что значит иммунитет на клеточном уровне
Что значит иммунитет на клеточном уровне
Тест предназначен для оценки Т-клеточного иммунитета к СOVID-19. Позволяет выявить в крови специфические Т-клетки (Т-лимфоциты), реагирующие на определенные антигены коронавируса SARS-CoV-2. Такие специфические Т-лимфоциты способны узнавать и уничтожать пораженные вирусом клетки и могут потенциально обеспечивать долгосрочную защиту от COVID-19, в том числе при отсутствии антител. Оценка Т-клеточного иммунитета наряду с гуморальным (определение антител) может использоваться как дополнительный маркер иммунной защиты от COVID-19.
Используется технология ELISPOT, которая является наиболее перспективной на сегодняшний день платформой для оценки Т-клеточного иммунитета.
Синонимы русские
Т-клети, Т-лимфоциты к коронавирусу.
Синонимы английские
T-cell immunity to COVID-19.
Прямая оценка функции Т-клеток ELISPOT.
Какой биоматериал можно использовать для исследования?
Как правильно подготовиться к исследованию?
Специальной подготовки не требуется.
Общая информация об исследовании
Пандемия SARS-CoV-2 привела к гибели более 2 миллионов человек на сегодняшний день, и существует острая потребность в эффективной вакцине. Есть значительный интерес к пониманию того, насколько адаптивные иммунные реакции контролируют острую инфекцию и обеспечивают защиту от повторного заражения.
Антительные ответы против SARS-CoV-2 характеризуются реакцией против ряда вирусных белков, включая спайковые белки, нуклеопротеины и мембранные белки. Уровни антител снижаются после избавления от первичной инфекции, и в настоящее время актуален вопрос о поддержании гуморальных ответов в долгосрочной перспективе. Хотя первоначальные анализы показали потерю выявляемых вирус-специфических антител у части людей, высокочувствительный ИФА может определять обнаруживаемые антитела в течение как минимум 6-7 месяцев у большинства людей. Данные, полученные в результате исследования иммунитета к родственным вирусам, таким как SARS-CoV-1 и ближневосточный респираторный синдром, свидетельствуют о том, что клеточные иммунные ответы против этих вирусов поддерживаются в течение более длительных периодов по сравнению с ответами антител. Это позволяет надеяться, что клеточные реакции на SARS-CoV-2 также будут более продолжительными. На сегодняшний день исследования показали, что вирус-специфические клеточные реакции развиваются практически у всех пациентов с подтвержденной инфекцией SARS-CoV-2.
Величина и качество ответа иммунной памяти к SARS-CoV-2 будет иметь решающее значение для предотвращения повторного заражения.
Величина ответа Т-клеток является неоднородной и может отражать разнообразие профиля Т-клеточного иммунитета во время острого инфекционного заболевания. Важной особенностью является то, что величина клеточного иммунитета по данным ELISPOT на 50 % выше у доноров, перенесших симптомную инфекцию. Это демонстрирует, что первоначальная «контрольная точка» клеточного иммунитета, выработанная после острой инфекции, сохраняется не менее 6 месяцев. Клеточные ответы имеют прямую защитную способность от тяжелой коронавирусной инфекции, а также поддерживают выработку антител.
Исследования показывают, что устойчивый клеточный иммунитет против SARS-CoV-2 может присутствовать в подавляющем большинстве случаев у взрослых через 6 месяцев после бессимптомной инфекции или легкой и средней степени тяжести инфекционного заболевания. Эти особенности обнадеживают в отношении длительности клеточного иммунитета против этого нового вируса и, вероятно, способствуют относительно низкому риску повторного заражения.
Анализ на Т-клеточный иммунитет проводится методом ELISPOT, который имеет ряд преимуществ:
проверенная технология обнаружения активных Т-клеток для измерения силы иммунного ответа на инфекцию;
технология ELISPOT в настоящее время является уникальной в мире;
ELISPOT широко используется исследователями разных стран при разработке вакцин от COVID-19;
ELISPOT является наиболее перспективной платформой среди методов оценки Т-клеточного иммунного ответа:
к определенным Т-лимфоцитам добавляют белки вируса;
если Т-лимфоциты и вирусы раньше встречались, то они выделяют цитокины;
если спотов больше 12 – это означает, что иммунитет есть.
Для чего используется исследование?
Когда назначается исследование?
Что означают результаты?
Панель антигенов 1 (пептиды белка S), SPOT:
Панель антигенов 2 (пептиды белков N, M, O3, O7), SPOT:
положительный результат может потенциально свидетельствовать о перенесенной или текущей инфекции COVID-19, в том числе бессимптомно, и о сформировавшемся Т-клеточном иммунном ответе к вирусу SARS-CoV-2.
У большинства переболевших, у которых не выявляются антитела, есть Т-клеточный ответ. Люди без антител, контактировавшие с больными и не заболевшие, также в большинстве своем имеют Т-лимфоциты.
Кто назначает исследование?
Терапевт, врач общей практики.
Иммунитет
Иммунная система осуществляет защиту организма от инфекционных и неинфекционных чужеродных агентов. При появлении и накоплении в организме клеток, отличающихся генетически, запускается каскад иммунных реакций и формируется иммунный ответ.
Основное назначение иммунной системы — это обезвреживание потенциально опасного антигена и формирование резистентности к нему.
Строение
Иммунная система состоит из совокупности лимфоидных органов и тканей, суммарная масса которых составляет 2% от массы тела и которые разрознены между собой в анатомическом смысле. Однако благодаря наличию медиаторов, сигнальных молекул и клеток, способных к миграции в различные органы и ткани, иммунная система представляет четко организованную структуру в функциональном смысле.
