что значит 2xddr4 в описании процессора
Разбираемся в обозначениях процессоров: что они могут сообщить о характеристиках
Большинство индексов или цифр имеют вполне конкретное значение. Обратите на них внимание, когда будете выбирать процессор!
Если вы хотите подобрать оптимальный процессор в свою сборку, то не спешите копаться в технических характеристиках. Много полезной информации скрывается в наименовании ЦПУ. Если знать, что означают все эти буквы и цифры, то можно сэкономить много время. Разобраться в этой теме не сложно, достаточно понимать ключевые моменты. О них и поговорим.
Маркировка процессоров Intel
За всю историю компания Intel выпустила огромное количество разных моделей процессоров, и, разумеется, многие из них сегодня уже устарели. На данный момент актуальными остаются только четыре линейки. Каждая из них имеет свою направленность.
Поскольку Intel Core охватывает большую часть рынка, разберем на её примере как линейка делится на классы.
После классификации процессор в названии имеет числовое обозначение. Первая цифра всегда означает поколение. На данный момент самым актуальным является 10-е. У каждого поколения имеется кодовое название. Например:
Как вы заметили, после поколения следуют ещё три цифры. Как правило, они отображают уровень производительности модели относительно других процессоров в одном поколении. Например:
В наименовании модели после цифр может быть расположена буква, которая указывает на отличительную характеристику процессора. Они могут комбинироваться различными способами.
Новые мобильные процессоры Intel Core 11-го поколения, а также некоторые 10-го поколения, имеют непривычную маркировку. К примеру, Intel Core i7-1165G7, где цифра после G обозначает класс мобильной графики: G7 — ее максимальная производительность, G4 — средний уровень производительности, а G1 — базовый.
Стоит упомянуть, что многие модели встречаются в двух вариантах исполнения: BOX и OEM. Первый имеет увеличенную гарантию, а также подразумевает наличие кулера в комплекте. Второй продается дешевле, но в комплект поставки ничего не входит. Кстати, процессоры с разблокированным множителем поставляются без кулера и его нужно будет покупать отдельно.
Маркировка процессоров AMD
Говоря про обозначения ЦПУ, следует понимать, что для каждой линейки применяются уникальные правила маркировки, которые не являются универсальными. Поэтому всё, что написано ниже применимо только для ныне актуальных процессоров.
Что означает этот показатель 2хDDR4-2666 МГц?
Добрый день? Я правильно понимаю что:
1) можно использовать только две планки оперативной памяти
2) нет смысла покупать оперативную память с более высоким показателем 2666 МГц.
у меня работает на частоте ОЗУ 3200 МГц с мат. платой на Z490 чипсете.
Привет. Гнал до 3300 с вольтажом. Больше до 3600 не рискнул, хотя плата от асрока, позволяет больше разогнать.
Процессор-просто сказка, да?)
Добрый день! Этот параметр значит, что поддерживается двухканальный режим работы памяти. На каждый канал можно установить два модуля памяти. Частота 2666 МГц является гарантированно поддерживаемой процессором. Если использовать материнскую плату на базе чипсета Intel Z490, B560, H570 или Intel Z590, то станет доступен разгон памяти и режим работы ОЗУ выше DDR4-2666.
Что нужно знать о DDR4 ОЗУ?
Компьютерные технологии стремительно развиваются, заменяются новыми параметрами и спецификациями, но оперативная память располагает преимуществом во времени. DDR SDRAM был запущен в 2000 году и прошло три года, перед приходом в 2003 году DDR2 SDRAM. Время DDR2 продолжалось четыре года, в 2007 году её заменила DDR3 SDRAM. С тех пор она уже семь лет без изменений, но запуск DDR4 совершился.
Что нового в DDR4?
Внешне, DDR4 такой же ширины, как и DDR3, но немного выше примерно на 9 мм. Разница между DDR3 и DDR4 в том, что DDR4 использует 288 контактов по сравнению с 240 на DDR3 и ключ находится в другом месте.
DDR3 работает на 1.5 В с модулями, работающих на 1,35 В. DDR4 изначально работает на 1.2 В с модулями, на 1.05 В. Кроме того, DDR4 поддерживает ряд усовершенствований энергосбережения, активируясь, когда система находится в режиме ожидания.
Пониженное рабочее напряжение позволяет DDR4 потреблять меньше энергии (и, следовательно, более низкую рабочую температуру), чем DDR3.
