что значит большая буква е в формулах

«Популярное изложение»: Число Эйлера и наши финансы. Краткое знакомство с константой «е»

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Что общего у наших денег и числа Эйлера?

В то время как у числа π (пи) есть вполне определенный геометрический смысл и его использовали еще древние математики, то число е (число Эйлера) заняло свое заслуженное место в науке сравнительно недавно и корни его уходят прямиком… к финансовым вопросам.

С момента изобретения денег прошло совсем немного времени, когда люди догадались, что валюту можно одалживать или ссужать под определенный процент. Естественно, «древние» бизнесмены не пользовались привычным нам понятием «процент», но увеличение суммы на какой-то определенный показатель за установленный период времени было им знакомо.

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

На фото: банкнота стоимостью 10 франков с изображением Леонарда Эйлера (1707-1783).

Пытаясь высчитать, за сколько времени сумма, одолженная, допустим, под 20% годовых увеличится вдвое, люди уже начинали наощупь отыскивать путь, который в конечном итоге привел к определению числа е.

Мы не будем углубляться в пример с 20% годовых, так как от него добираться до числа Эйлера слишком долго. Воспользуемся самым распространенным и наглядным объяснением значения этой константы, а для этого нам придется немного пофантазировать и вообразить, что какой-то банк предлагает нам положить деньги на депозит под 100% годовых.

Мысленно-финансовый эксперимент

Для этого мысленного эксперимента можно взять любую сумму и результат всегда будет идентичным, но именно начиная с 1, мы сможем прийти непосредственно к первому приближенному значению числа е. Потому, допустим, что мы вкладываем в банк 1 доллар, при ставке 100% годовых в конце года у нас будет 2 доллара.

Но это только если проценты капитализируются (прибавляются) раз в год. А что если они будут капитализироваться два раза в год? То есть будет начисляться по 50% каждые полгода, причем вторые 50% будут начисляться уже не от начальной суммы, а от суммы, увеличенной на первые 50%. Будет ли это выгоднее для нас?

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Наглядная инфографика, отображающая геометрический смысл числа π.

Разумеется, будет. При капитализации два раза в год, спустя полгода у нас будет 1,50 доллара на счете. К концу года прибавится еще 50% от 1,50 доллара, то есть общая сумма составит 2,25 доллара. Что же будет, если капитализацию проводить каждый месяц?

Нам будут начислять по 100/12% (то есть, примерно по 8,(3)%) каждый месяц, что окажется еще более выгодным – к концу года у нас будет 2,61 доллара. Общая формула для вычисления итоговой суммы при произвольном количестве капитализаций (n) в год выглядит так:

Итоговая сумма = 1(1+1/n) n

Получается, при значении n = 365 (то есть, если наши проценты будут капитализироваться каждый день), мы получим вот такую формулу: 1(1+1/365) 365 = 2,71 доллара. Из учебников и справочников мы знаем, что е приблизительно равно 2,71828, то есть, рассматривая ежедневную капитализацию нашего сказочного вклада мы уже подошли к приблизительному значению е, которое уже достаточно для многих вычислений.

Рост n можно продолжать бесконечно и чем больше будет его значение, тем точнее мы сможем вычислить число Эйлера, вплоть до необходимого нам, по какой-либо причине, знака после запятой.

Это правило, конечно, не ограничивается только нашими финансовыми интересами. Математические константы далеко не «узкие специалисты» – они действуют одинаково хорошо вне зависимости от области применения. Поэтому хорошенько покопавшись, можно обнаружить их практически в любой сфере жизни.

Получается, число е что-то вроде меры всех изменений и «натуральный язык математического анализа». Ведь «матан» крепко повязан с понятиями дифференцирования и интегрирования, а обе эти операции имеют дело с бесконечно малыми изменениями, которые так великолепно характеризует число е.

Уникальные свойства числа Эйлера

Рассмотрев самый доходчивый пример объяснения построения одной из формул для вычисления числа е, кратко рассмотрим еще пару вопросов, которые к нему напрямую относятся. И один из них: что же такого уникального в числе Эйлера?

