что такое vrm видеокарты
Описание всех компонентов и разъемов видеокарты
Основные компоненты видеокарты
Вот основные компоненты, которые присутствуют во всех видеокартах.
Графический процессор
Память HBM быстрее, занимает меньше места на печатной плате и имеет меньшее энергопотребление по сравнению с памятью GDDR5. Вы можете прочитать полное сравнение всех этих видеопамяти видеокарт, перейдя по приведенной ниже ссылке.
Количество регуляторов напряжения на видеокарте варьируется от карты к карте. Некоторые видеокарты имеют большее количество VRM по сравнению с другими. VRM может быть очень горячим, а иногда даже более горячим, чем графический процессор, и им требуется хорошее охлаждение, чтобы видеокарта не выключилась.
Кулер
Каждая видеокарта поставляется с кулером, чтобы поддерживать температуру графического процессора, видеопамяти и VRM на более безопасном уровне. Кулеры видеокарты могут быть активными или пассивными. При активном охлаждении кулер имеет радиатор и вентилятор (HSF), тогда как при пассивном охлаждении кулер имеет единственный радиатор.
В большинстве видеокарт используется активное охлаждение, поскольку обычно оно требует меньше места и обеспечивает лучшее охлаждение, особенно при разгоне, тогда как пассивное охлаждение обычно используется в графических процессорах начального уровня и менее мощных и работает совершенно бесшумно. Но есть несколько хороших видеокарт среднего уровня, которые также поставляются с пассивным кулером или только с радиатором. Кроме того, не рекомендуется разгонять вашу видеокарту с помощью решения для пассивного охлаждения, поскольку оно имеет ограниченную охлаждающую способность.
Слева с активным, а справа с пассивным охлаждением
Количество вентиляторов, используемых в системе активного охлаждения, зависит от производителя видеокарты. Некоторые высокопроизводительные видеокарты также поставляются с жидкостным/водяным охлаждением или гибридным охлаждением. Вы можете узнать больше о решениях для охлаждения видеокарт, перейдя по приведенной ниже ссылке.
Печатная плата
Основные разъемы видеокарты
Вот различные разъемы, которые вы можете найти в видеокарте. Некоторые разъемы встречаются только в видеокартах среднего и высокого класса, а некоторые присутствуют во всех видеокартах.
Разъем PCI Express x16
6-контактные и 8-контактные разъемы PCI-E
Дисплейные порты/разъемы
Слот SLI и CrossFire
Сколько нужно фаз на материнской плате
Содержание
Содержание
Тщательно выбирая процессор по ядрам и гигагерцам, а комплект памяти — по таймингам и частоте, пользователи забывают о главном — платформе, которая должна обеспечить и гигагерцы процессора, и тайминги оперативной памяти. Поэтому уже на этапе выбора материнской платы многие допускают ошибку: боятся переплатить за «маркетинг». Но под красивым радиатором и разноцветными диодами подсветки часто скрываются важные аппаратные различия. Например, качество подсистемы питания материнской платы — то, о чем должен знать каждый владелец ПК.
Многие пользователи уделяют основное внимание выбору процессора или видеокарты, тогда как материнская плата покупается «на сдачу». Опытные сборщики знают: если плата подобрана неверно, то вскоре она отправится на перепродажу. При этом пользователь потеряет на сделке примерно столько же, сколько в свое время ему пришлось бы доплатить за качественную модель. В некоторых ситуациях юзеры, наоборот, излишне усердствуют с выбором платформы, и половина функций, за которые пришлось щедро доплатить, не используется до конца жизни компьютера. Это не только качественный звуковой чип и обвязка на японских конденсаторах или цифровое табло для POST-диагностики — в первую очередь это подсистема питания материнской платы, которая отвечает за жизнь процессора в системе.
Voltage Regulator Module
Подсистема питания или VRM — это электрическая цепь материнской платы, которая преобразует ток, поступающий из блока питания компьютера, и делает его пригодным для питания процессора. Процесс преобразования напряжения довольно сложен, о нем рассказывали в отдельном материале с подробными объяснениями и наглядными примерами.