DDR4 имеет рабочую частоту с 2133MHz (это является пределом для DDR3), в конечном итоге частота около 3200MHz. DDR4 чипы также могут быть изготовлены в плотностях до 16 Гб (или 2 Гб) на планку, которая дважды превышает плотность DDR3. Это означает, что мы увидим железо потребительского класса ёмкостью 16 Гб, а 64 ГБ на планке для памяти серверного уровня.
Минусы DDR4
Как и большинство новых технологий, DDR4 не является совершенным. Цены будут выше на 20-50%, чем у таких же планок DDR3. По мере увеличения спроса, стоимость снизится, но сейчас DDR4 просто будет дороже.
Вторая проблема заключается в том, что несмотря на более высокие частоты DDR4, чем у DDR3, тайминг хуже.
DDR3-2133MHz планки обычно имеют CL10-CL11, текущие планки DDR4-2133Mhz будут огорчать CL15. Это не является сюрпризом, повторяется ситуация, когда была представлена DDR3, но это не значит, будто четвертое поколение, уступает предшественнику, всего лишь на первых порах.
При сравнении Core i7 5960X и 4960X, Geekbench сообщает лишь немного отличающиеся баллы с DDR4-2133MHz по сравнению с DDR3-1600MHz (5691 против 5382). Более высокие частоты будут достигнуты в ближайшем будущем, остаётся укоротить тайминг, и мы увидим мощь DDR4.
Заключение
Наиболее важны две вещи: пониженное рабочее напряжение и высокая плотность памяти. С меньшим температурным режимом компоненты куда более надежнее, по отношению к своим собратьям.
Мнение автора
Если выбрать один аспект DDR4 в качестве наиболее важного, то плотность памяти является моим выбором. Это огромный плюс, что делает более желанной DDR4 в сравнении к DDR3.
Программы и типы данных становятся больше и сложнее, ОЗУ большей вместимости будет становиться все более и более значимым. Уже около 33% на базе X79, проданы Puget Systems, с января 2014 уже превышен объем памяти, который можно установить в системе с помощью 8x 8 ГБ планок или 64 ГБ оперативной памяти в сумме. Это огромная часть продаж Puget Systems, так как DDR4 имеет большой потенциал и хотелось бы увидеть её в высокопроизводительных рабочих станциях.
UPD 19.11.204: Извините за ошибки и сложность осмысления перевода. Благодарю за критику и проявленное внимание.
Один vs Два канала ОЗУ в современных процессорах
В этой статье посмотрим на то как одноканал уменьшает скорость работы современных процессоров. Стоит напомнить, что во времена выхода DDR4 платформы с двумя каналами были у 4-х ядерных процессоров, тогда как сейчас есть 16 ядер у AMD и 10 ядер у Intel. И, естественно, шина к памяти теперь делиться на все эти ядра, тогда как и во времена 4-х ядер двухканал не был абсолютно достаточным.
Само собой производители в курсе проблемы. Так и Intel и AMD улучшают работу кеш памяти. Собственно следующее обновление AMD будет как бы минорным, то есть особо не инновационным, но благодаря трёхмерному кешу большого объёма от не самых архитектурно значимых изменений появится большой прирост в производительности. Intel же, кроме оптимизации работы с кешами, форсирует выход памяти DDR5, которая тоже немного уменьшит проблемы недостаточности двухканала для современных процессоров.
Уже есть первые тесты с DDR5 правда на диких таймингах и задержках, но в части пропускной способности — там всё сильно лучше. а для огромного числа ядер — пропускная способность это тоже очень важно, то есть надо смотреть не только на задержки.
Собственно в этой статье мы как раз и посмотрим на изменение пропускной способности, так как по задержкам разницы не будет.
Что такое каналы памяти?
Если кто не в курсе — коротко поясняю по тому что за каналы такие.
В современных процессорах контроллер оперативной памяти встроен в сам процессор и для обычных не серверных решений он имеет два канала.
То есть своего рода два независимых контроллера, каждый из которых работает со своими планками памяти. Естественно они на самом деле не независимые, так как общая адресация памяти и всё такое. Но в части работы с памятью — можно считать их раздельными.
И эта связь физическая, то есть контакты планок памяти физически приходят в разные контроллеры. Часть планок в один контроллер, часть во второй.
Ну и работают эти контроллеры параллельно, а значит и пропускная способность их работы — складывается.
Если же к одному из контроллеров память не подключена, то этот контроллер ничего и не делает.