По идее, абсолютно любая математическая константа уникальна и у каждой есть своя история, но, согласитесь, претензия на звание натурального языка математического анализа – довольно весомая претензия.

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Первая тысяча значений ϕ (n) для функции Эйлера.

Никакое другое число этим похвастаться не может. Нам, гуманитариям (ну, или просто НЕ математикам), такое заявление мало что говорит, но сами математики утверждают, что это очень важно. Почему важно? Мы попробуем разобраться в этом вопросе в другой раз.

Логарифм, как предпосылка Числа Эйлера

Возможно, кто-то помнит со школы, что число Эйлера – это также основание натурального логарифма. Что ж, это согласуется с его природой, как меры всех изменений. Все-таки, причем же тут Эйлер? Справедливости ради нужно отметить, что е также иногда называется числом Непера, но без Эйлера история будет неполной, как и без упоминания о логарифмах.

Изобретение в XVII веке логарифмов шотландским математиком Джоном Непером стало одним из важнейших событий истории математики. На праздновании в честь юбилея этого события, которое прошло в 1914 году Лорд Мултон (Lord Moulton) так отозвался о нем:

«Изобретение логарифмов было для научного мира как гром среди ясного неба. Никакая предшествующая работа не вела к нему, не предсказывала и не обещала это открытие. Оно стоит особняком, оно прорывается из человеческой мысли внезапно, не заимствуя ничего из работы других разумов и не следуя уже известным тогда направлениям математической мысли».

Пьер-Симон Лаплас, знаменитый французский математик и астроном, еще более драматично выразил важность этого открытия: «Изобретение логарифмов, уменьшив часы кропотливого труда, вдвое увеличило жизнь астронома». Что же так впечатлило Лапласа? А причина очень проста – логарифмы позволили ученым в разы уменьшить время, обычно затрачиваемое для громоздких вычислений.

В общем и целом, логарифмы упрощали вычисления – опускали их на один уровень ниже по шкале сложности. Проще говоря, вместо умножения и деления приходилось совершать операции сложения и вычитания. А это намного эффективнее.

е – основание натурального логарифма

Давайте примем за данность тот факт, что Непер был первопроходцем в сфере логарифмов – их изобретателем. По крайней мере, он опубликовал свои открытия первым. В таком случае возникает вопрос: в чем заслуга Эйлера?

Все просто – его можно назвать идейным наследником Непера и человеком, который довел дело жизни шотландского ученного до логарифмического (читать логического) завершения. Интересное такое вообще возможно?

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Какой-то очень важный график построенный при помощи натурального логорифма.

Если говорить конкретнее, то Эйлер вывел основание натурального логарифма, теперь известное как число е или число Эйлера. Кроме этого, он вписал свое имя в историю науки столько раз, сколько и не снилось Васе, который, кажется, успел «побывать» везде.

К сожалению, конкретно принципы работы с логарифмами – это тема отдельной большой статьи. Поэтому пока будет достаточно сказать, что благодаря работе ряда самоотверженных ученых, которые, буквально, посвятили годы своей жизни составлению логарифмических таблиц в те времена, когда никто и слыхом не слыхивал о калькуляторах, прогресс науки сильно ускорился.

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Забавно, но этот прогресс, в конце концов, привел к выходу из употребления данных таблиц, а причиной тому послужило именно появление ручных калькуляторов, которые полностью переняли на себя задачу по выполнению такого рода вычислений.

Возможно, вы еще слышали о логарифмических линейках? Когда-то без них инженерам или математикам бывало не обойтись, а сейчас это почти как астролябия – интересный инструмент, но скорее в плане истории науки, чем повседневной практики.

Почему так важно быть основанием логарифма?

Оказывается, основанием логарифма может быть любое число (например, 2 или 10), но, именно благодаря уникальным свойствам числа Эйлера логарифм по основанию е называется натуральным. Он как бы встроен в структуру реальности – от него никуда не убежать, да и не нужно, ведь он значительно упрощает жизнь ученым, работающим в самых разных областях.

Приведем доходчивое объяснение природы логарифма с сайта Павла Бердова. Логарифм по основанию a от аргумента x – это степень, в которую надо возвести число a, чтобы получить число x. Графически это обозначается так:

loga x = b, где a – основание, x – аргумент, b – это то, чему равен логарифм.