В подготовке напряжения для ядер участвует несколько узлов: MOSFET-транзисторы, дроссели или фильтры тока, а также сглаживающие конденсаторы и драйверы. Связка из четырех таких компонентов называется фазой, каждая фаза работает синхронно с остальными. Как и другие электрические узлы, фазы совершают работу, поэтому их отдельные компоненты могут сильно нагреваться. Уровень нагрева фаз зависит от заводских пределов: чем выше запас прочности у мосфета, тем больше тока он может преобразовать без выхода за рамки температурных ограничений.
Мощность фаз измеряется в амперах. Например, популярные мосфеты в топовых материнских платах теоретически выдерживают силу тока до 50 А. Умножим это значение на условное напряжение 1.3 В и получим 65 Вт — теоретический максимум мощности, который можно получить с одной фазы. При этом не забываем о КПД и потерях в виде теплового излучения, которое выделяется в процессе преобразования. Получается, что одна фаза не может обеспечить достаточным питанием современный процессор для настольного компьютера, так как даже базовое энергопотребление чипов начинается с 65 Вт, что уже находится на уровне теоретического максимума для одного мосфета материнской платы.
По этой причине материнских плат с одной фазой для питания процессора не существует — как правило, даже самая бюджетная модель имеет в распоряжении минимум 3-4 фазы.
«8+2» не равно 10
Как правило, производитель материнской платы старается выставить напоказ только те функции устройства, которые понравятся пользователю. Например, рассказать о том, что в условной модели есть шесть или восемь добротных фаз в системе VRM. Однако при изучении подробных технических характеристик окажется, что в действительности материнская плата обладает всего четырьмя фазами, тогда как две остальных никак не относятся к качеству питания процессорных ядер. Обычно, это обозначается как «4+2» или «6+2».
Дело в том, что VRM материнской платы питает не только вычислительные ядра, но и остальные узлы процессора. Например, в материнской плате ASUS Maximus VIII Hero производитель установил всего десять фаз, которые устроены по принципу 8+2. Здесь только восемь фаз занимаются питанием процессорных ядер и контроллеров, а оставшиеся две фазы выделены под что-то еще. Что-то еще — это встроенное в процессор графическое ядро, которое, несмотря на невысокую производительность в играх, тоже требует качественного питания.
Многие пользователи, в том числе авторы материалов в сети, ошибаются, считая, что две дополнительные фазы используются для питания остального оборудования на материнской плате. На самом деле, в конструкции МП предусмотрено еще несколько VRM-зон, которые отвечают за формирование напряжения для оперативной памяти, PCIe-устройств и даже для RGB-подсветки.
Как определить количество фаз питания
Проще всего посчитать, сколько дросселей распаяно на материнской плате возле процессорного разъема. В новых материнских платах дроссели выглядят как квадратные компоненты довольно больших размеров, выстроенные в ряд вокруг сокета.
Но, как мы разобрались в предыдущем пункте, не все фазы используются для питания процессора. Количество дросселей указывает только на общее количество фаз материнской платы. В то же время, из условных восьми только шесть могут быть задействованы для питания ядер. В таком случае метод определения фаз «на глазок» не сработает.
Некоторые производители публикуют подробные данные о своей продукции, поэтому информацию о VRM платы можно узнать из технических характеристик на сайте. Если же там этой информации нет, можно обратиться к «помощи зала» — энтузиасты-обзорщики прощупали почти все модели материнских плат, в том числе, подробно разобрали их системы питания, контроллеры, наличие дополнительных фаз и других особенностей строения VRM. Поэтому подробную информацию о качестве питания можно найти практически в любом обзоре.