Иммунная система включает центральные и периферические органы. К центральным относят тимус и костный мозг. В этих органах начинается созревание зрелых лимфоцитов.
Периферические органы объединяют селезенку, лимфатические узлы и лимфоидную ткань, печень, кровь, лимфу. Наиболее известными структурами являются миндалины и пейеровы бляшки.
Лимфоциты — основные функциональные клетки иммунной системы. Они образуются в костном мозге, а затем проходят созревание. В зависимости от того, в каком органе лимфоциты проходят созревание, они подразделяются на две гетерогенные популяции: Т-лимфоциты (тимус) и В-лимфоциты (лимфоузлы). Т-лимфоциты ответственны за клеточный иммунитет, В-лимфоциты отвечают за гуморальный. В-лимфоциты являются предшественниками антителообразующих клеток.
Благодаря существованию механизма «иммунологической памяти», иммунный ответ при повторном взаимодействии с теми же антигенами возникает в более короткие сроки и имеет более яркое выражение. Индукция иммунитета является благоприятным исходом иммунных реакций и ведет к восстановлению гомеостаза организма.
Виды иммунитета
Состояние иммунитета обеспечивают наследуемые и индивидуально формируемые механизмы.
К первому относится невосприимчивость человека или определенных видов животных к возбудителям некоторых инфекционных болезней. Например, люди невосприимчивы к возбудителю чумы собак, многие животные — к вирусу кори, гонококку и т.д. Устойчивость к соответствующей инфекции наследуется, как видовой признак, и проявляется у всех представителей данного вида. Это врожденный иммунитет или видовой.
Приобретенный иммунитет формируется в течение всей жизни индивидуума. Примером естественного приобретенного иммунитета является невосприимчивость к инфекции после перенесенного заболевания. Так называемый постинфекционный иммунитет. Например, ветряная оспа.
Приобретенный иммунитет может быть активным и пассивным. Активно приобретенный иммунитет возникает в результате перенесенного инфекционного заболевания или введения в организм вакцины. Пассивно приобретенный иммунитет формируется при передаче антител от матери к плоду или может быть искусственно создан путем парентерального введения в организм готовых иммунореагентов. К ним относят специфические иммуноглобулины, иммунные сыворотки и лимфоциты, способные защитить организм от антигенов.
Иммунитет может быть генерализованным и местным. При местном иммунитете происходит защита покровов организма, которые контактируют с внешней средой: слизистые оболочки мочеполовых органов, желудочно-кишечного тракта и т.д.
Иммунный статус
Характеристику состояния иммунной системы организма, выраженную количественными и качественными показателями ее компонентов, называют иммунным статусом. Определение иммунного статуса проводят с целью правильной постановки диагноза заболевания, прогнозирования его течения и выбора метода лечения.
Наивные Т-клетки — ключ к долголетию
Наивные Т-клетки — ключ к долголетию
Автор
Редактор
Статья на конкурс «био/мол/текст»: Наивные Т-лимфоциты могут поведать о том, что вы хотели бы скрыть. Впервые было осуществлено секвенирование профиля Т-клеточных рецепторов периферической крови человека. Успехи в развитии технологий секвенирования нового поколения дают возможность проследить за динамикой колебаний численности и разнообразия наивных Т-клеток по мере старения организма. Вместе с этими знаниями появляется ответ на вопрос, почему женщины живут дольше мужчин, и приходит мысль о том, что увеличить продолжительность жизни можно, используя собственные Т-клетки. «Иммунологические часы» несложно обмануть, пойдя на хитрость.
Обратите внимание!
Эта работа опубликована в номинации «лучшая статья по иммунологии» конкурса «био/мол/текст»-2015.
Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.
Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.
Всегда ли можно дать сорокалетнему мужчине его сорок? А пятидесятилетнему? А скольким тридцатилетним женщинам вы бы не дали двадцати? Определять возраст человека по внешней составляющей не самая лёгкая задача. Однако, людям, перешагнувшим определённый порог, различный для мужчин и женщин, когда репродуктивная функция начинает стремительно угасать, становится сложнее скрывать свой возраст.
Для внутренних процессов человеческого организма характерны совершенно иные темпы изменений. «Возрастной порог» нашей иммунной системы расположен гораздо ближе к детству, чем к старости. Уже с первого года жизни в тимусе ребёнка начинают происходить драматические изменения: функциональная ткань органа заменяется на соединительную, уменьшаясь каждый год на 3% до 35–45 лет, а после 45 — на 1% (рис. 1). В 70 лет соединительная ткань занимает 90% тимуса [1]. Наиболее активно тимус функционирует в пренатальный период и до наступления половой зрелости. За это время происходит наработка максимальных возможностей Т-клеточного иммунитета, что будет во многом определять эффективность иммунного ответа человека на протяжении всей его жизни.
Рисунок 1. Сравнение размеров тимуса у новорождённого (а) и взрослого (б). К 50 годам тимус уменьшается в 5-7 раз по сравнению с первоначальным размером. Рисунок с сайта my.bpcc.edu.
Тимус — военная база иммунной системы
В тимусе иммунная система обучает своих «солдат». Предшественники Т-лимфоцитов размножаются в костном мозге и с кровью попадают в тимус. В нём происходит ключевое событие в жизни Т-клеток, определяющее их специфичность к антигену, с которым они никогда ещё не встречались — соматическая рекомбинация (также V(D)J-рекомбинация, рис. 2). Она заключается в перетасовке участков генов, кодирующих гипервариабельные участки α и β цепей Т-клеточного рецептора (TCR). С помощью TCR Т-клетки распознают «свой» антиген, к которому они специфичны, в составе главного комплекса гистосовместимости (MHC) антиген-презентирующих клеток (рис. 3). Благодаря этому процессу создаётся гигантское разнообразие TCR — около 6 × 10 5 возможных вариантов на каждые 10 6 Т-клеток [2]. В силу такой огромной вариабельности Т-клеточных рецепторов существует высокая вероятность того, что при проникновении в организм какого-либо чужеродного агента найдётся Т-клетка, TCR которой окажется специфичным именно ему. Соматическая рекомбинация происходит в кортикальной части тимуса, из неё клетки мигрируют в медуллярную часть и претерпевают негативный отбор: в экземплярах, реагирующих на собственные антигены, экспрессируемые организмом, запускается апоптоз.
Рисунок 2. Соматическая рекомбинация на примере β цепи TCR. Исходная последовательность в гене, кодирующем β цепь TCR содержит V (variable), D (diversity), J (Joining) и C (constant) сегменты. Сначала один из двух D-сегментов соединятеся с одним из 13 J-сегментов. Получившийся DJ-сегмент присоединяется к одному из 50 V-сегментов. Сегменты выбираются случайным образом, и механизм их сшивки также предполагает случайное варьирование количества пар оснований, это обеспечивает разнообразие TCR. Аналогичный процесс происходит c последовательностью, кодирующей α-цепь только без D-сегмента. Рисунок с сайта Slideshare.
Рисунок 3. Взаимодействие TCR и антиген-презентирующей клетки. а — Т-клетка (фиолетовая) взаимодействует с антиген-презентирующей клеткой (APC, синяя). б — APC презентирует антиген в составе MHC. Гетеродимер TCR состоит из α и β цепей, охватывающих MHC с антигеном. С антигеном главным образом взаимодействуют области CDR3 — это домены, отвечающие за специфичность TCR к данному антигену. Рисунок с сайта Genomemedicine.
После наступления пубертатного периода производство тимусом наивных Т-клеток резко снижается и на протяжении всей взрослой жизни человека активность этого органа остаётся на самом базальном уровне. Чем это грозит? Созданное за такой короткий период огромное разнообразие TCR действительно обеспечивает эффективный иммунный ответ на большинство потенциальных угроз. Но это разнообразие остаётся константным только некоторое время.
Мы теряем наших бойцов!
По результатам последних исследований [2], доля наивных Т-клеток как в CD4 + (Т-хелперы) так и в CD8 + (Т-киллеры) субпопуляциях периферической крови человека линейно уменьшается с возрастом. В детстве она составляет 50–80% от всего Т-клеточного пула и уменьшается на 0,75% каждый год, к 70 годам она составляет одну четверть первоначального изобилия. Авторы исследования [2] создали новый подход к использованию технологии секвенирования нового поколения компании Illumina для получения наиболее точных индивидуальных профилей репертуара TCR у людей различных возрастных групп. Было показано, что разнообразие TCR в периферической крови человека коррелирует с процентным содержанием в ней наивных Т-клеток и почти линейно уменьшается с возрастом — примерно на 5 × 10 3 вариантов TCR в год. Наивные Т-клетки сосуществуют в крови с Т-клетками памяти, клоны которых образуются в результате пролиферации наивных Т-клеток, повстречавших «свой» антиген. Размножившиеся клоны с каждым годом занимают всё большую долю доступного для пролиферации пространства в крови, это отражается на численности наивных Т-клеток, так как общее количество Т-клеток в крови человека относительно стабильно.
* — Но не стоит забывать, что кроме популяций в периферической крови, у человека есть гораздо более мощная локальная армия Т-лимфоцитов «на местах»: «Т-лимфоциты: путешественники и домоседы» [4]. — Ред.
Общее разнообразие TCR определяется количеством редких клонов в пуле Т-клеток, поэтому отсутствие возрастных изменений в разнообразии наиболее многочисленных Т-клеточных клонов указывает на то, что клоны наивных Т-клеток теряются с возрастом. Это связано с тем, что клоны наивных Т-клеток обычно малочисленны, поэтому вероятность того, что ни одна клетка данного клона не сможет поделиться или погибнет в результате каких-то случайных событий гораздо выше, чем для клонов с большим числом клеток.
Старики с высоким разнообразием TCR
Другое объяснение явления увеличения разнообразия TCR после 70 лет заключается в том, что люди этой возрастной группы уже перешагнули определённый возрастной порог, пройдя в некотором смысле проверку на прочность — уникальный набор физиологических параметров, включая особенности иммунной системы, сделал их наиболее приспособленными среди всех особей популяции в данных условиях. Из этого можно заключить, что повышенное содержание наивных Т-клеток в субпопуляции CD4 + периферической крови человека коррелирует с долгожительством. Увеличение доли наивных Т-клеток в пуле CD4+, а значит и увеличение разнообразия TCR обеспечивает лучшую иммунорегуляторную функцию, что снижает общее воспаление, усиливающееся по мере старения организма из-за активации аутоиммунных процессов, увеличивает эффективность распознавания раковых клеток и обеспечивает более сбалансированный иммунный ответ [2].
Долгая, но бездетная жизнь
Рисунок 4. Придворные евнухи в Китае. Некоторые евнухи жили более ста лет. Рисунок с сайта Lacasamundo.
Исследование о придворных евнухах династии Чозунь в Корее 2012 года [6] показало, что продолжительность жизни евнухов составляла на 15–20 лет больше, чем продолжительность жизни мужчин с нормальной репродуктивной функцией, живущих в тех же условиях (рис. 4). Возможно, их продолжительность жизни увеличивалась именно благодаря отсутствию инволюции тимуса под влиянием половых гомонов, а следовательно благодаря большему разнообразию TCR наивных Т-клеток. В пользу этой гипотезы можно привести данные о том, что у женщин производство тимусом наивных Т-клеток происходит более эффективно, чем у мужчин, и уменьшение их содержания в периферической крови у женщин выражено в меньшей степени, чем у мужской части населения [7]. Возможно, лучшая работа иммунной системы у женщин связана с тем, что во время беременности иммунитет женщины необходимо «обуздать», сделав его толерантным к фактически чужеродному телу — плоду, что требует участия сложных регуляторных путей. Высокая точность регуляции иммунного ответа очень важна, так как ошибка приведёт к потере потомства. К этим рассуждениям можно прибавить и тот факт, что у женщин с наступлением менопаузы яичники перестают вырабатывать эстрогены, а у мужчин выработка половых гормонов не прекращается. Это объясняет большую продолжительность жизни у женщин, чем у мужчин, характерную для любых национальностей. В Европе и США женщины живут дольше мужчин на 4,5–5 лет, в России — на 13 [6].
Мальчик, которому сделают орхеэктомию (удаление яичек), может быть, и получит дополнительные 10–15 лет жизни, вместе с тем лишившись возможности иметь детей и получив набор других не совсем приятных последствий. Существуют менее радикальные решения, основанные на приёме определённых препаратов, способствующих восстановлению функции тимуса. Одно из таких веществ — грелин, этот гормон вырабатывается слизистой оболочкой желудка и вызывает чувство голода, действуя на центры гипоталамуса. Оказалось, что грелин участвует в Т-клеточном сигналлинге, способен снижать связанное с возрастными изменениями воспаление, способствует восстановлению структуры тимуса и стимуляции его функций. Ряд цитокинов и факторов роста (интерлейкины 7 и 22, фактор роста кератиноцитов) являются потенциальными кандидатами для решения проблемы восстановления функции тимуса у взрослых людей. Интерлейкины обеспечивают дифференцировку и выживание тимоцитов. Фактор роста кератиноцитов необходим для пролиферации и дифференцировки функциональных тканей тимуса, его использование вызывает пролиферацию тимоцитов и увеличивает размеры органа. Возможно также использование веществ, блокирующих выработку стероидных гормонов, таких как аналоги гонадотропин-релизинг гормона, например, люпрона. Люпрон действует на гипофиз, блокируя рецепторы к гонадотропин-релизинг гормону, из-за чего уменьшается выработка лютеинизирующего и фолликуло-стимулирующего гормонов, что ведёт к снижению продукции эстрогена и тестостерона. И всё же, все вышеперечисленные вещества имеют неоднозначное воздействие на организм, и пока ещё нет данных о долгосрочных последствиях их приёма, поэтому их назначают только в случае восстановления после химиотерапии или при ВИЧ-инфекции, когда стимуляция работы тимуса необходима для реконституции иммунной системы [1].
Хранение наивных Т-клеток — полезная инвестиция в будущее
Есть ли иной способ продлить мужскую жизнь? Авторов статьи [2] посетила смелая идея решения этой проблемы. Кроме того, что редко встречающиеся клоны наивных Т-клеток в результате случайных событий теряются с возрастом, они, как и все клетки организма, могут поделиться лишь ограниченное количество раз (примерно 50 — лимит Хейфлика), что обусловлено укорочением теломерных участков хромосом после каждой репликации ядерной ДНК, а делятся наивные Т-клетки раз в 1–2 года. Значит примерно к 70 годам основная часть Т-клеток выйдет из строя. Решение есть — можно запасать наивные Т-клетки! У молодых людей в возрасте до 15–20 лет, когда процессы формирования основного пула наивных Т-клеток уже заканчиваются, нужно брать образцы крови в таком объёме, чтобы количества наивных Т-клеток в них хватило для полного восстановления их пула уже в пожилом возрасте, и заморозить. Очень важно, чтобы забор произошёл именно в этот промежуток времени. Если брать кровь у более взрослых людей, количества циркулирующих наивных Т-клеток просто не хватит для полной реставрации их пула в будущем. Конечно же, такой подход будет эффективен и для женского пола. Эти образцы крови будут не только средством продления жизни, но ещё и подстраховкой в случае аутоиммунных заболеваний или рака, они помогут восстановить иммунную систему после химиотерапии. Создание подобных банков с замороженными образцами крови стало бы ключевым событием в становлении абсолютно новых подходов к лечению заболеваний иммунной системы. Например, СПИД можно было бы вылечить введением в здоровые размороженные Т-клетки заразившегося СПИДом мутации по гену мембранного рецептора CCR5 (CD195), люди с такой мутацией обладают природной резистентностью к ВИЧ [8], и их пересадкой больному, предварительно прошедшему курс химиотерапии.
Итоги
Как бы молодо не выглядел человек, параметры его иммунной системы будут объективно отражать возраст. Такие параметры как количество наивных Т-клеток и разнообразие TCR практически линейно снижаются по мере старения. Если вы являетесь счастливым обладателем повышенного разнообразия TCR, можете надеяться на несколько бонусных лет жизни. В будущем человечество ожидают новые дерзкие подходы к увеличению продолжительности жизни с использованием собственных наивных Т-лимфоцитов, собранных и замороженных много лет назад.
Современные данные о видах иммунного ответа
В статье раскрыто современное определение иммунного ответа. Филогенез иммунитета составляет единую систему и является неотделимой частью развития многоклеточных микроорганизмов. Возникновение многоклеточных организмов способствовало формированию обособлен
Abstract. The article discloses a modern definition of the immune response. The phylogenesis of immunity constitutes a single system and is an integral part of the development of multicellular microorganisms. The emergence of multicellular organisms contributed to the formation of a separate community of cells that would be responsible for maintaining homeostasis of the internal environment of the body. The interaction of these cells was a prototype of modern immunity, and the immune response became a form of regulation of the constancy of the internal environment. The role of the immune response in the body is as follows: the search and elimination of foreign particles, both exogenously penetrating (pathogens of infectious diseases) and endogenously formed (cells infected with viruses, tumor cells). The role of the innate and acquired immune response is determined. Particular emphasis is placed on the pathogen recognizing receptors, on their various types. The concept of a pathogen of recognizing receptors is disclosed, their interaction and activation is shown for various types of pathogens. Modern perceptions of interleukins and transcription factors are characterized. For citation: Sizov D. A., Rukina N. Yu. Current condition of immune response types // Lechaschy Vrach. 2020; vol. 23 (11): 35-39. DOI: 10.26295/OS.2020.98.43.008
Резюме. В статье раскрыто современное определение иммунного ответа. Филогенез иммунитета составляет единую систему и является неотделимой частью развития многоклеточных микроорганизмов. Возникновение многоклеточных организмов способствовало формированию обособленного сообщества клеток, которые бы отвечали за поддержание гомеостаза внутренней среды организма. Взаимодействие данных клеток явилось прообразом современного иммунитета, а видом регуляции постоянства внутренней среды стал иммунный ответ. Роль иммунного ответа в организме заключается в следующем: поиск и элиминация чужеродных частиц, как проникающих экзогенно (возбудители инфекционных заболеваний), так и эндогенно образованных (инфицированные вирусами клетки, опухолевые клетки). Определена роль врожденного и приобретенного иммунного ответа. Особый акцент сделан на патоген-распознающие рецепторы, на их различные виды. Раскрыто понятие патоген-распознающих рецепторов, показаны их взаимодействие и активация при различных видах патогенов. Охарактеризованы современные представления об интерлейкинах и факторах транскрипции.
Иммунная система всегда представляла одну из самых сложных и интригующих загадок в человеческом организме. Даже в 2020 г. ведутся споры о том, как происходит активация и распознавание антигена иммунной системой, тот ли вид рецепторов или тот ли определенный патоген запускает ее работу. С открытия данного вида регуляции организма прошло уже более ста лет, и мы до сих пор открываем для себя все новые и новые элементы ее работы. В связи с информацией, полученной в период с 2005 г. по 2019 г., роль иммунной системы в ранней фазе развития инфекции и воспаления пересматривается.
Патоген-распознающие рецепторы и молекулярные структуры, ассоциированные с гибелью клеток
Врожденный иммунитет считается «первой линией защиты» от проникновения патогена, за счет быстрого распознавания которого запускается инициация патоген-специфического адаптивного иммунного ответа. Адъюванты усиливают и запускают иммунный ответ. Действие данного класса веществ осуществляется при помощи патоген-распознающих рецепторов (Раthogen Recognizing Receptors – PRRs) иммунокомпетентных клеток, которые взаимодействуют с молекулярными структурами патогенных микроорганизмов (патоген-ассоциированные молекулярные образы – Pathogen Associated Molecular Patterns – PAMPs).
При контакте PAMPs и PRRs возникают сложные сигнальные каскады, с помощью которых возможна продукция клетками соответствующего набора хемокинов и цитокинов, включая интерфероны, увеличивающие способность антиген-презентирующих клеток представлять антиген и стимулирующие миграцию дендритных клеток в лимфоидные ткани, где происходит их встреча с Т- и В-лимфоцитами, в результате чего формируется адаптивный иммунный ответ [1].
В 1996 г. были открыты и изучены структуры системы врожденного иммунитета, такие как «патоген-ассоциированные молекулярные образы», или PAMPs. Наиболее распространенными PAMPs являются липополисахариды, которые находятся в составе клеточной стенки грамотрицательных бактерий, липотейхоевые кислоты грамположительных бактерий, ДНК бактерий, РНК вирусов.
Данные классы этих молекулярных структур PAMPs имеют общие свойства:
Еще одним компонентом врожденного иммунитета, инициирующим его запуск, являются молекулярные структуры, образующиеся при гибели любых видов клеток (микро- и макроорганизмов: Damage Associated Molecular Patterns – DAMPs), которые представляют собой разнородную группу разобщенных молекул. Они содержат нуклеиновые кислоты в различных конформациях (например, одноцепочечные (ss/ds) РНК или ДНК), ядерные белки (например, группа ядерных негистоновых белков box-1, HMGB-1), цитозольные белки (например, кератин-18, K18), пуриновые нуклеотиды (например, аденозинтрифосфат, АТФ) или митохондриальные соединения (например, мтДНК, N-формильные пептиды). Определяемые эволюционными патоген-распознающими рецепторами [2] в цитозоле, DAMPs оповещают о реакции врожденного иммунитета.
Кроме того, некоторые DAMPs образуют комплексы с молекулами для усиления или облегчения передачи сигналов. Среди них — амфотерин (HMGB1), который является одним из первых идентифицированных и наиболее полно охарактеризованных DAMPs. Амфотерин — это белок, ассоциированный с хроматином, который присутствует во всех клетках животных [3]. Внеклеточный амфотерин служит промежуточным звеном в ряде биологических ответов, соединяясь с распознающими рецепторами, такими как рецептор конечных продуктов гликозилирования (RAGE), Тoll-подобный рецептор 2-го типа (TLR2), Тoll-подобный рецептор 4-го типа (TLR4), Тoll-подобный рецептор 9-го типа (TLR9), C-X-C хемокиновый рецептор типа 4 (CXCR4), рецептор Т-клеточного иммуноглобулина и домен муцина 3-го типа (Tim-3) [4, 5]. Недавние исследования показали, что восстановленный амфотерин (HMGB1) образует гетерокомплекс со стромальным производным фактором-1 (CXCL12), который способствует привлечению воспалительных клеток в поврежденную ткань путем распознавания рецептором CXCR4 [6].
Рецепторы (PRRs) являются важными компонентами врожденной иммунной системы. Они распознают микробы или повреждение тканей с помощью специфических молекулярных структур, называемых патоген-ассоциированными молекулярными образами (PAMPs) или cвязанными с опасностью молекулярными образами (DAMPs) [7, 8]. Основные функции PRRs состоят в том, чтобы стимулировать фагоцитоз и выступать посредником воспаления, обнаруживая различные патогены и молекулы из поврежденных клеток. В результате PRRs активируют воспалительные сигнальные пути, чтобы активировать врожденный иммунитет [9].
Активация находящихся на поверхности клетки и внутриклеточно расположенных рецепторов (PRRs) приводит к передаче сигналов и воспалительным реакциям. Оксидативный стресс может приводить к повреждению клеточных компонентов, таких как митохондрии, генерирующие АФК (активные формы кислорода). Увеличение выработки АФК и оксидативный стресс могут иметь множественные эффекты, включая усиление транслокации и активное высвобождение DAMPs в дальнейшем, приводя к порочному кругу [10] (рис. 1).
Виды рецепторов врожденного иммунитета и их классификация
Существует несколько классификаций рецепторов, самые распространенные представлены делением по функциям и типам. В зависимости от функций патоген-распознающих рецепторов они подразделяются на следующие группы: а) секретируемых внеклеточных рецепторов; б) мембранных рецепторов, участвующих в эндоцитолизе, в) сигнальных трансмембранных Toll-подобных рецепторов; г) внутриклеточных цитозольных рецепторов. Класс продуцируемых рецепторов в основном воспроизводится нейтрофилами и макрофагами/моноцитами. Рецепторы, связываясь с РАМРs инфекционного агента, предопределяют выраженность и характер процессов воспаления, а также могут воздействовать на выраженность специфического иммунного ответа [11].
На данный момент представлены несколько типов рецепторов PRRs, в том числе детально описаны сигнальные Toll-подобные рецепторы (Toll Lik-Receptors – TLRs), RIGI-подобные рецепторы (Retinoic Acid Inducible Gene Like Receptors – RLRs), NOD-подобные рецепторы (Nucleotide Binding Oligomerization Domain Like Receptors – NLRs), лектиновые рецепторы типа C (C-Type Lectin Receptors – CLRs) и цитозольные сенсоры ДНК (Cytosolic DNA Sensors – CDSs).
Самыми изученными и известными являются Toll-подоб-ные рецепторы. Большая часть этих Toll-рецепторов клетки всегда расположена ближе к поверхности, гораздо реже в цитоплазме около структуры аппарата Гольджи. На поверхностях мембран клеток располагаются данные рецепторы, начинающие взаимодействие с микроорганизмами, которые развиваются внеклеточно. Взаимодействие рецепторов происходит в парах для распознавания большинства веществ. На некоторых типах антиген-презентирующих клеток (АПК), например, на дендритных клетках (ДК), экспрессируются данные рецепторы (PRRs), что позволяет им распознавать сразу несколько антигенов патогенных микробов [12]. Данный класс рецепторов может также реагировать на разнообразные аллергены, а не только распознавать молекулярные структуры микроорганизмов. Обычно TLR, которые реагируют на бактериальные структуры, такие как триацил- и диациллипопротеины, являются трансмембранными рецепторами и экспрессируются на клеточных мембранах кишечного эпителия. TLR2 вместе со своими партнерами TLR1, TLR6 и TLR5 относятся к этой категории. Напротив, чувствительные к нуклеиновой кислоте TLR, такие как TLR3, TLR7, TLR8, TLR9, TLR11, TLR12 и TLR13, экспрессируются исключительно на мембране внутриклеточных структур [13].
Активация TLR может проходить через MyD88 (Myeloid differentiation primary response gene – адаптерный белок, коактиватор сигнала с TLR) зависимые или TRIF (TIR domain-containing adaptor inducing interferon-beta – адаптерный белок, участвующий в индукции транскрипционного фактора IRF3) зависимые пути. Активация расположенных в эндосоме TLR (TLR7 и TLR9) через MyD88 активирует NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells – транскрипционный фактор «каппа-би»), а также IRF7, приводя соответственно к продукции воспалительных цитокинов и IFN 1-го типа (рис. 2) [14].
Равнозначно с TLR другим многочисленным семейством клеточных рецепторов врожденного иммунитета являются лектины С-типа. Данный класс рецепторов распознает углеводы, которые часто связаны с посттрансляционной модификацией белков, причем это связывание требует участия ионов кальция. Но вскоре ученые пришли к выводу, что те же самые белковые модули рецепторов (CTLD) могут распознавать бактериальные, дрожжевые и даже грибковые микробные паттерны, представленные бета-глюканами и маннанами, причем это не зависит от концентраций ионов кальция. Самые изученные рецепторы этого семейства — Dectin-1, Dectin-2, DC-SIGN, Langerin, CD69, DEC-205 и маннозный рецептор CD206.
В последние годы все больше внимания уделяется изучению сигнальных путей, опосредующих запуск иммунного ответа при проникновении в клетку нуклеиновых кислот экстраклеточной локализации (вирусной РНК, вирусной и бактериальной ДНК, разных типов синтетических олигонуклеотидов, геномной ДНК) [15]. Реакция клетки на интернализацию экстраклеточных нуклеиновых кислот начинается в процессе преодоления этими PAMPs цитоплазматической мембраны. Оказавшись в цитоплазме клетки, дцДНК (двуцепочечная ДНК) или РНК молекулы опознаются соответствующими сенсорными факторами. Известны, в частности, следующие сенсоры дцДНК и активируемые ими пути трансдукции сигнала. Молекулы АТ-богатой дцДНК в цитозоле обнаруживаются РНК-полимеразой III. Полученный в результате синтеза с этой дцДНК транскрипт, содержащий 5’-трифосфат, активирует RLН-опосредованный путь индукции экспрессии генов (RLH – nucleotide binding domain and leucine rich repeat containing) IFNβ и комплекса провоспалительных цитокинов [16]. Цитозольный сенсор DAI (DNA-dependent activator of IRFs) необходим для распознавания цитозольной ДНК в В-форме определенного размера и нуклеотидного состава (интерферон-стимулирующая ДНК [ISD] или дцДНК длиной не менее 45 п.о., не содержащая CpG-мотивов) и запуска DAI-опосредованного пути активации синтеза интерферонов/цитокинов [17].
Еще одним немаловажным классом являются NOD-подобные рецепторы. Изначально роль NOD-подобных рецепторов (NLRs) в защитных реакциях на проникновение антигенов была найдена у растений, а позже и у животных. Данные рецепторы могут экспрессироваться в цитоплазме макрофагов/моноцитов, нейтрофилов, лимфоцитов, характеризуются самым высоким уровнем специфичности и участвуют в распознавании PAMPs, DAMPs.
Исходом этого контакта (PRRs с РАМРs) и активации сигнальных путей является активация большого количества генов, в частности генов провоспалительных цитокинов. Другой путь выработки некоторых цитокинов клетками — это активация иммунокомпетентных клеток факторами транскрипции, являющимися компонентами регуляторного сигнально-трансдуктивного пути.
Роль и разновидности клеточного состава иммунитета
Иммунная система располагает большим количеством клеток, которые подразделяются на субпопуляции в зависимости от их функций. Каждая субпопуляция отвечает за отдельный механизм в звене иммунного ответа. Центральная роль в клеточной фазе иммунного ответа отводится нативным CD4+ T-клеткам, отвечающим за функционирование иммунной системы, особенно за адаптивный иммунитет. Они помогают активировать другие иммунные клетки, высвобождая Т-клеточные цитокины. Клеточные элементы, входящие в состав линий защиты организма, разнообразны в зависимости от этапа, на котором происходит их активация. К клеточным элементам врожденного иммунитета относятся фагоциты (нейтрофилы, базофилы, эозинофилы, тканевые или тучные клетки), внутриэпителиальные субпопуляции лимфоцитов – Тγδ-клетки, киллеры – естественные (NK-клетки), киллерные и лимфокин-активированные киллерные клетки (ЛАК-клетки) и так называемые Pit-клетки – субпопуляция NK-клеток с фенотипом CD56+/CD16– [18]. Клетка – предшественница миелопоэза (CMP) является общей для макрофагов, гранулоцитов, тучных клеток и дендритных клеток врожденной иммунной системы. Макрофаги, гранулоциты и дендритные клетки составляют три типа фагоцитов в иммунной системе [19].
CD4+ T-клетки можно подразделить на группы, основанные на иммунологических функциях, специфических факторах транскрипции и цитокинах: Th1, Th2, Th9, Th17, Th22, T-фолликулярные и T-регуляторные клетки [20]. В ответ на провоспалительные или иные неблагоприятные условия T-регуляторные клетки трансдифференцируются в T-эффекторные клетки, включающие Th1, Th2 и Th17 типа клетки [21].
Факторы транскрипции как связь между клеточным и гуморальными звеньями иммунитета
Рассматривая систему активации иммунных клеток, мы должны упомянуть про важные элементы, с помощью которых происходит их активация. Факторы транскрипции – это группа белков, обеспечивающих прочтение и интерпретацию генетической информации. Факторы транскрипции необходимы для регуляции экспрессии генов и обнаружены у всех живых организмов [22]. T-bet (фактор транскрипции TBX21 Т-хелперов 1-го типа, кодирующийся геном T-bet) – отвечает за дифференцировку наивных Т-лимфоцитов в Т-хелперы 1-го типа. Основной транскрипционный фактор, определяющий дифференцировку в Т-хелперы 2-го типа, – GATA-3 (фактор транскрипции Т-хелперов 2-го типа, кодирующийся геном GATA3). Семейство факторов транскрипции GATA участвует также в развитии гемопоэтических клеток. Еще одним семейством факторов транскрипции является FOX – ДНК-связывающие белки, включающие в себя FOXA3, FOXC1, FOXF1, FOXP1, FOXP2, FOXP3. Подсемейство FOX представлено у млекопитающих тремя белками FOXA1, FOXA2 и FOXA3, которые известны также как HNF3 α, β, γ – ядерные факторы гепатоцитов [23]. Среди FOXP-группы транскрипционных факторов только FOXP3 обладает способностью подавлять выработку ИЛ-2, ИЛ-4 и ИФН-γ в Т-лимфоцитах.
Определенные группы клеток иммунной системы приобретают способность вырабатывать свои цитокины путем экспрессии транскрипционных факторов (табл. 1) [24, 25].
При развитии иммунной реакции одновременно с активированными клетками образуются клетки памяти, которые не вовлекаются в данный процесс при первичном проникновении антигена и являются важной частью, на которую мы могли обратить свое внимание, но но которые занимаются воспроизведением реакции на антиген, уже побывавший когда-то в организме. В основе феномена иммунологической памяти лежит следующий факт: часть лимфоцитов антиген-специфического клона, вовлеченного в первичный иммунный ответ, «замораживается» и персистирует в организме в течение неопределенного времени [26]. Численность Т-лимфоцитов памяти на порядок выше, чем других субпопуляций лимфоцитов, обычно в 2-3 раза. Однако эффективность клеток памяти до сих пор не ясна полностью.
Хемокины и виды хемокиновых рецепторов
На момент наступления 2008 г. было известно уже около 50 молекул, составляющих хемокиновое семейство. Хемокины подразделяются на 4 класса в зависимости от расположения консервативных цистеинов в белковой молекуле: CXC, CC, CX3C и С, где С обозначает цистеиновый остаток, а Х – любой другой аминокислотный остаток, разделяющий цистеины. СХС-хемокины действуют в основном на нейтрофилы и лимфоциты, тогда как СС-хемокины – на моноциты и лимфоциты [27].
Обширный анализ популяций CD4+ Т-клеток выявил различные способности к миграции, что отражается в экспрессии уникальных наборов рецепторов хемокинов, которые опосредуют миграцию вдоль градиента хемокинов (табл. 2) [28].
Лигандом для CCR6 является CCL20, который преимущественно продуцируется эпителиальными клетками, лимфоидными тканями, ассоциированными с органами, и печенью, что обеспечивает широкий выбор для миграции, который определяется совместной экспрессией других рецепторов хемокинов [29].
Семейство цитокинов (интерлейкины (ИЛ), хемокины, интерфероны и фактор некроза опухолей) представляет собой небольшие неструктурные белки, которые имеют множество плейотропных эффектов в различных органах [30]. Они высвобождаются в паракринных, аутокринных или эндокринных путях и могут быть вовлечены в процесс при различных инфекциях и влияют на иммунную систему как провоспалительными, так и противовоспалительными механизмами. Цитокины, которые оказывают провоспалительное действие, включают в себя интерферон-(IFN-)-γ, ИЛ-17, ИЛ-1, и фактор некроза опухоли-(ФНО-)-α, и те, которые оказывают противовоспалительное действие и включают в себя ИЛ-10, ИЛ-4 и ИЛ-1р [31]. Семейство цитокинов семейства ИЛ-12 (ИЛ-12, ИЛ-23, ИЛ-27, ИЛ-35), преимущественно вырабатываемых активированными антиген-презентирующими клетками, такими как дендритные клетки и макрофаги, выступает в ключевой иммунологической роли, способствующей координации врожденных и адаптивных иммунных реакций, главным образом посредством регуляции популяций Т-клеток [32, 33].
Тем не менее различия между про- и противовоспалительным эффектами цитокинов не всегда полностью ясны: пути взаимодействия играют важную роль как индивидуально, так и в комбинациях нескольких цитокинов, они могут способствовать усилению регуляции или подавлению других цитокинов, а определенные цитокины могут оказывать как провоспалительные, так и противовоспалительные действия [34]. Согласно цитокиновой теории заболеваний состояние здоровья характеризуется постоянной сбалансированной продукцией цитокинов на низком уровне, что необходимо для поддержания гомеостаза. Однако при сверхпродукции некоторых цитокинов могут возникать различные заболевания, тяжесть которых варьирует от легкой до смертельной [35].
В последнее десятилетие появилась новая информация о том, что приобретенный иммунитет может воздействовать на врожденный иммунитет. Как врожденный, так и приобретенный иммунитеты являются основными аналогами друг для друга и необходимы для эффективного контроля вирусных инфекций [36]. Таким образом, мы видим, что иммунная система взаимосвязана, приобретенный иммунитет дополняет функции врожденного иммунитета. Врожденный иммунитет является неотъемлемой частью филогенетического процесса. Приобретенный иммунитет характеризует весь накопленный опыт организма за всю жизнь путем приспособления к патогенам, механизмам адаптации, а также сохранения информации о патогенах. Дальнейшее раскрытие тайн механизма иммунного взаимодействия между двумя типами иммунитета поспособствует быстрой реакции на внедрение патогенного агента и скорейшей его элиминации из организма. Современный взгляд и позиция роли иммунитета в естественной и приобретенной невосприимчивости к инфекционным агентам позволят реализовать перспективы для более конкретного метода управления этим процессом при помощи вакцинации, иммуномодуляторов и других средств фармакотерапии.
Литература/References
Д. А. Сизов 1
Н. Ю. Рукина, кандидат медицинских наук
ФГБОУ ВО ДВГМУ, Хабаровск, Россия
Современные данные о видах иммунного ответа/ Д. А. Сизов, Н. Ю. Рукина
Для цитирования: Сизов Д. А., Рукина Н. Ю. Современные данные о видах иммунного ответа // Лечащий Врач. 2020; т. 23 (11): 35-39. DOI: 10.26295/OS.2020.98.43.008
Теги: иммунный ответ, антигены, инфекция, воспаление
- что значит автоматическая разморозка холодильника
- что значит в сапсане эконом плюс