Например, 2 3 = 8 ⇒ log2 8 = 3 (логарифм по основанию 2 от числа 8 равен 3-м, поскольку 2 3 = 8).

Выше мы видели число 2 в образе основания логарифма, но математики говорят, что самый талантливый актер на эту роль – число Эйлера. Поверим им на слово… А потом проверим, чтобы убедиться самим.

Выводы

Наверное, плохо, что в рамках высшего образования так сильно разделены естественные и гуманитарные науки. Иногда это приводит к слишком сильному «перекосу» и получается так, что с человеком, прекрасно разбирающимся, допустим, в физике и математике, абсолютно неинтересно говорить на другие темы.

И наоборот, можно быть первоклассным специалистом-литературоведом, но, в то же время, быть совершенно беспомощным, когда речь заходит о той же физике и математике. А ведь все науки интересны по-своему.

Надеемся, что мы, пытаясь преодолеть свою собственную ограниченность в рамках импровизированной программы «я – гуманитарий, но я лечусь», помогли и вам узнать и, главное, понять, что-то новое из не совсем привычной научной сферы.

Ну а тем, кто захочет поподробнее узнать о числе Эйлера, можем порекомендовать несколько источников, в которых может при желании разобраться даже далекий от математики человек: Эли Маор в своей книге «е: история одного числа» («e: the story of a number») подробно и доступно описывает предысторию и историю числа Эйлера.

Также, в разделе «Рекомендуем« под этой статьей Вы сможете название youtube-каналов и видео, которые были сняты профессиональными математиками, пытающимися доходчиво объяснить число Эйлера так, чтобы это было понятно даже не специалистам Русские субтитры в наличие.

Источник

Экспонента и число е: просто и понятно

Число e всегда волновало меня — не как буква, а как математическая константа. Что число е означает на самом деле?

Разные математические книги и даже моя горячо любимая Википедия описывает эту величественную константу совершенно бестолковым научным жаргоном:

Математическая константа е является основанием натурального логарифма.

Если заинтересуетесь, что такое натуральный логарифм, найдете такое определение:

Натуральный логарифм, ранее известный как гиперболический логарифм, является логарифмом с основанием е, где е – иррациональная константа, приблизительно равная 2.718281828459.

Определения, конечно, правильные. Но понять их крайне сложно. Конечно, Википедия в этом не виновата: обычно математические пояснения сухи и формальны, составляются по всей строгости науки. Из-за этого новичкам сложно осваивать предмет (а когда-то каждый был новичком).

С меня хватит! Сегодня я делюсь своими высокоинтеллектуальными соображениями о том, что такое число е, и чем оно так круто! Отложите свои толстые, наводящие страх математические книжки в сторону!

Число е – это не просто число

Описывать е как «константу, приблизительно равную 2,71828…» — это все равно, что называть число пи «иррациональным числом, приблизительно равным 3,1415…». Несомненно, так и есть, но суть по-прежнему ускользает от нас.

Число пи — это соотношение длины окружности к диаметру, одинаковое для всех окружностей. Это фундаментальная пропорция, свойственная всем окружностям, а следовательно, она участвует в вычислении длины окружности, площади, объема и площади поверхности для кругов, сфер, цилиндров и т.д. Пи показывает, что все окружности связаны, не говоря уже о тригонометрических функциях, выводимых из окружностей (синус, косинус, тангенс).

Число е является базовым соотношением роста для всех непрерывно растущих процессов. Число е позволяет взять простой темп прироста (где разница видна только в конце года) и вычислить составляющие этого показателя, нормальный рост, при котором с каждой наносекундой (или даже быстрее) всё вырастает еще на немного.

Число е участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов, и много-много других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.

Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).

Так что число е – это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.

Понятие экспоненциального роста

Давайте начнем с рассмотрения базовой системы, которая удваивается за определенный период времени. Например:

И выглядит это примерно так:

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Деление на два или удваивание – это очень простая прогрессия. Конечно, мы можем утроить или учетверить, но удваивание более удобно для пояснения.