Мощный процессор — слабая материнка
Процессоры из разных линеек отличаются количеством ядер, тактовой частотой, а также максимальным энергопотреблением, которое регулируется заводскими лимитами, записанными в процессор на конвейере. Такая «стандартизация» позволяет производителям найти безопасный минимум для того, чтобы даже бюджетная модель платы смогла запустить и «переварить» самый мощный и прожорливый процессор.
Например, в линейке настольных процессоров Intel присутствуют модели с энергопотреблением от 65 Вт до 125 Вт. При определенных условиях эти значения могут повышаться вместе с частотой процессора, а также снижаться, если того требуют температурные ограничения. Так, на стандартных настройках BIOS восьмиядерный Core i9 11900K может потреблять до 125 Вт. При этом, если кулер справляется с охлаждением ядер, а радиатор VRM удерживает температуру мосфетов в допустимых пределах, производительность процессора может быть увеличена с помощью TurboBoost. Если же система питания справляется со 125-ваттным процессором на пределе возможностей, автоматика станет снижать частоту и вольтаж процессора до тех пор, пока силовая часть материнской платы не охладится до безопасных значений. Этот процесс называется троттлингом.
Конечно, бюджетная плата с четырьмя фазами под процессор кое-как будет работать в паре с десятиядерным монстром, но только до тех пор, пока пользователю не понадобится полная мощность процессора. Как только чип «расчехлит» все 16 потоков и достигнет рабочей тактовой частоты в процессе рендера или 3D-моделирования, подсистема питания материнской платы просто-напросто закипит. В таком случае придется скрестить пальцы на руках, ногах и даже на лапах кота — крупно повезет, если автоматика вовремя включит троттлинг и не позволит VRM взорваться от перегрева. Чаще случается другое — после нескольких таких «прогревов» мосфеты вылетают с искрами и дымом.
Чтобы исключить такие ситуации, нужно сразу выбирать комплектующие, которые соответствуют друг другу хотя бы по параметрам питания. Для этого необходимо понимать, какому процессору будет достаточно четырех фаз, а какому мало и десяти.
Сколько вешать в фазах?
Чипы Intel делятся на несколько семейств — это ультрабюджетные Celeron, бюджетные офисные Pentium и высокопроизводительные Core. У AMD в этом плане все немного проще: актуальные бюджетные и флагманские чипы выпускаются только под флагами Athlon и Ryzen.
Celeron, Pentium и Athlon — это бюджетные модели процессоров, которые изначально рассчитаны на работу с любой материнской платой и любой системой питания. От них не стоит ожидать запредельной производительности, а значит, не будет высокого энергопотребления и нагрева. Поэтому мы разберем только линейки Core и Ryzen, которые, в свою очередь, делятся на несколько подкатегорий: Core i3, Core i5, Core i7 и Core i9 у Intel, а также Ryzen 3, Ryzen 5, Ryzen 7 и Ryzen 9 у AMD.
Каждый год производители обновляют процессоры и добавляют новым чипам порядковые цифровые имена — был Core i5 8600K, стал 9600K, а после 10600K и 11600K. Вместе с каждым обновлением линейки возрастает производительность чипов, при этом их энергопотребление остается прежним. Например, чип Intel Core i5 11400 потребляет 65 Вт, как и его предшественники — 9400, 8400, 7400. То же самое относится к моделям старших и младших линеек.
Это относится не только к процессорам «синего» лагеря, но и к чипам AMD. Если сравнить шестиядерные процессоры Ryzen 5 первого и третьего поколений, то их энергопотребление также совпадет. Зато разница в производительности между ними окажется настоящей пропастью.
Поэтому для настольных процессоров обоих производителей можно выразить зависимость энергопотребления чипов и фаз питания, необходимых для стабильной работы, в универсальной таблице. Например, так это будет выглядеть в случае, если пользователь собирает систему на Intel.
Значения в таблицы приведены с запасом прочности. Никто не спорит, что шестиядерный или восьмиядерный чип можно заставить существовать и на четырех фазах. Правда, о надежности такой сборки можно забыть.