Собственно и планки памяти зачастую продаются как раз таки комплектами по две штуки, а иногда и по 4, так как есть платформы с 4-х канальными контроллерами памяти в процессорах.
Почему изменение каналов влияет на производительность?
Дефицит данных из оперативной памяти приводит к очень нехорошим последствиям. И тут есть две нехороших вещи. Первая — это если процессор из-за голода информации не знает что ему делать. В этом случае — весь процессорный конвейер начинает пустовать, и от этого хуже удаётся заполнять исполнительные устройства. То есть падает производительность на такт, процессору нечего делать, он находится в ожиданиях задач.
Второе проявление этой проблемы — это отсутствие данных для работы. То есть что делать процессор знает, а вот значения того, с чем нужно производить операции процессору доступны только через оперативную память. В таком случае процессор периодически может допускать в исполнение то, для чего нет данных, потом это приходится повторять, есть и системы в процессоре, которые задерживают операции в очередях на выполнения. Но и очереди эти не резиновые. Так что если нет большого количества данных, то очереди просто забиваются невыполнимым для текущего момента мусором. В следствии чего падает производительность на такт. И по мониторингу точно так же это время вынужденных простоев в ожидании данных выглядит как занятое время. Естественно есть куча сложных оптимизаций как не допускать это замусоривание, но они не могут быть на 100% результативны и в их возможностях только снижение влияния на падение производительности. Но если недостаток информации катастрофический, то тут ничего уже не поможет. Процессор будет большую часть времени заниматься ничем, а при этом будут показываться какие-то проценты загрузки.
Как понять, что процессор ограничен ПСП памяти?
В общем и целом — никак, по мониторнгу это определить нельзя, но есть косвенные признаки.
Особенно это хорошо заметно в видеокартах некоторых моделей до тех поколений, где частоты динамически задаются от ограничения TDP. Там от разгона памяти увеличение энергопотребления самой памяти может составлять 2-3 Ватта, а при этом сама видеокарта начинает потреблять на 20-30 Ватт больше несмотря на то, что и до разгона памяти и после него показывалась загрузка в 100%. Просто раньше было 100%, но с простоями от ожидания информации, а после разгона памяти 100% стали с меньшими простоями. Сейчас с ограничением TPD и динамической частотой на картах от разгона памяти ситуация другая. Эффективная работа приводит к увеличению потребления из-за чего на 10-50 МГц режутся частоты ядер. Но при этом на меньших частотах видеокарта при разогнанной памяти всё равно быстрее, чем с более высокими, но с простоями от недостатка информации.
С процессорами это проявляется не так сильно и видно чаще у тех, кто вначале до предела разгоняет ядра, а после этого начинает до предела гнать память. И в этом случае чуть больший нагрев процессора от более эффективно работающей подсистемы памяти делает процессор менее стабильным в разгоне.
Ну и теперь приступим к практике.
Тестовая система
Процессор: intel i9 9900k в стоке,
Видеокарта: RTX 2070 в стоке.
Память во всех конфигурациях согласно базовому для DDR4 JEDEC стандарту на 2133 МГц. В одной группе тестов — две планки по 8 ГБ, в другой группе тестов — одна планка на 16 ГБ.
Бенчмарки.
Что касается самой памяти — для начала посмотрим на ПСП (пропускная способность памяти) и задержки.
Данные AIDA 64
По задержкам по цифрам есть небольшая разница, и она обусловлена тем, что на один контроллер всё таки больше нагрузки, но разница по задержкам мизерная и сильно повлиять на результаты она не может. А вот пропускная способность меняется очень сильно.
По чтению и записи падение практически двукратное.
Ну и теперь посмотрим как это отражается на производительности компьютера.
Тесты в архиваторах
Логично, что им нужны большие объёмы для работы, а значит широкая шина к памяти — это очень важно.
Добавление второго канала даёт прирост почти на 70%.
Возьмём другой архиватор. 7-Zip.
Тут прирост уже всего около 20%.
Бенчмарки
А есть задачи где прироста нет в принципе, то есть задача оптимизирована так, что максимально эффективно использует кеш процессора.
Например Cinebench R15.
Что с двумя, что с одним каналом — разницы в результатах — нет.
В общем — где-то есть огромная разница, а где-то её нет вообще.
Тесты в играх
Теория по играм
Ну и главный вопрос — к чему относятся игры. К той задаче, где есть разница или где её нет.
Понятное дело, что тут важна практика, но давайте всё таки цепанём немного теории.
В целом — процесс обработки игры для процессора можно разделить на два этапа:
Первый — просчёт игрового движка, то есть каждый кадр есть какая-то физика игровая, и периодически нужно отрабатывать какие-то алгоритмы сценария мира.
За имитацию обсчётов у нас будет CPU тест в 3D Mark.
В тесте анимация происходит не за счёт отрисовки элементов, а за счёт просчёта положения частиц.
В этом тесте разницы между системами — нет. Это, конечно, не значит, что это характерно для всех игр. Но в целом — для игровой физики не надо большого количества данных, вероятно тут кеша процессора было достаточно для того чтобы хватало и половины ширины шины.
Но это только первая часть работы процессора.
Вторая часть — это работа процессора на этапе отрисовки, то есть обработка вызовов на отрисовку для совместной работы с видеокартой.
Тут нам поможет тест 3D Mark API бенчмарк.
Он делает тесты в DX11, DX11 мультипоточном, DX 12 и Вулкане.
Начнём с однопоточного DX11.
Тут видно небольшое преимущество у двухканала. Вообще у теста большая погрешность — процентов 10. И в целом — можно сказать, что результаты в эту погрешность укладываются.
Дальше у нас DX11 мультипоток.
Тут уже точно это не погрешность. От двухканала прирост больше 35%.
Ну оно и логично. Одному ядру хватало ширины и половины от возможной, а вот 8-ми ядрам уже этого не хватает.
Однако — у этих вызовов на старых API есть свои задержки, собственно которые и устранятся в новых API. И из-за врождённых задержек — задержки от памяти становятся не столь критичными.
В новых API ситуация уже кардинально отличается.
На 12 DX прирост от второго канала — 80%
На вулкане прирост около 75%.
В общем — разница почти двукратная.
Что касается практики — стоит понимать, что и алгоритмы с обсчётами могут быть менее оптимизированы, но и в играх вызовов на отрисовку не так много, как в бенчмарке.
Но главное отличие, конечно, ещё и в том, что данные в видеопамять поступают через северный мост процессора. То есть в моменты, когда идёт подгрузка текстур ширина канала ещё сильнее начинает ограничивать производительность процессора.
Этот процесс в бенчмарках сложно было бы подловить. Но думаю все знакомы с какими-то подлагами игры на подгрузках и с одноканалом эти подлагивания будут сильнее.
И, конечно, результаты будут зависеть и от видеокарты. У меня в тесте 8-ми гиговая RTX 2070, и она реже производит какие-то подгрузки данных. Была бы в тесте 2-х гиговая, она бы постоянно лила свой трафик данных через северный мост процессора к памяти, и ухудшала бы работу процессора при голоде памяти.
Практические тесты в играх
Игр в тест я взял не много, но выбрал на разных движках и API. Есть на 11DX, есть на 12 и есть на вулкане. Всего игр 4. Во всех играх стоят максимальные настройки, но со сниженным разрешением рендеринга.
С 8-ми гиговой картой, когда данные для видеокарты не кешируются в оперативной памяти разница от одного или двухканала будет только при ограничении производительности процессора. Но, собственно, те тесты что будут показывать AMD презентуя большой кеш и Intel показывая прирост на такт в играх — будут показываться также с ограничением в процессор.
В тестах важно рассматривать как изменяются показатели в динамики в зависимости от текущей сцены, так что этот раздел статьи стоит смотреть в видео версии:
Выводы
И естественно, что чем больше ядер и чем они быстрее — тем выше требования к ширине шины к оперативной памяти. Но многое зависит и от задачи, в которой производится сравнение. Внутри одной и той же игры разница тоже очень сильно зависит от происходящего конкретно в текущий момент, поэтому назвать какую-то конкретную цифру влияния — не получится. Так же надо понимать, что в этом тесте и двухканал не был каким-то заоблачным, так как была стоковая память, и хороший разгон памяти ещё даст прирост до 15-20% в некоторых задачах. Собственно и большой кеш и переход на DDR5 как раз и смогут отбить эти самые проценты, и вдобавок сделать не бессмысленным дальнейший рост производительности ядер и увеличение их числа. Ну и так же — если вы заходили в статью с целью понять — стоит ли экономить на двухканале — очевидно, что не стоит. Прирост на десятки процентов, а разница по цене всей сборки компьютера от двух планок вместо одной единицы процентов.
Видео на YouTube канале «Этот компьютер»
Начало новой эпохи. Как работает оперативная память стандарта DDR4
Вот и вышли процессоры Intel Haswell-E. Ferra.ru уже успела протестировать топовый 8-ядерник Core i7-5960X, а также материнскую плату ASUS X99-DELUXE. И, пожалуй, главной «фишкой» новой платформы стала поддержка стандарта оперативной памяти DDR4.
Из этой статьи вы узнаете, какими же преимуществами обладают «мозги» нового поколения, и как полученные изменения повлияют на производительность памяти. Однако для начала — небольшой экскурс в историю.
Начало новой эпохи, эпохи DDR4
О стандарте SDRAM и модулях памяти
Первые модули SDRAM появились еще в 1993 году. Их выпустила компания Samsung. А уже к 2000 году память SDRAM за счет производственных мощностей корейского гиганта полностью вытеснила с рынка стандарт DRAM.
Аббревиатура SDRAM расшифровывается как Synchronous Dynamic Random Access Memory. Дословно это можно перевести как «синхронная динамическая память с произвольным доступом». Поясним значение каждой характеристики. Динамической память является потому, что в силу малой емкости конденсаторов она постоянно требует обновления. К слову, кроме динамической, также существует и статическая память, которая не требует постоянного обновления данных (SRAM). SRAM, например, лежит в основе кэш-памяти. Помимо динамической, память также является синхронной, в отличие от асинхронной DRAM. Синхронность заключается в том, что память выполняет каждую операцию известное число времени (или тактов). Например, при запросе каких-либо данных контроллер памяти точно знает, сколько времени они будут до него добираться. Свойство синхронности позволяет управлять потоком данных и выстраивать их в очередь. Ну и пару слов о «памяти с произвольным доступом» (RAM). Это означает, что единовременно можно получить доступ к любой ячейке по ее адресу на чтение или запись, причем всегда за одно и то же время вне зависимости от расположения.
Модуль памяти SDRAM
Если говорить непосредственно о конструкции памяти, то ее ячейками являются конденсаторы. Если заряд в конденсаторе есть, то процессор расценивает его как логическую единицу. Если заряда нет — как логический ноль. Такие ячейки памяти имеют плоскую структуру, а адрес каждой из них определяется как номер строки и столбца таблицы.
В каждом чипе находится несколько независимых массивов памяти, которые представляют собой таблицы. Их называют банками. В единицу времени можно работать только с одной ячейкой в банке, однако существует возможность работы сразу с несколькими банками. Записываемая информация необязательно должна храниться в одном массиве. Зачастую она разбивается на несколько частей и записывается в разные банки, причем процессор продолжает считать эти данные единым целым. Такой способ записи называется interleaving. В теории, чем больше в памяти таких банков, тем лучше. На практике модули с плотностью до 64 Мбит имеют два банка. С плотностью от 64 Мбит до 1 Гбит — четыре, а с плотностью 1 Гбит и выше — уже восемь.
Что такое банк памяти
И несколько слов о строении модуля памяти. Сам по себе модуль памяти представляет собой печатную плату с распаянными на ней чипами. Как правило, в продаже можно встретить устройства, выполненные в форм-факторах DIMM (Dual In-line Memory Module) или SO-DIMM (Small Outline Dual In-line Memory Module). Первый предназначается для использования в полноценных настольных компьютерах, а второй — для установки в ноутбуки. Несмотря на один и тот же форм-фактор, модули памяти разных поколений отличаются количеством контактов. Например, решение SDRAM имеет 144 пина для подключения к материнской плате, DDR — 184, DDR2 — 214 пинов, DDR3 — 240, а DDR4 — уже 288 штук. Конечно, речь в данном случае идет о DIMM-модулях. Устройства, выполненные в форм-факторе SO-DIMM, само собой имеют меньшее число контактов в силу своих меньших размеров. Например, модуль памяти DDR4 SO-DIMM подключается к «материнке» за счет 256 пинов.
Модуль DDR (внизу) имеет больше пинов, чем SDRAM (вверху)
Вполне очевидно и то, что объем каждого модуля памяти высчитывается как сумма емкостей каждого распаянного чипа. Чипы памяти, конечно, могут отличаться своей плотностью (или, проще говоря, объемом). К примеру, прошедшей весной компания Samsung наладила серийное производство чипов с плотностью 4 Гбит. Причем в обозримом будущем планируется выпуск памяти с плотностью 8 Гбит. Также модули памяти имеют свою шину. Минимальная ширина шины составляет 64 бит. Это означает, что за такт передается 8 байт информации. При этом нужно отметить, что также существуют 72-битные модули памяти, в которых «лишние» 8 бит отведены для технологии коррекции ошибок ECC (Error Checking & Correction). Кстати, ширина шины модуля памяти также является суммой ширин шин каждого отдельно взятого чипа памяти. То есть, если шина модуля памяти является 64-битной и на планке распаяно восемь чипов, то ширина шины памяти каждого чипа равна 64/8=8 бит.
Чтобы рассчитать теоретическую пропускную способность модуля памяти, можно воспользоваться следующей формулой: A * 64/8=ПС, где «А» — это скорость передачи данных, а «ПС» — искомая пропускная способность. В качестве примера можно взять модуль памяти типа DDR3 с частотой 2400 МГц. В таком случае пропускная способность будет равняться 2400 * 64/8=19200 Мбайт/с. Именно это число имеется в виду в маркировке модуля PC3-19200.
Как же происходит непосредственно чтение информации из памяти? Сначала подается адресный сигнал в соответствующую строку (Row), а уже затем считывается информация из нужного столбца (Column). Информация считывается в так называемый усилитель (Sense Amplifiers) — механизм подзарядки конденсаторов. В большинстве случаев контроллер памяти считывает сразу целый пакет данных (Burst) с каждого бита шины. Соответственно, при записи каждые 64 бита (8 байт) делятся на несколько частей. К слову, существует такое понятие как длина пакета данных (Burst Length). Если эта длина равна 8, то за один раз передается сразу 8 * 64=512 бит.
Модули и чипы памяти также имеют такую характеристику, как геометрия, или организация (Memory Organization). Геометрия модуля показывает его ширину и глубину. Например, чип с плотностью 512 Мбит и разрядностью (шириной) 4 имеет глубину чипа 512/4=128М. В свою очередь, 128М=32М * 4 банка. 32М — это матрица, содержащая 16000 строк и 2000 столбцов. Она может хранить 32 Мбит данных. Что касается самого модуля памяти, то почти всегда его разрядность составляет 64 бита. Глубина же легко высчитывается по следующей формуле: объем модуля умножается на 8 для перевода из байтов в биты, а затем делится на разрядность.
На маркировке без труда можно найти значения таймингов
Необходимо сказать несколько слов и о такой характеристике модулей памяти, как тайминги (задержки). В самом начале статьи мы говорили о том, что стандарт SDRAM предусматривает такой момент, что контроллер памяти всегда знает, сколько времени выполняется та или иная операция. Тайминги как раз и указывают время, требующееся на исполнение определенной команды. Это время измеряется в тактах шины памяти. Чем меньше это время, тем лучше. Самыми важными являются следующие задержки:
Конечно, это далеко не все существующие в модулях памяти задержки. Можно перечислить еще добрый десяток всевозможных таймингов, но лишь указанные выше параметры существенно влияют на производительность памяти. Кстати, в маркировке модулей памяти и вовсе указываются только четыре задержки. Например, при параметрах 11-13-13-31 тайминг CL равен 11, TRCD и TRP — 13, а TRAS — 31 такту.
Со временем потенциал SDRAM достигла своего потолка, и производители столкнулись с проблемой повышения быстродействия оперативной памяти. Так на свет появился стандарт DDR.1
Пришествие DDR
Разработка стандарта DDR (Double Data Rate) началась еще в 1996 году и закончилась официальной презентацией в июне 2000 года. С приходом DDR уходящую в прошлое память SDRAM стали называть попросту SDR. Чем же стандарт DDR отличается от SDR?
После того как все ресурсы SDR были исчерпаны, у производителей памяти было несколько путей решения проблемы повышения производительности. Можно было бы просто наращивать число чипов памяти, тем самым увеличивая разрядность всего модуля. Однако это отрицательно сказалось бы на стоимости таких решений — уж очень дорого обходилась эта затея. Поэтому в ассоциации производителей JEDEC пошли иным путем. Было решено вдвое увеличить шину внутри чипа, а передачу данных осуществлять также на вдвое повышенной частоте. Кроме этого, в DDR предусматривалась передача информации по обоим фронтам тактового сигнала, то есть два раза за такт. Отсюда и берет свое начало аббревиатура DDR — Double Data Rate.