Математически, если у нас есть х разделений, мы получаем в 2^x раз больше добра, чем было вначале. Если сделано только 1 разбиение, получаем в 2^1 раза больше. Если разбиений 4, у нас получится 2^4=16 частей. Общая формула выглядит так:

Другими словами, удвоение – это 100% рост. Мы можем переписать эту формулу так:

Это то же равенство, мы только разделили «2» на составные части, которыми в сущности и является это число: начальное значение (1) плюс 100%. Умно, да?

Конечно, мы можем подставить и любое другое число (50%, 25%, 200%) вместо 100% и получить формулу роста для этого нового коэффициента. Общая формула для х периодов временного ряда будет иметь вид:

Это просто означает, что мы используем норму возврата, (1 + прирост), «х» раз подряд.

Приглядимся поближе

Наша формула предполагает, что прирост происходит дискретными шагами. Наши бактерии ждут, ждут, а потом бац!, и в последнюю минуту они удваиваются в количестве. Наша прибыль по процентам от депозита магическим образом появляется ровно через 1 год. На основе формулы, написанной выше, прибыль растет ступенчато. Зеленые точки появляются внезапно.

Но мир не всегда таков. Если мы увеличим картинку, мы увидим, что наши друзья-бактерии делятся постоянно:

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Зеленый малый не возникает из ничего: он медленно вырастает из синего родителя. После 1 периода времени (24 часа в нашем случае), зеленый друг уже полностью созрел. Повзрослев, он стает полноценным синим членом стада и может создавать новые зеленые клеточки сам.

Эта информация как-то изменит наше уравнение?

Не-а. В случае с бактериями, полусформированные зеленые клетки все же не могут ничего делать, пока не вырастут и совсем не отделятся от своих синих родителей. Так что уравнение справедливо.

Источник

E (математическая константа)

Играет важную роль в дифференциальном и интегральном исчислении, а также многих других разделах математики.

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах2,718 281 828 459 045 235 360 287 471 352 662 497 757… [1]

Содержание

Способы определения

Число e может быть определено несколькими способами.

Свойства

История

Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах.

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).

Предполагается, что автором таблицы был английский математик Отред.

Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690—1691 годы.

Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ).

Способы запоминания

Доказательство иррациональности

Пускай что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулахрационально. Тогда что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах, где что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулахи что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулахцелые положительные, откуда

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Умножая обе части уравнения на что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах, получаем

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Переносим что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулахв левую часть:

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Все слагаемые правой части целые, следовательно:

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах— целое что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Но с другой стороны

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах

Интересные факты

Источник

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулахeponim2008

Жизнь замечательных имен

Короткие истории о вещах и о людях, давших им свое имя

Что такое число Эйлера?

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулахПамять о великом русском ученом Леонарде Эйлере (Leonhard Euler; 1707 —1783) навсегда сохранится в математике благодаря всего одной букве, букве e, первой букве его фамилии. Этой буквой обозначается некоторое число, число Эйлера. Всего-то число. Зато какое!

Число e столь же знаменито, сколь и число π . И столь же часто появляется оно в различных математических формулах. Вообще оба эти числа входят во множество формул в математике, физике, химии, биологии, в экономике. И всякий раз, когда они появляются, ученые, что называется «делают стойку», потому что знают: появление этих чисел всегда означает глубокую связь не только с законами математики, но и с законами природы.

Доказано, что число π связано с изотропностью пространства, а число e – с однородностью пространства и времени. Если перевести это на простой и понятный язык, то существование числа e означает, что законы природы неизменны в любом месте пространства, не изменялись во все времена и не изменятся в будущем. Существование же числа π означает, что все направления в пространстве одинаковы. Физики-теоретики, из этих важных положений о свойствах пространства и времени выводят важные законы сохранения, в том числе, закон сохранения энергии. А если уж взлететь совсем в эзотерические бездны, изотропность пространства в совокупности с однородностью пространства и времени накладывают запрет на существование Бога-создателя. Потому что такому Создателю, которого представляем мы, нет места в том пространстве-времени, которое мы пока что можем охватить разумом. Либо, если он существует, нарушаются основные законы мироздания, которые мы в данный момент считаем незыблемыми и на которых зиждется все наше знание о природе. Факт этот математически доказан.

Впрочем, сам Леонард Эйлер в Бога верил и даже, как говорят, дал укорот пламенному атеисту-энтузиасту Дени Дидро (Denis Diderot; 1713 — 1784). Тот, находясь при дворе Екатерины II, существование Создателя мира опровергал. Опровергал, как положено французу легкомысленно, но весело. Императрицу эти пустопорожние разговоры забавляли, но их идеологическую пагубность для своих подданных она прекрасно понимала. Посему Эйлеру было поручено возразить Дидро по-научному.

По-научному, так по-научному. Присутствуя на одной из бесед императрицы с Дидро, Эйлер заявил, что он знает математическое доказательство существования Бога и готов его тут же представить. Когда Дидро заинтересовался, Эйлер выдал ему какую-то математическую формулу, совершенно бессмысленную, после чего спросил у французского литератора, математики, конечно же, не знавшего, что он может на это возразить. Если бы Дидро к своему авторитету в глазах императрицы относился так же легкомысленно, как он относился к Богу, он мог бы отшутиться. Например, выдать Эйлеру какую-нибудь еще более бессмысленную формулу. Но против могучего танка по имени Леонард французские bon mot (остроты) оказались бессильными. Оторопь Дидро вызвала улыбки и смех, лицо выдающегося философа и богоборца было потеряно. Через несколько дней блестящий Денис покинул Санкт-Петербург.

Жаль, что во времена Дидро не существовало еще мобильных телефонов. Будь у Дидро такой приборчик, ему бы ничего не стоило связаться со своим коллегой по просветительским трудам, математиком и механиком Д’Аламбером и попросить совета. Ум хорошо, а два лучше. Глядишь, придумали бы какой-нибудь ответ суровому Эйлеру.

Впрочем, если бы тому всерьез захотелось представить доказательство бытия Божьего, он бы смог представить формулу, которую математики до сих пор считают самой красивой формулой своей науки. Эта формула называется тождеством Эйлера и выглядит следующим образом

что значит большая буква е в формулах. Смотреть фото что значит большая буква е в формулах. Смотреть картинку что значит большая буква е в формулах. Картинка про что значит большая буква е в формулах. Фото что значит большая буква е в формулах
В отличие от легковесных разговоров, эта формула, действительно, заставляет задуматься о глубоких взаимосвязях, существующих в мире и о причинах этих взаимосвязей. И удивиться, если не премудрости Создателя, то величию Природы. Что, в некотором смысле, одно и то же. В тождестве Эйлера соединены математический анализ (число e), геометрия (число π), алгебра (число i) и арифметика (число -1). Впрочем, Эйлер понимал, что говорить с Дидро о математике то же самое, что толковать с глухим о музыке. Поэтому в разговоре с французским гостем явно придуривался.

В начале рассказа Эйлер был назван великим русским ученым, хотя родился он в Швейцарии. Кому-то это может показаться странным. И напрасно! В 18-м веке Россия, без всякого сомнения, была империей. А в любой империи происхождение – вопрос второстепенный. Имперская идея расставляет подданных по местам, руководствуясь иными принципами.

Тем более, что большую часть своей жизни Л.Эйлер прожил в России. С мая 1727 года (то есть в возрасте 20 лет!) он прибыл в Санкт-Петербург и стал адъюнктом (помощником профессора) по отделению математики. Уже в следующем году Л.Эйлер бегло говорил по-русски. С тех пор до конца жизни он был связан с Санкт-Петербургской академией. Даже когда в 1741—1766 он был членом Прусской академии наук и поселился в Берлине, он оставался почетным русским академиком и принимал участие в ее работе. Все эти 25 лет место Эйлера было вакантным, но Академия Наук заполнить его кем-либо не считала нужным. А когда речь зашла о том, чтобы Эйлеру возвратиться в Санкт-Петербург, прусский император Фридрих II отпускать ученого со своей службы не желал, до тех пор, пока в этот вопрос не вмешалась лично Екатерина II.