Похожую таблицу можно составить и для процессоров AMD:
«Разгони меня полностью»
Перечисленные рекомендации действительны только в том случае, если пользователь не занимается разгоном процессора или оперативной памяти. Если же система нуждается в процессоре с разблокированным множителем, то о бюджетных материнских платах и даже моделях среднего ценового сегмента можно забыть.
Оверклокинг — это превышение заводских пределов и лимитов как процессора, так и материнской платы, ее VRM и контроллеров питания. В этом случае улетучивается «волшебство» автоматики, которая защищает компоненты от перегрева и выхода из строя, и пользователь остается один на один с гарантией на технику и ее сроком службы. Это касается не только процессоров Intel с литерой «К» в названии, но также и процессоров AMD Ryzen, которые вообще не имеют ограничений на разгон. В этом деле работает только одно правило — чем больше, тем лучше.
Для ориентира — подходящая и надежная система питания для разгона процессоров есть у таких моделей материнских плат, как Asus Maximus, MSI MEG, AsRock Taichi, Gigabyte AORUS.
Как не ошибиться с выбором
Выбор комплектующих — это война «жаб» и «хотелок». Пользователю всегда хочется выбрать что-нибудь получше, но здравый смысл и худеющий кошелек возвращают размечтавшегося оверклокера на место, заставляя присмотреть компоненты попроще и доступнее. Но не стоит кидаться из крайности в крайность. Даже в средней ценовой категории можно найти достойную материнскую плату, которая не только переварит мощный восьмиядерник в «домашнем» разгоне, но и будет стабильно работать с оперативной памятью на частоте до 4500 МГц.
При этом она не будет кипеть и троттлить — достаточно обратить внимание хотя бы на общее количество фаз. Если их уже десять, то велика вероятность, что процессору достанутся восемь полноценных линий, а этого уже достаточно даже для 10 мощных ядер. Конечно, важно учитывать и качество охлаждения: даже десять фаз могут оказаться бесполезными в долгосрочной нагрузке, если у них нет пассивного отвода тепла. Поэтому лучше отдать предпочтение той модели, для которой производитель не пожалел несколько лишних граммов алюминия.
Какая температура считается нормальной для всех компонентов компьютера и что делать с перегревом?
Содержание
Содержание
Температура компонентов компьютера является важным фактором стабильной работы системы. Перегрев может вызывать зависание, подтормаживание и отключение компьютера во время игры или при другой продолжительной нагрузке. Серьезный перегрев компонентов напрямую отражается не только на производительности, но и на сроке их службы. Тогда какая температура будет оптимальной для вашего компьютера, а когда пора беспокоиться?
Согласно правилу «10 градусов», скорость старения увеличивается вдвое при увеличении температуры на 10 градусов. Именно поэтому нужно периодически следить за температурными показателями комплектующих, особенно в летнее время.
Процессор
Самый верный способ узнать максимально допустимую температуру процессора — посмотреть спецификацию к устройству на сайте производителя конкретно вашего изделия. В ней помимо перечисления всех характеристик будет указана и максимальная рабочая температура.
Не стоит думать, что все нормально, если у вас стабильные 90 °C при максимально допустимых 95-100 °C. Оптимально температура не должна превышать 60-70 °C во время нагрузки (игры, рендеринга), если только это не какое-то специальное тестирование на стабильность с чрезмерной нагрузкой, которая в повседневной жизни никогда не встретится.
Сейчас у большинства устройств есть технология автоматического повышения тактовой частоты (Turbo Boost).
Например, если базовая частота AMD Ryzen 3700X составляет 3.6 ГГц, то в режиме Turbo Boost он может работать на частоте 4.4 ГГц при соблюдении определенных условий. Одно из этих условий — температура.
При превышении оптимальной температуры возможно незначительное снижение максимальной частоты работы. В момент, когда температура приближается к максимально допустимой, частота понижается уже сильнее. Это в конечном счете оказывает влияние на производительность, именно поэтому оптимальной температурой принято считать 60-70 °C.
В эти пределы по температуре и заложена максимальная производительность для устройства.
Температура процессора напрямую связана с системой охлаждения, поэтому, если вы берете высокопроизводительный процессора как AMD Ryzen 3900X или 10900к, на системе охлаждения лучше не экономить.
Видеокарта
С видеокартами все примерно точно так же. Только помимо информации в спецификации, можно посмотреть зашитые в Bios устройства максимальные значения температуры.
Для обоих производителей, в зависимости от серии видеокарт, максимальная температура находится пределах от 89 до 105 °C.
Посмотреть их можно с помощью программы GPU-Z или AIDA64.
Данную информацию так же можно посмотреть на сайте https://www.techpowerup.com/vgabios/
Помимо температуры самого ядра важное значение имеет и температура других компонентов видеокарты: видеопамяти и цепей питания.
Есть даже тестирование видеокарт AMD RX 5700XT от разных производителей, где проводились замеры различных компонентов на видеокарте.
Как можно видеть, именно память имеет наибольшую температуру во время игры. Подобный нагрев чипов памяти присутствует не только у видеокарт AMD 5000 серии, но и у видеокарт Nvidia c использованием памяти типа GDDR6.
Как и у процессоров, температура оказывает прямое влияние на максимальную частоту во время работы. Чем температура выше, тем ниже будет максимальный Boost. Именно поэтому нужно уделять внимание системе охлаждения при выборе видеокарты, так как во время игры именно она всегда загружена на 100 %.
Материнская плата
Сама материнская плата как таковая не греется, на ней греются определенные компоненты, отвечающие за питание процессора, цепи питания (VRM). В основном это происходит из-за не совсем корректного выбора материнской платы и процессора.
Материнские платы рассчитаны на процессоры с разным уровнем энергопотребления. В случае, когда в материнскую плату начального уровня устанавливается топовый процессор, во время продолжительной нагрузки возможен перегрев цепей питания. В итоге это приведет либо к сбросу тактовой частоты процессора, либо к перезагрузке или выключению компьютера.
Также на перегрев зоны VRM влияет система охлаждения процессора. Если с воздушными кулерами, которые частично обдувают околосокетное пространство, температура находится в переделах 50-60 °C, то с использованием жидкостных систем охлаждения температура будет уже значительно выше.
В случае с некоторыми материнскими плата AMD на X570 чипсете, во время продолжительной игры возможен перегрев южного моста, из-за не лучшей компоновки.
Предел температуры для системы питания материнской платы по большому счету находится в том же диапазоне — 90–125 °C. Также при повышении температуры уменьшается КПД, при уменьшении КПД увеличиваются потери мощности, и, как следствие, растет температура. Получается замкнутый круг: чем больше температура — тем ниже КПД, что еще больше увеличивает температуру. Более подробно узнать эту информацию можно из Datasheet использованных компонентов на вашей материнской плате.
Память
Память типа DDR4 без учета разгона сейчас практически не греется, и даже в режиме стресс тестирования ее температура находится в пределах 40–45 °C. Перегрев памяти уменьшает стабильность системы, возможна перезагрузка и ошибки в приложениях, играх.
Для мониторинга за температурой компонентов системы существует множество различных программ.
Если речь идет о процессорах, то производители выпустили специальные утилиты для своих продуктов. У Intel это Intel Extreme Tuning Utility, у AMD Ryzen Master Utility. В них помимо мониторинга температуры есть возможность для настройки напряжения и частоты работы. Если все же решитесь на разгон процессора, лучше это делать напрямую из Bios материнской платы.
Есть также комплексные программы мониторинга за температурой компьютера. Одной из лучших, на мой взгляд, является HWinfo.
Чем чреват перегрев — ускоренная деградация чипов, возможные ошибки
Перегрев компонентов в первую очередь чреват падением производительности и нестабильностью работы системы. Но это далеко не все последствия.
При работе на повышенных температурах увеличивается эффект воздействия электромиграции, что значительно ускоряет процесс деградации компонентов системы.
Эффект электромиграции связан с переносом вещества в проводнике при прохождении тока высокой плотности. Вследствие этого происходит диффузионное перемещение ионов. Сам процесс идет постоянно и крайне медленно, но при увеличении напряжения и под воздействием высокой температуры значительно ускоряется.
Под воздействием электрического поля и повышенной температуры происходит интенсивный перенос веществ вместе с ионами. В результате появляются обедненные веществом зоны (пустоты), сопротивление и плотность тока в этой зоне существенно возрастают, что приводит к еще большему нагреву этого участка. Эффект электромиграции может привести к частичному или полному разрушению проводника под воздействием температуры или из-за полного размытия металла.
Это уменьшает общий ресурс работы и в дальнейшем может привести к уменьшению максимально стабильной рабочей частоты или полному выходу устройства из строя и прогару. Именно высокая температура ускоряет процесс старения компьютерных чипов.
Как бороться с перегревом
Сейчас, особенно в летнюю пору, можно попробовать открыть боковую створку корпуса или заняться оптимизацией построения воздушных потоков внутри него.
Также в борьбе с высокой температурой может помочь чистка от пыли и замена термопасты, в некоторых случаях будет достаточно и этого.
И, пожалуй, самый радикальный и дорогостоящий способ снижения температуры — замена системы охлаждения CPU и GPU.
На мой взгляд, самый эффективный способ без затрат уменьшить нагрев и повысить производительность это Downvolting (даунвольтинг).
Даунвольтинг — это уменьшение рабочего напряжения, подаваемого на процессор или видеокарту во время работы. Это ведет к уменьшению энергопотребления и, как следствие, к уменьшению температуры.
Для видеокарт NVIDIA даунвольтинг осуществляется с использованием программы MSI Afterburner.
В ней вы для каждого значения частоты подбираете собственное напряжение. Он еще называется даунвольтинг по курве (кривой).
Таким способом можно уменьшить потребление видеокарты примерно на 20-30 %, что положительно отразится на рабочей температуре и тактовой частоте.
На первый взгляд разница между температурой не столь значительная и составляет всего 8-9°C, однако вместе с температурой понизилась и скорость оборотов вентилятора, примерно на 500. В конечном счете за счет даунвольтинга мы снижаем не только температуру, но и шум системы охлаждения. Если же вы ярый фанат низких температур, отрегулировав кривую оборотов вентилятора, можно добиться значительно большего падения температуры.
Вопреки бытующим заблуждениям, даунвольтинг не оказывает какого-либо отрицательного влияния на производительность видеокарты.
Default Voltage
Downvolting
Для даунвольтинга видеокарты AMD не потребуется даже отдельная утилита — все уже реализовано производителем в настройках драйвера.
Даунвольтинг не только уменьшает рабочую температуру, но и увеличивает производительность за счет того, что у всех устройств заложено ограничение по потребляемой энергии.
В случае с видеокартами AMD, уменьшение рабочего напряжения уменьшает энергопотребление и дает возможность видеокарте функционировать на заявленных частотах без упора в лимит энергопотребления, не прибегая к его расширению.
У данной видеокарты он составляет 160 Вт, что и можно наблюдать на первом графике.
Default Voltage
Downvolting
С процессорами дела обстоят несколько сложнее, однако они также поддаются даунвольтингу. Но это уже совсем другая история.
Существуют максимальные показатели рабочих температур. Обычно это 90–105 °C, установленные производителем. Как минимум, нужно стараться не превышать эти значения, однако оптимально температура компонентов компьютера не должна превышать 60–70 °C во время повседневных нагрузок. Тем самым вы будете иметь максимальную производительность системы и долгий срок службы, а так же практически бесшумный режим работы системы охлаждения. Именно поэтому не стоит сильно экономить на системе охлаждения компьютера.