набирать емкость, что ведет за собой повышению токовых нагрузок. Если этот процесс не контролировать, возрастает риск повреждения диодного моста.
Терморезистор в блоке питания компьютера
Термисторы из-за своей доступности чаще находят свое использование для таких бытовых устройств, как блок питания (БП). Он защищает электрическую цепь в случае резкого нагрева, контролируя температуру до безопасного уровня.
Как блоки питания, так и выпрямители, у которых есть конденсаторные фильтры, обладают существенным недостатком. При включении устройства конденсатору требуется незначительный промежуток времени на его зарядку. Этого времени хватает на кратковременный бросок тока, превышающий рабочие параметры БП в несколько раз.
Естественно, любое превышение токовых нагрузок нежелательно для электронных схем.
Приведенная выше схема актуальна для БП мощностью не выше 800 Вт.
В режиме ожидания (при выключенном питании) терморезисторы с естественной температурой, которая есть в помещении.
Когда БП включается, всплеск тока гасится сопротивлением NTC-термистора. В дальнейшем эта деталь нагреется и выйдет на рабочий режим, который не влияет на работу схемы питания.
Как такие полупроводники работают
Производители таких деталей допускают их максимальную чувствительность к перемене в температурном режиме. При нагреве число активно заряженных частиц возрастает. От количества таких частиц зависит проводимость элемента.
Важно понимать, что аналогичный полупроводниковый элемент работает по типу подчиненности к температурным режимам металла в составе компонента. В них применяются элементы с содержанием:
Но надо учитывать принцип действия терморезистора. От этого будет зависеть, как он будет работать — на повышение или понижение сопротивления, когда меняется рабочая температура элемента.
Терморезисторы разделяются на такие основные разновидности как — NTC или PTC.
Изделия такого типа обладают отрицательными ТКХ. Их отличие в том, что внутреннее сопротивление термистора способно уменьшаться при увеличении t0, и наоборот. Если температурная нагрузка t0 уменьшается, то сопротивление R увеличивается.
Такие характеристики важны в тех случаях, когда необходимо ограничить пусковой ток при:
Также термистор нужен в блоке питания для понижения зарядных токов.
Терморезисторы NTC-типа находят применение и в автомобильной промышленности, как датчик для автоматического управления системой климат-контроль. Или как датчик контроля перегрева двигателя. Если допустимо безопасный режим превышается, уходит управляющая команда на реле управления и двигатель автоматически глушится.
Элементы NTC-типа — могут быть применены в системах пожаротушения, как датчик пожара, который обнаруживает быстрый рост температуры и включающий пожарную сигнализацию.
На этих миниустройствах может быть нанесена буквенная маркировка или цветовая в виде полосок или колец. Вид рисунка зависит от того где сделан компонент, его типа и ряда других параметров.
Для примера расшифруем маркировку 4D-21.
4D — показывает, что его номинал рассчитан для температур до 24 градусов Цельсия. Цифра 21 — диаметр элемента.
Чтобы правильно подобрать этот элемент существуют специальные таблицы, с рассчитанными параметрами работы. Например, такая как для термисторов SCN-серии:
Аналогичные таблицы помогают выбрать элемент в нужном рабочем диапазоне под свои задачи.
Существуют и PTC — термисторы, у которых ТКС положительный.
При нагреве детали ее внутренне сопротивление растёт. Такие изделия часто можно было встретить в старых цветных телевизионных приемниках с кинескопами.
На сегодняшний день можно выделить два типа деталек РТС — с двумя или тремя выводами.
У изделий с тремя контактами основное отличие в том, что у них два позитрона в виде «таблеток», заключенных в один корпус.
Внешне эти два элемента выглядят практически идентично. Но это обманчивое впечатление.
Они отличаются как размером, так и сопротивлением.
В первом случае рабочий диапазон от 1.4 до 3.7 кОм, а во втором варианте — 17–25 Ом.
Двухвыводные детали чаще всего производятся с добавлением кремния (Si). Выглядят как небольшая таблетка с парой выводов.
РТС элементы чаще всего употребляются для защиты от перегрузок силового оборудования и его перегрева. И для поддержания корректной температуры в безопасно устойчивых диапазонах.
Сфера применения
Более дорогой элемент защиты применяется в сложных производственных процессах, как своего рода предохранитель. К примеру, их могут вмонтировать на исполнительное реле, которое при нагреве этой радиодетали отключает всю электрическую цепь.
Также они нужны для:
Классификация по уровням температур:
Разновидности
Перечислим основные виды типовых терморезисторов:
Основные характеристики
Применяя такие электронные элементы и чтобы знать, что такое терморезистор, надо понимать и учитывать такие характеристики как:
Преимущества
Основные достоинства этих электронных деталей:
Как проверить
Перед тем как проверить термистор необходимо подготовиться:
Дальше все просто. Принцип проверки общий. Для всех элементов такого типа. Щупы прибора подсоединяем к нашей детали и измеряем сопротивление, но:
Для наглядности, как происходит процесс проверки на работоспособность, посмотрим на картинку снизу.
Здесь хорошо видно как при нагревании паяльником сопротивление радиоэлемента уменьшается от значения в 5.1 Ом до величины в 2.7 Ом. Очевидно, что этот элемент работает.
Если все у вас произошло, как написано выше — ваша радиодеталь исправна.
Если вы видите, что сопротивление терморезистора меняется не плавно или вообще ничего не меняется, (чего быть недолжно) этот элемент неисправен.
Важно! Вышеописанный способ довольно грубый. Правильно будет если при испытании замерять и сопротивление элемента, и температуру нагрева.
Схематичное отображение
Схематичное отображение имеет тоже свои особенности.
Отображаться терморезистор на принципиальной схеме может по-разному.
В Европе он отображается как обычное сопротивление, но по диагонали с «полочкой» рядом с которой стоит бука t.
Также могут быть буквенные обозначения:
Но терморезистор имеет другое обозначение на схеме в США или Японии:
SMD-тип
Присутствуют в электронном мире также еще типы таких терморезисторов, как:
SMD — детали. Обладают главной особенностью — своим типом установки (внешним креплением) откуда его сложно выпаять.
Формы
Эти детальки могут быть в разнообразном исполнении, к примеру, как:
Самые миниатюрные — в виде бусинок размером менее 1 миллиметра. Не смотря на это, параметры довольно стабильные. Но есть и недостаток — не взаимозаменяемость в электрических схемах.
Видео по теме
Что такое терморезистор?
Работающие при минусовых температурах термисторы наиболее распространены в радиотехнике. Те, которые эксплуатируются в высоких температурах, применяются в ограниченном режиме. Они применяются в устройствах с жесткой системой контроля и сигнализацией. Формы термисторов бывают самые разнообразные, к тому же эти резисторы имеют очень миниатюрные размеры. Благодаря этому они нашли свое применение даже в медицине – они измеряют температуру внутри кровеносных сосудов.
В статье подробны рассмотрены подробно строение, особенности, сфера применения термисторов. Также в конце статьи приложен файл с детальной информацией по данной теме и видеоролик.
Как работает
Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.
При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества. В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.
Термистор, это резистор с большим значением температурного коэффициента сопротивления (ТКС). При изменении температуры токопроводящего материала термистора его электрическое сопротивление значительно изменяется. Термисторы могут быть как с положительным, так и с отрицательным ТКС. Термисторы с положительным ТКС называются PTC-термисторы или позисторы, с отрицательным – NTC-термисторы. При нагреве PTC-термистора (позистора) его сопротивление увеличивается. При нагреве NTC-термистора его сопротивление уменьшается.
Дальнейший нагрев на участке температур от Tref до максимально допустимого значения влечёт стремительное увеличение сопротивления. При этом разница сопротивлений может достигать нескольких порядков.
Зависимость сопротивления и температуры
Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой
где A, b – постоянные, зависящие от свойств материала и геометрических размеров.
Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта
где T – температура в К;
R – сопротивление в Ом;
a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.
Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:
Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.
В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:
1/T = a+b(lnR)+c(lnR) 2 + d(lnR) 3
Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.
Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток. При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК).
Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:
Терморезисторы часто разделят по диапазонам рабочих температур:
Обозначение термистора указано на рисунке ниже.
Главные параметры
Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия. ТКС (в % на один градус Цельсия).
Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне). Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
Конструкция и материалы
Большим преимуществом термисторов является разнообразие форм и миниатюрность. Основные конструктивные типы: бусинковые (0,1-1 мм), дисковые (2,5-18 мм), цилиндрические (3-40 мм), пленочное покрытие (толщина 0,2-1 мм). Выпускаются бусинковые термисторы диаметром до 0,07 мм с выводами толщиной 0,01 мм. Такие миниатюрные датчики позволяют измерять температуру внутри кровеносных сосудов или растительных клеток. Большинство термисторов – керамические полупроводники, изготовленные из гранулированных оксидов и нитридов металлов путем формирования сложной многофазной структуры с последующим спеканием (синтерация) на воздухе при 1100-1300 С.
Сложные двойные и тройные структуры оксидов переходных металлов, такие как (AB)3O4, (ABC)3O4 лежат в основе термисторов. Распространенной формулой является (Ni0.2Mn0.8)3O4. Наиболее стабильными термисторами при температурах ниже 250 С являются термисторы на основе смешанных оксидов мания и никеля или магния, никеля и кобальта, имеющие отрицательный ТКС. Удельная проводимость термистора r (25 C) зависит от химического состава и степени окисления. Дополнительное управление проводимостью осуществляется добавлением очень малых концентраций таких металлов как Li и Na.
При изготовлении бусинковых термисторов бусинки наносятся на две параллельные платиновые проволоки при температуре 1100 С, проволоки разрезаются на куски для получения необходимой конфигурации выводов. На бусинки наносится стеклянное покрытие, спекаемое при 300 С, либо бусинки герметизируются внутри миниатюрных стеклянных трубок.
Для получения металлических контактов в дисковых термисторах, на диск наносится металлическое покрытие Pt-Pd-Ag и выводные проводники соединяются с покрытием пайкой или прессованием. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм. Поэтому может применяться двухпроводная схема включения.
Стабильность
Причины нестабильности термисторов следующие:
Дисковые термисторы менее стабильны (дрейф до 50 мК за 100 дней при 60 С). Термисторы представляют особый интерес для измерения низких температур благодаря своей относительной нечувствительности к магнитным полям. Некоторые типы термисторов могут применяться до температуры минус 100 С. Диапазон наилучшей стабильности термисторов – от 0 до 100 С. Основными преимуществами термисторов являются вибропрочность, малый размер, малая инерционность и невысокая цена.
Где используются
Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов. При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.
Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.
Что такое терморезисторы, их конструкция, виды, технические параметры
Соблюдение теплового режима в современных электронных устройствах не менее важно, чем обеспечение параметров электрического тока. Перегрев для полупроводниковых приборов так же губителен, как и резкое увеличение напряжения. Поэтому для контроля температуры термочувствительных электронных приборов применяются электрические схемы с использованием температурных датчиков, таких как терморезистор. Другие названия: термистор, термосопротивление.
Что такое терморезистор?
Обычный резистор обладает относительно стабильным сопротивлением. Разумеется, электрическое сопротивление обычного резистора может меняться при значительном его нагревании (в пределах допусков). Но в штатном режиме показания этих устройств стабильны, чего, собственно, добиваются разработчики.
При изготовлении терморезисторов умышленно подбирают такие материалы, сопротивление которых зависит от температуры. То есть, терморезистор – это полупроводниковый прибор, обладающий зависимостью его сопротивления от температуры. Можно сказать, что путем нагревания или охлаждения таких полупроводниковых устройств можно управлять их сопротивлениями.
Рис. 1. Терморезистор и его изображение на схемах
Температурные зависимости полупроводниковых резисторов широко применяются на практике, о чем речь пойдёт ниже. Заметим только, что термисторы являются, по сути, переменными резисторами, сопротивление которых изменяется не механическим способом, а зависит от степени нагрева и температурных характеристик применяемых полупроводниковых материалов. Причем не важно, прямым или косвенным нагревом произошло изменение температурных показателей.
Конструкция
Самый простой термистор состоит из термочувствительного элемента, платиновых электродов и никелевых выводов. Вся эта конструкция заключена в герметичный корпус (Схема строения показана на рисунке 2).
В качестве термочувствительного материала используют оксиды металлов. Для защиты конструкции используют стеклянный, пластиковый или металлический корпус.
В некоторых случаях в качестве резистивного материала используют медь или платину. Эти материалы обладают высокими показателями ТКС металлов в рабочем диапазоне температур. Однако их применение ограничено по причине дороговизны платины и ее нелинейности преобразования.
Использование медных терморезисторов ограничивается низкой коррозионной сопротивляемостью меди. Благодаря высокой теплопроводности этого металла резистивные элементы на основе меди встречаются в моделях с косвенным нагревом. Применяются для температур не выше 180 ºC.
Еще одним недостатком металлических термосопротивлений является их инерционность, достигающая нескольких минут. Такие конструкции мало пригодны для поддержания теплового режима электроприборов, но они идеально подходят в качестве датчиков для измерения температуры.
С целью уменьшения тепловой инерционности терморезисторы изготавливают из микропроводов, которые заключают в стеклянную колбочку (см. рис. 3). Такие датчики хорошо герметизированы, отличаются стабильностью, а их инерционность не превышает долей секунд.
Рисунок 3. Конструкция термистора в стеклянной колбе
Широкое распространение получили типы датчиков на базе полупроводниковых материалов. При нагревании полупроводников происходит насыщение этих материалов электронами и дырками, что приводит к уменьшению сопротивления.
Существуют конструкции плоских терморезисторов (рис. 4), а также полупроводниковые термисторы со сложной структурой резистивного элемента.
Рис. 4. Конструкция плоского терморезистора
Сегодня все чаще можно встретить платы, на которых применен способ SMT монтажа. Для этих целей промышленность выпускает SMD-терморезисторы разных номиналов (см. рис. 5).
Рис. 5. Терморезисторы для микроэлектроники
В большинстве конструкций терморезистивный элемент изготовляют методом порошковой металлургии. В этих целях используют материалы:
Очертание резистивных элементов может иметь форму бусинок, стержней, трубочек, пластинок и т. п.
Какую конструкцию вы бы не выбрали, принцип работы остается неизменным – зависимость сопротивления от температуры. Отличаются изделия только параметрами.
Режим работы терморезисторов
В зависимости от конструкторских замыслов, термисторы могут работать в системах с разными температурными режимами. Однако для каждой модели существует своя номинальная шкала температур.
По этому признаку их можно классифицировать следующим образом:
В отдельный класс выделены терморезисторы, способные работать при нагревах от 900 до 1300 К. Эти модели используют в качестве датчиков температуры различных нагревательных элементов.
Все термисторы выдерживают существенные токовые нагрузки. Правда, при работе в жестких термоцикличных режимах, их термоэлектрические характеристики, могут изменяться. Со временем изменения коснутся номинального сопротивления и коэффициента сопротивления.
Разновидности
Все терморезисторы классифицируют по типу нагрева: прямой и косвенный. Для прямого подогрева используется ток цепи, в которую включен терморезистор. Косвенный подогрев создают сторонние участки схемы или тепловые элементы.
Пример терморезистора прямого подогрева показан на рис. 6.
Рис. 6. Терморезисторы прямого подогрева
Также, в зависимости от того – повышается или понижается сопротивление при нагревании резистивного элемента, различают термисторы двух видов:с отрицательным ТКС и терморезисторы с положительным коэффициентом сопротивления.
Полупроводниковые модели (термисторы) обладают отрицательным коэффициентом температурного сопротивления. Это значит, что они уменьшают номинальное сопротивление (показания при 25 ºC), в результате нагрева. Температурный коэффициент показывает, на сколько процентов уменьшается сопротивление резистивного элемента при повышении температуры нагрева на 1 ºC.
Термисторы NTC с отрицательным коэффициентом обычно применяются в диапазоне рабочих температур от 25 ºC до 200 ºC. Для температур свыше 600 ºC применяют термопары.
Терморезисторы типа PTC обладают положительными температурными коэффициентами. Эти PTC-термисторы часто именуют позисторами, чтобы подчеркнуть положительность температурного коэффициента. Под этим термином мы понимаем терморезистор, сопротивление которого возрастает с ростом температуры.
Технические параметры
Большое разнообразие моделей термосопротивлений продиктовано потребностями современной электронной промышленности. Технические параметры изделий полупроводникового типа позволяют полностью удовлетворить спрос производителей радиоэлектронных и электротехнических устройств.
К основным параметрам относятся:
Полупроводниковые термисторы обладают высокой чувствительностью в сочетании с отрицательными значениями ТКС. Они просты в изготовлении, имеют крохотные размеры, легко встраиваются в микросхемы. Все эти свойства делают термисторы незаменимыми в микроэлектронике.
Полупроводниковые термисторы подключаются через мостовую схему. Такое подключение позволяет в автоматическом режиме регулировать требуемые параметры электрических цепей. Иногда для этих целей приходится применять довольно сложные схемы автоматики.
Параметры металлических терморезисторов больше подходят для электротехнических устройств, в частности, они используются в качестве датчиков температуры. Их можно увидеть в водонагревательных установках, или в термометрах сопротивления. Такие типы датчиков (рис. 7) очень надежны в работе, имеют довольно широкий диапазон измерения.
Рис. 7. Датчик температуры
Датчики этого типа подключаются по простой схеме. Если требуется провести калибровку или выставить температуру, это обычно делается вручную, с помощью потенциометра. Простая схема подключения датчика температуры показана на рис. 8. Изменяя потенциометром напряжение можно влиять на величину ТКС. Визуально контролировать температуру можно с помощью амперметра, шкала которого проградуирована в градусах.
Рис. 8. Простая схема подключения терморезистора
Обозначение на схемах
На принципиальной схеме значки терморезисторов почти такие же, как и символы обычных резисторов, но с косой линией, перечеркивающей прямоугольник. (см. рис. 9). Для различения типа терморезистора внизу этой косой линии проставляют букву t со значком градуса и знаком «+» или «–», в зависимости от типа изделия. Например, +tº или –tº.
Рис. 9. Обозначение на схемах
Иногда проставляется номинал терморезистора и его температурный диапазон.
Маркировка
Существует два способа маркировки – буквенно-цифровая и цветовая, в виде колец и полосок. Единых требований для буквенной маркировки не существует – разные производители применяют свои варианты обозначений. Например, на дисковом термисторе могут стоять символы «15D-30», что расшифровывается так: номинальное сопротивление 15 Ом, диаметр изделия 30 мм. Здесь значение диаметра прямо связано с рассеиваемой мощностью – чем больше диаметр, тем больше рассеиваемая мощность термистора.
Заметим, что у другого производителя эти же параметры могут маркироваться совсем другим способом. Поэтому лучше пользоваться технической документацией изготовителя изделия.
Применение
В основном терморезисторы используют для защиты оборудования и различных устройств от перегрева и от возможных перегрузок. Реже зависимостью сопротивления стабилизируют работу нагревательного элемента.
Примеры использования:
В большинстве схем используется способность термисторов преобразовывать внутреннюю энергию в электрический сигнал, который считывается автоматикой.
В нагревательных приборах терморезистор довольно часто используется в качестве самовосстанавливающегося предохранителя. Его сопротивление возрастает при достижении критической температуры и в результате этого электрическая цепь размыкается.
После остывания прибор восстанавливает работоспособность.
Сферы применения можно перечислять очень долго, но и эти примеры показывают, насколько востребованными оказались термисторы и термисторы.