Со времен пресловутой борьбы за национальные приоритеты (это было в начале 1950-х годов) сложилась стойкая легенда, о том, что Академия наук была «оккупирована» немцами, а национальный герой Михайла Ломоносов вовсю воевал с немецким засилием. Эта славная картина довольно далека от истины. Начать с того, что наукам и ремеслам Михаил Ломоносов (1711 —1765) обучался в Германии, в Марбургском университете в 1736—1739 годах.

Во-вторых, немецкие профессора, приглашенные в Россию, за редким исключением занимались своим делом не только в высшей степени профессионально, но и с большим энтузиазмом. Приглашение в Россию они не рассматривали, как приглашение к бездельному и сытому существованию среди русских снегов. Напротив, поездка в Россию была для них сравнима с переездом, который многие советские ученые в конце 1950-х – начале 1960-х годов совершили из больших столичных городов в Новосибирск, в юный Академгородок. Это была прекрасная возможность заниматься любимым делом, наукой, которое, к тому же оплачивалось гораздо лучше, чем в переполненной профессорами Европе. Характерно, что большая часть немецких ученых приезжала в Петербург, как Леонард Эйлер, людьми молодыми и полными сил. В России они приобрели опыт и научную известность. В России очень часто и оставались на всю жизнь. Для того, чтобы слыть русскими, чего же более надо?

В-третьих, немецкие ученые щедро делились своими знаниями с русскими коллегами. Леонард Эйлер, например, воспитал первых русских академиков: математика С. К. Котельникова и астронома С. Я. Румовского. И, кстати, М.В.Ломоносова Л.Эйлер не гнобил. В 1747 году он дал хвалебный отзыв (правда, формальный) на его работы по физике и химии. Сожалея, при этом, что достопочтенный Михаил Ломоносов высшей математикой не владел.

Научное наследие Леонарда Эйлера не велико, а просто огромно. Его работы способствовали созданию современного математического анализа, дифференциального и интегрального исчисления. Он создал новую математическую науку, вариационный анализ. Продолжая работы П.Ферма, он создал теорию чисел. Математик академик Н. Н. Лузин отмечал, что добрая половина того, что преподаётся в современных курсах высшей математики, основано на трудах Эйлера.

При этом Эйлер не был «чистым» математиком. Он работал также в области астрономии, гидродинамики, теоретической механики, оптики, кораблестроения, и даже теории музыки.

Не мудрено, что список различных математических понятий, носящих имя Л.Эйлера, занимает несколько страниц. Впрочем, то, что самый главный эпоним – это число Эйлера, e, постоянно встречающееся на страницах научных трудов по математике и физике. Эта важнейшая константа, основание натуральных логарифмов, было известно до Эйлера, однако он настолько глубоко и полно ее исследовал, что она носит его имя. И даже обозначается первой буквой его фамилии (Euler).

Обозначение основания натуральных алгоритмов именно буквой e вначале было случайным. Дело в том, что a, b, c и d были уже широко задействованы, и буква e оказалась первой «свободной» буквой. Неплохо было и то, что с этой буквы начиналось слово «exponential» («показательный», «экспоненциальный»).

Л.Эйлер тоже использовал букву e в своих трудах для обозначения основания натуральных логарифмов. При этом он, конечно, не думал о том, чтобы прославиться. Но так уж получилось, что последующие поколения математиков прочно связали пятую букву латинского алфавита с фамилией великого математика.

Для тех, кому урок, данный Эйлером Дидро, пошел впрок, дадим немного конкретных знаний.

Основание натуральных логарифмов, число e=2.718281828459045. Равенство всегда будет приблизительным, поскольку число это иррациональное (то есть, не представимо в виде обычной дроби, как частное от деления друг на друга двух натуральных чисел) и трансцендентное (то есть, не является результатом решения какого-нибудь степенного уравнения с рациональными коэффициентами). Для практического использования вполне достаточно запомнить две цифры после запятой: 2.71. Но существует мнемоническое правило, позволяющее запомнить 15 знаков после запятой в десятичном представлении числа e:

Два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45, 90 и 45 градусов).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *