что значит двойная скобка в математике

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Общая характеристика

Главная задача знаков — описание этапов осуществляемых действий. Математическое уравнение или выражение имеет одиночную пару квадратных, фигурных и других скобок, а также может использовать их некоторое количество.

Значение и разновидности

Скобки — это парные знаки, используемые во всевозможных областях. Чтобы правильно выстроить фразу в русском языке, для понимания смысла текста в предложении они употребляются как знаки препинания. С начальных классов школы изучают основы этих знаков.

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

В расчетах первая из скобок считается открывающей, а вторая — замыкающей. Оба знака соответствуют друг другу, но также используются те, в которых открытие или закрытие не различается (косые /…/, прямые скобки |…|, двойные прямые ||…||. Раскрывать значение можно чаще всего в математике, физике, химии и остальных науках для указания важности выполнения операции в формулах. На компьютерной клавиатуре представлены все виды знаков препинания.

Разновидности:

Открытие круглых () произошло в 1556 году для подкоренного выражения. По правилу первым выполняется действие внутри знака, затем произведение или определение частного (деление), а в конце — суммирование и разница.

В Microsoft word, Excel включена электронная конфигурация этих знаков. Часто используемые виды скобок, следующие: (), [ ], < >(), [ ], < >. Также встречаются двойные, называемые обратными (]] и [ [) или > в виде уголка. Их использование является двойственным — с открывающейся и замыкающей скобочкой.

Основные цели квадратной скобки в математике:

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Другие варианты расчета:

Квадратные скобки в математике обозначают, что действие выполняется последовательно. Эти знаки позволяют разграничить операции.

Треугольные актуальны в теории групп. Правило записи ⟨ a ⟩ n характеризует циклическую группу порядка n, сформированную элементом a.

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Круглые (операторные) () используются в математике для описания первостепенности действий. Например, (1 +5)*3 означает, что нужно сначала сложить 1 и 5, а затем полученную величину перемножить на 3. Наряду с квадратными, используются для записи разных компонент векторов, матриц и коэффициентов.

На уроке математики преподаватель объясняет, как раскрыть скобки в уравнении для последующего решения. Фигурная одинарная < встречается при решении систем уравнений, обозначает пересечение данных, а [[ используется при их слиянии.

Одинарные или двойные выражения

Употребление [] происходит реже. Одно уравнение со скобками объединяет несколько значений или неравенств различных размеров. Для решения совокупности нужно выполнить любое условие. Конец, завершение действия замыкает закрывающий знак.

В персональных компьютерах, ноутбуках, нетбуках встроена кодировка Юникод, закрепленная не за левыми или правыми объединяющими знаками, а за открывающими и замыкающими, поэтому при воспроизведении печатного текста со скобочками в режиме «справа налево» каждый знак меняет внешнее направление на обратное.

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Квадратные скобки в уравнении означают, что установлен порядок действий, задаются границы промежутков и необходимость выполнения действия над выражением. Двойные квадратные скобки необходимы для записи выражений наряду с круглыми для рационального порядка действий.

По правилам интервал [−a;+a] записывается в виде нестрогого неравенства −a≤x≤a, означающего, что x находится на промежутке от −a до a включительно.

В середине парного знака с отделяющей точкой или запятой указываются два числа — наименьшее, затем большее, ограничивающие интервал. Круглая скобочка, прилегающая к цифре, означает невключение числа в промежуток, а квадратная — добавление.

В некоторых учебных пособиях для вузов встречаются расшифровки числовых интервалов, в которых вместо круглой скобочки (применяется обратная квадратная скобка ], и наоборот. В обозначениях запись ]0, 1[ равносильна (0, 1).

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Открытая квадратная скобка (символ [) значит, что совокупность представляет систему уравнений разных размеров, для которых справедливы все множества решений для каждого уравнения, входящего в общее задание. Например, [x+11=2yy2−12=0

Прежде чем решать задачу или выполнять задание, нужно правильно определить принципы действий. В некоторых случаях скобочки могут быть не нужны, а иногда их обязательно нужно поставить.

Прочие знаки

Для математических, алгебраических и прочих расчетов важно знать различие обобщающих знаков. От правильности вычислений зависит итоговый результат.

Удобство записи системы уравнений

Применение фигурных знаков относится к представлению совмещения множеств. При решении системы с фигурной скобкой уравнения пересекаются, а [] объединяет их.

Источник

Урок 40 Бесплатно Раскрытие скобок

Ученые, открывая все новые математические законы и правила, вместе с тем, придумывали различные обозначения, символы и знаки.

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Система математических знаков и символов представляет собой математический язык, который упрощает и сокращает процесс изложения информации, позволяет точнее выразить мысль и избежать неверной трактовки и ошибок.

Кроме букв алфавитов и цифр математический язык содержит огромное множество различных символов и знаков.

Одним из наиболее часто используемых символов являются скобки.

На этом уроке рассмотрим, какие основные виды скобок существуют в математике, их обозначение и применение.

Выясним, что обозначает понятие «раскрыть скобки», познакомимся с правилами раскрытия скобок и разберем примеры применения данных правил.

Скобки в математике и их предназначение

Скобки являются парными знаками (за исключением некоторых математических обозначений): обычно первая в паре скобка- открывающая, вторая- закрывающая.

Парные скобки ограничивают часть некоторого математического выражения, т.е. заключают в себе некоторую часть целой математической записи.

В математике применяют несколько видов скобок.

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Чаще всего используют три вида скобок: круглые скобки ( ), квадратные скобки [ ] и фигурные скобки <>

Круглые скобки используют:

Круглые скобки используют часто в математических выражениях для указания последовательности и приоритета математических действий и логических операций или изменения принятого порядка этих действий.

Квадратные скобки в математике, например, используют для обозначения целой части числа, для определения приоритета операции (аналогично круглым скобкам), в качестве скобок «второго уровня» и др.

Фигурные скобки применяют, например, для обозначения множеств. Одинарная фигурная скобка обозначает объединение неравенств или уравнений в систему.

Используется двойная фигурная скобка, подобно круглым и квадратным скобкам, для разграничения приоритета действий в математических выражениях, в качестве скобок «третьего уровня» и др.

Вспомним порядок выполнения действий в выражениях со скобками.

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

По правилу, в выражении, содержащем скобки, первыми выполняются действия, стоящие в скобках, далее по порядку умножение и деление, а затем сложение и вычитание.

На примере рассмотрим использование скобок для указания порядка действий или изменении этого порядка.

Пример:

Дано выражение \(\mathbf<8 + 5 \cdot 2>\)

Найдем значение этого выражения, используя правило, которое определяет порядок выполнения действий в математических выражениях.

Ответ: 18

Если выражение будет содержать все те же числа и математические операции, но будет записано в виде: \(\mathbf<(8 + 5)\cdot 2>\), то в первую очередь выполняется действие в скобках, а затем умножение, получим

Ответ: 26

Мы можем заметить, что при изменении порядка действий с помощью скобок изменилось значение выражения.

Существуют выражения, которые содержат несколько пар скобок. В этом случае действия выполняют, начиная с первой скобки, и далее по порядку слева направо в следующих скобках, затем все действия согласно известным правилам, определяющим порядок выполнения математических операций в выражениях.

Пример:

Первым делом выполняются действия в скобках, затем умножение, далее сложение.

Решение будет выглядеть так:

Иногда встречаются выражения, где применяются сложные сочетания скобок (вложенные скобки).

Выполнять действия следует с внутренних скобок, затем математические операции проводят, продвигаясь ко внешним скобкам.

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Пример:

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Решение будет выглядеть так:

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Ответ: 46

Для того, чтобы проще было различить одну пару скобок от другой, скобки обозначают разными размерами, либо дополнительно применяют квадратные и фигурные скобки, либо скобки изображают попарно разным цветом.

1. Скобки обозначены разных размеров:

2. Дополнительно применены квадратные и фигурные скобки:

3. Скобки изображены попарно разным цветом:

У меня есть дополнительная информация к этой части урока!

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Скобки в качестве символа математического языка стали использовать в XVI— начале XVII века.

Первыми появились скобки [ ] в 1550 г. их ввел итальянский математик Рафаэль Бомбелли.

Круглые скобки ( ) появились в 1556 г.

Итальянский математик Никколо Тарталье впервые применил круглые скобки в написанной им в 1556 г.,книге под названием «Общие исследования чисел и мер».

Фигурные скобки появились немного позже, в 1593 году, благодаря французскому математику Франсуа Виету.

Несмотря на появление скобок различных видов, долгое время многие ученые, математики предпочитали вместо скобок подчеркивать выделяемое выражение или изображать линию над выделяемым выражением.

Широкое распространение скобки получили позже (в первой половине XVIII века), благодаря математикам Г. В. Лейбницу и Л. Эйлеру

Пройти тест и получить оценку можно после входа или регистрации

Раскрытие скобок

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Как вам уже известно, скобки в математических выражениях часто используют для разграничения рядом стоящих знаков или для объединения и перегруппировки чисел, с которыми будут выполнятся определенные математические действия.

Но иногда при решении математических выражений удобно раскрыть скобки, нежели высчитывать их значение.

Раскрыть скобки- это значит освободить выражение от скобок, избавить выражение от лишних знаков, тем самым упростить его для вычисления.

Значение выражение со скобками и значение выражения, полученное после раскрытия скобок, равны, их записывают в виде равенства.

При преобразовании громоздких выражений, в которых содержится большое количество скобок, возникает потребность записывать промежуточные результаты вычислений. В таких случаях решение записывается в виде цепочки равенств.

Рассмотрим правила раскрытия скобок.

Разберем случаи, когда перед скобками стоит знак плюс «+».

1. Выражение вида а + (-b) можно записать, опустив скобки.

2. Выражение вида а + (b+ c) можно записать без скобок.

Согласно сочетательному свойству сложения, если к числу прибавить сумму двух чисел, то нужно сначала к этому числу прибавить первое слагаемое, а затем второе слагаемое.

а + (b + c) = а + b + c

3. Рассмотрим еще одно выражение а + (b c), и преобразуем это выражение в выражение без скобок.

Если первое слагаемое в скобках стоит без знака, то его знак определяется как знак плюс «+».

Известно, что вычитание можно заменить сложением, следовательно:

а + (b c) = а + (b+ (-c))

Применив сочетательное свойство, упростим выражение а + (b+ (-c)), в результате получим:

а + (b c) = а + b c

Рассуждая подобным образом, попробуем преобразовать еще два выражения со скобками.

4. Преобразуем выражение вида а + (-b+ c) в выражение без скобок.

Зная, что вычитание можно заменить сложением и применив сочетательное свойство сложения, упростим выражение:

5. Преобразуем выражение вида а + (-b c) в выражение без скобок.

Зная, что вычитание можно заменить сложением, и применив сочетательное свойство сложения, упростим выражение:

Заметим, что в левой части каждого из равенств перед скобкой стоит знак «+», а слагаемые, стоящие в скобке, после преобразования сохраняют свои знаки:

а + (b + c) = а + b+ c

Пример: 15 + (5 + 2) = 15 + 5 + 2 = 22

а + (b c) = а + b c

Сформулируем правило раскрытия скобок, перед которыми стоит знак плюс:

Если перед скобками стоит знак плюс или не стоит никакого знака, то этот знак «+» и скобки необходимо опустить, сохранив знаки слагаемых, которые стояли в скобках.

Пример:

Избавимся от скобок, используя правило раскрытия скобок, перед которыми стоит знак «+».

Затем найдем значение выражения, используя переместительное свойство сложения и правило сложения чисел с разными знаками.

Ответ: 2

Рассмотрим случаи, когда перед раскрываемыми скобками стоит знак минус «-».

Вспомним, какие числа называют противоположными: два числа называют противоположными, если они отличны друг от друга только знаками, модули их равны.

Число а противоположно числу (-а).

-(-а) противоположно числу (-а).

Тогда верно утверждение, что -(-а) = а

Найдем значение выражения: -(-8 + 4)

Определим значение данного выражения двумя способами:

1. Найдем значение суммы в скобках, затем полученную сумму запишем со знаком минус «-».

В первом и во втором случае получили одинаковый результат, он равен четырем.

Сформулируем правило раскрытия скобок, перед которыми стоит знак минус.

Если перед скобками стоит знак минус, то этот знак «-» и скобки необходимо опустить, изменив знаки слагаемых, которые стояли в скобках на противоположные (знак минус меняется на плюс, знак плюс на минус).

Рассмотрим несколько равенств и раскроем скобки в них согласно данному правилу.

У меня есть дополнительная информация к этой части урока!

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

В математике существуют правила достаточно объемные и сложные для понимания.

Благодаря стихотворной форме некоторые математические законы, правила и формулы становятся проще для запоминания и усвоения.

В связи с этим математики придумали множество забавных стихотворений о правилах раскрытия скобок.

Вот некоторые из них:

1. Если перед скобкой минус,

Он ведет себя как вирус.

Скобки сразу все съедает,

Всем, кто в скобках, знак меняет.

Ну, а если плюс стоит,

Он все знаки сохранит.

2. Перед скобкой плюс стоит,

Он о том и говорит,

Что ты скобки опускай,

Да все числа выпускай.

Перед скобкой минус строгий

Загородит нам дорогу.

Чтобы скобки все убрать,

Надо знаки поменять.

3. Перед скобкой вижу плюс,

Ошибиться не боюсь.

Пример:

Избавимся от скобок, используя правило раскрытия скобок, перед которыми стоит знак «-».

Затем найдем значение выражения, используя переместительное свойство сложения и правило сложения чисел с разными знаками.

Разберем правило раскрытия скобок при умножении числа на сумму (суммы на число).

Правило раскрытия скобок для данного случая звучит так:

Для раскрытия скобок в выражениях, содержащих умножение суммы на число или числа на сумму, используется распределительное свойство умножения относительно сложения.

Если число с положительное, то знаки слагаемых a и b не изменяются.

Если число с отрицательное, то знаки слагаемых a и b меняются на противоположные.

Пример:

Воспользуемся правилом раскрытия скобок при умножении суммы на число.

Ответ: 3,8

Пример:

Воспользуемся правилом раскрытия скобок при умножении суммы на число.

Пройти тест и получить оценку можно после входа или регистрации

Заключительный тест

Пройти тест и получить оценку можно после входа или регистрации

Источник

Раскрытие скобок

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Понятие раскрытия скобок

В задачах по математике постоянно встречаются числовые и буквенные выражения, а также выражения с переменными, которые составлены с использованием скобок.

Основная функция скобок — менять порядок действий при вычислениях значений числовых выражений.

Часто можно перейти от одного выражения со скобками к тождественно равному выражению без скобок. Например:

Такой переход от выражения со скобками к тождественно равному выражению без скобок несет в себе основную идею о раскрытии скобок.

Начальное выражение со скобками и результат, полученный после раскрытия скобок, удобно записывать в виде равенства, как мы это сделали в предыдущем примере.

В школе тему раскрытия скобок обычно подходят в 6 классе. На этом этапе раскрытие скобок воспринимают, как избавление от скобок, которые указывают порядок выполнения действий. И изучают раскрытие скобок на примерах выражений, которые содержат:

Раскрытие скобок также можно рассматривать шире.

Раскрытием скобок можно назвать переход от выражения, которое содержит отрицательные числа в скобках, к выражению без скобок. Например:

Или, если в описанных выше выражениях вместо чисел и переменных могут быть любые выражения. В полученных таким способом выражениях тоже можно проводить раскрытие скобок. Например:

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Раскрытие скобок — это избавление от скобок, которые указывают порядок выполнения действий, а также избавление от скобок, в которые заключены отдельные числа и выражения.

Важно отметить еще один момент, который касается особенностей записи решения при раскрытии скобок. При раскрытии скобок в громоздких выражениях можно прописывать промежуточные результаты в виде цепочки равенств. Например, вот так:

Первое правило раскрытия скобок

Это выражение равно двум. А теперь раскроем скобки, то есть избавимся от них. Мы ожидаем, что после избавления от скобок значение выражения 8 + (−9 + 3) также должно быть равно 2.

Первое правило раскрытия скобок

Если перед скобками стоит знак плюс — все числа, которые стоят внутри скобок, сохраняют свой знак.

Формула раскрытия скобок

Мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Значит плюс нужно опустить вместе со скобками. То, что было в скобках — запишем без изменений, вот так:

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Так мы получили выражение без скобок 8 − 9 + 3. Снова получаем в результате вычисления два.

Поэтому между выражениями 8 + (−9 + 3) и 8 − 9 + 3 можно поставить знак равенства, поскольку они равны одному и тому же значению:

Потренируемся применять правило на примерах.

Пример 1. Раскрыть скобки в выражении 8 + (−3 − 1)

Перед скобками стоит плюс, значит этот плюс опустим вместе со скобками. А то, что было в скобках оставим без изменений:

Пример 2. Раскрыть скобки в выражении 6 + (−2)

Перед скобками стоит плюс, значит применим то же правило:

Раскрытие скобок в предыдущих пример выглядит, как обратная операция замены вычитания сложением.

В выражении 6 − 2 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 6 + (−2). Но если в выражении 6 + (−2) раскрыть скобки, то получится снова 6 − 2.

Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после любых других преобразований.

Идем дальше. Теперь упростим выражение 2a + a − 5b + b.

Чтобы упростить такое выражение, нужно привести подобные слагаемые. Для этого нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:

Получили выражение 3a + (−4b). Раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок: опустим скобки вместе с плюсом, который стоит перед этими скобками.

Таким образом, выражение 2a + a − 5b + b упрощается до 3a − 4b.

После открытия одних скобок, по пути можно найти другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в таком выражении:

Здесь нужно раскрыть скобки в двух местах. Снова применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед:

Пример 3. Раскрыть скобки 6 + (−3) + (−2)

В обоих местах перед скобками стоит плюс. Применяем первое правило раскрытия скобок:

Можно встретить такой пример, когда первое слагаемое в скобках записано без знака. Например, в выражении 1 + (2 + 3 − 4) первое слагаемое в скобках 2 записано без знака. Какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ интуитивно понятен — перед двойкой будет стоять плюс.

Дело в том, что даже в скобках перед двойкой стоит плюс, просто мы его не видим так как плюс не принято записывать. Полная запись положительных чисел выглядит так: +1, +2, +3, но плюсы по традиции не записывают, поэтому положительные числа мы всегда видим в таком виде: 1, 2, 3.

Поэтому, чтобы раскрыть скобки в выражении 1 + (2 + 3 − 4), нужно как обычно опустить скобки вместе с плюсом, который стоит перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:

Пример 4. Раскрыть скобки в выражении (−7)

Перед скобками стоит плюс, но мы его не видим так как до него нет других чисел или выражений. Убираем скобки, применив первое правило раскрытия скобок:

Пример 5. Раскрыть скобки 9a + (−5b + 6c) + 2a + (−2d)

Видим два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишем без изменений:

Второе правило раскрытия скобок

Здесь рассмотрим второе правило раскрытия скобок. Звучит так:

Второе правило раскрытия скобок

Если перед скобками стоит знак минус — все числа, которые стоят внутри скобок, меняют свой знак на противоположный.

Формула раскрытия скобок

Например, раскроем скобки в выражении 5 − (−2 − 3)

Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный:

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Так мы получили выражение без скобок 5 + 2 + 3. Это выражение равно десяти, как и предыдущее выражение со скобками было равно 10.

Поэтому между выражениями 5 − (−2 − 3) и 5 + 2 + 3 можно поставить знак равенства так как они равны одному и тому же значению:

Пример 1. Раскрыть скобки в выражении 18 − (−1 − 5)

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

Пример 2. Раскрыть скобки −(−6 + 7)

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

Пример 3. Раскрыть скобки −(−7 − 4) + 15 + (−6 − 2)

Здесь мы видим два места, где нужно раскрыть скобки. В первом случае применим второе правило раскрытия скобок, а во втором — первое правило:

−(−7 − 4) + 15 + (−6 − 2) = 7 + 4 + 15 − 6 − 2

Пример 4. Раскрыть скобки в выражении a − (3b + 3) + 10

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

a − (3b + 3) + 10 = a − 3b − 3 + 10

Другие правила раскрытия скобок

Правило раскрытия скобок при делении

Если после скобок стоит знак деления — каждое число внутри скобок делится на делитель, который стоит после скобок.

Формула раскрытия скобок

Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые.

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2/3. Для этого сначала заменим деление умножением на обратное число:

Далее умножим скобку на число:

Правило раскрытия скобок при умножении:

Если перед скобками стоит знак умножения — каждое число, которое стоит внутри скобок, нужно умножить на множитель перед скобками.

Формула раскрытия скобок

Пример 1. Раскрыть скобки 5(3 − x)

В скобке у нас стоят 3 и −x, а перед скобкой — пятерка. Значит, каждый член скобки нужно умножить на 5:

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей.

Пример 2. Упростить выражение: 5(x + y) − 2(x − y)

Как решаем: 5(x + y) − 2(x − y) = 5x + 5y − 2x + 2y = 3x + 7y.

Таблица с формулами раскрытия скобок

Эти таблицы с правилами раскрытия скобок можно распечатать и обращаться к ним, когда возникнут сомнения в ходе решения задачки.

Правила раскрытия круглых скобок вида (-a), в которых находится одночлен

Правила раскрытия круглых скобок, в которых находится многочлен

Скобки убирают, знаки всех слагаемых в скобках не меняют, если:

Скобки убирают, знаки всех слагаемых в скобках меняются на противоположные, если:

Раскрытие круглых скобок при умножении одночлена на многочлен

Раскрытие круглых скобок при умножении многочлена на многочлен

Раскрытие круглых скобок при возведении многочлена в степень

(a + b)2 = (a + b)(a + b) = a(a + b) + b(a + b)= a2 + ab + ab + b2 = a2 + 2ab + b2

Скобка в скобке

В 7 классе на алгебре можно встретить задачи со скобками, которые вложены внутрь других скобок. Вот пример такого задания:

Чтобы успешно решать подобные задания, нужно:

При этом важно при раскрытии одной из скобок не трогать все остальное выражение и просто переписывать его, как есть. Разберем подробнее тот же самый пример.

Пример 1. Раскрыть скобки и привести подобные слагаемые 7x + 2(5 − (3x + y))

Начнем с раскрытия внутренней скобки (той, что внутри). Раскрывая ее, имеем дело только с тем, что к ней непосредственно относится – это сама скобка и минус перед ней. Всё остальное переписываем также как было.

Теперь раскроем вторую скобку, внешнюю:

Упростим получившееся выражение:

Порядок раскрытия скобок

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида. То есть в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок раскрытия скобок согласован с порядком выполнения действий:

Пример 1. Раскрыть скобки и упростить выражение:

Значение выражения не зависит от переменной и всегда отрицательно. Что и требовалось доказать.

Задачи для самостоятельного решения

На алгебре в 6 и 7 классе придется решать задачки с раскрытием скобок много и часто. Поэтому лучше запомнить правила и практиковаться уже сейчас.

Задание 6. Раскройте скобки:

что значит двойная скобка в математике. Смотреть фото что значит двойная скобка в математике. Смотреть картинку что значит двойная скобка в математике. Картинка про что значит двойная скобка в математике. Фото что значит двойная скобка в математике

Задание 7. Раскройте скобки:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *