Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

Дискриминант
ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

ΠœΡ‹ ΡƒΠΆΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈ, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π΄Π°Π²Π°ΠΉΡ‚Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрим, Ρ‡Ρ‚ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ дискриминантом ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

ВСрнСмся ΠΊ нашСй Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для нахоТдСня ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Β« b 2 βˆ’ 4ac Β», ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ находится ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ, принято Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ дискриминантом ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π±ΡƒΠΊΠ²ΠΎΠΉ Β« D Β».

По-Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, Ρ‡Π΅Ρ€Π΅Π· дискриминант Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊ:

По ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· вСрсий Ρ‚Π΅Ρ€ΠΌΠΈΠ½ «Дискриминант» ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ΅Π» ΠΎΡ‚ латинского discriminantis, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Β«ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ».

Π’ зависимости ΠΎΡ‚ Π·Π½Π°ΠΊΠ° Β« D Β» (дискриминанта) ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π΄Π²Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ корня. Рассмотрим всС Ρ‚Ρ€ΠΈ случая.

I случай
D > 0
(дискриминант большС нуля)

x1;2 =

βˆ’b Β± √ D
2a

x1;2 =

βˆ’5 Β± √ 81
2 Β· 2

x1;2 =

βˆ’5 Β± 9
4

x1 =

βˆ’5 + 9
4
x2 =

βˆ’5 βˆ’ 9
4
x1 =

4
4
x2 =

βˆ’14
4
x1 = 1x2 = βˆ’3

2
4
x1 = 1x2 = βˆ’3

1
2

ΠžΡ‚Π²Π΅Ρ‚: x1 = 1; x2 = βˆ’3

1
2

II случай
D = 0
(дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ)

D = b 2 βˆ’ 4ac
D = (βˆ’8) 2 βˆ’ 4 Β· 16 Β· 1
D = 64 βˆ’ 64
D = 0

x1;2 =

βˆ’b Β± √ D
2a

x1;2 =

βˆ’ (βˆ’8) Β± √ 0
32

x1;2 =

8 Β± 0
32

x =

8
32

x =

1
4

ΠžΡ‚Π²Π΅Ρ‚: x =

1
4

III случай
D
(дискриминант мСньшС нуля)

D = b 2 βˆ’ 4ac
D = (βˆ’6) 2 βˆ’ 4 Β· 9 Β· 2
D = 36 βˆ’ 72
D = βˆ’36
D

x1;2 =

βˆ’b Β± √ D
2a

x1;2 =

βˆ’ (βˆ’6) Β± √ βˆ’36
32

ΠžΡ‚Π²Π΅Ρ‚: Π½Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ нСравСнства

Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ нСравСнства вспомним, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ квадратичная функция?
ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция – это функция записанная Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ : y=ax 2 +bx+c, Π³Π΄Π΅ x – нСзависимая пСрСмСнная, a, b ΠΈ c – Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числа, ΠΏΡ€ΠΈ этом aβ‰ 0.
Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°.

Π’ зависимости ΠΎΡ‚ значСния a Π²Π΅Ρ‚Π²ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ… ΠΈΠ»ΠΈ Π²Π½ΠΈΠ·:

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ нСравСнства ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄.

ax 2 +bx+c>0
ax 2 +bx+c 2 +bx+cβ‰₯0
ax 2 +bx+c≀0

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ‡Π°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ нСравСнства, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния?
А Ρ‚Π°ΠΊΠΆΠ΅ для графичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ нСравСнства, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°Ρ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ построСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ»ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹?

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ нСравСнства?

РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… нСравСнств рассмотрим Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…. Для Π½Π°Ρ‡Π°Π»Π° Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ случаи, ΠΊΠΎΠ³Π΄Π° Ρƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния дискриминант мСньшС нуля (Π½Π΅Ρ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Дискриминант мСньшС нуля β€”236, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρƒ уравнСния Π½Π΅Ρ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ, Π° это Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ вСсь Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ находится Π²Ρ‹ΡˆΠ΅ оси Ρ…, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π°=3>0 (Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ смотрят Π²Π²Π΅Ρ€Ρ…)

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

МоТно ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ сСбя взяв любоС число с числовой прямой, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ число 1. ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ число 1 вмСсто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½ΠΎΠΉ Ρ… Π² нСравСнство 3x 2 +2x+20>0.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π²Π΅Ρ€Π½ΠΎΠ΅ нСравСнство 25>0, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρƒ нас Π½Π΅Ρ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ уравнСния Π½Π°ΠΌ ΠΏΠΎΠ΄ΠΎΠΉΠ΄ΡƒΡ‚ всС Ρ‚ΠΎΡ‡ΠΊΠΈ числовой прямой.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Рассмотрим этот ΠΆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ со Π·Π½Π°ΠΊΠΎΠΌ нСравСнства мСньшС 0

Дискриминант мСньшС нуля β€”236, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρƒ уравнСния Π½Π΅Ρ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π½Π΅ пСрСсСкаСт ось x. Π’Π΅ΡΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ находится Π²Ρ‹ΡˆΠ΅ оси Ρ…, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π°=3>0.

А Π·Π½Π°ΠΊ уравнСния мСньшС 2 +2x+20 2 +2β€’1+20 2 +x-2 2 +x-2=0

Дискриминант большС нуля, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρƒ уравнСния Π΄Π²Π° корня, Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось x Π² Ρ‚ΠΎΡ‡ΠΊΠ° x=1 ΠΈ x=-2. Π’Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ смотрят Π²Π²Π΅Ρ€Ρ…, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π°=1>0.

Π—Π½Π°ΠΊ уравнСния мСньшС 2 +x-2 2 +(-3)-2 2 +(0)-2 2 +(2)-2 2 +x-2>0

Дискриминант большС нуля, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρƒ уравнСния Π΄Π²Π° корня, Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось x Π² Ρ‚ΠΎΡ‡ΠΊΠ° x=1 ΠΈ x=-2. Π’Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ смотрят Π²Π²Π΅Ρ€Ρ…, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π°=1>0.

Π—Π½Π°ΠΊ уравнСния большС >0. Нам Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, которая находится Π²Ρ‹ΡˆΠ΅ оси x. Π’ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ графичСски ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΠΎ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅, Π½Π°ΠΌ подходят ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ (-∞;-2) ΠΈ (1;+∞).

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуляВакТС ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ². Ось x дСлится Π½Π° Ρ‚Ρ€ΠΈ участка.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π²Π΅Ρ€Π½ΠΎΠ΅ нСравСнство 4>0, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ этот ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» (-∞; 2) ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚.

Π’Ρ‚ΠΎΡ€ΠΎΠΉ участок (-2; 1). На этом участкС ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡ‚ΡŒ число 0.

Π’Ρ€Π΅Ρ‚ΠΈΠΉ участок (1; +∞). На этом участкС возьмСм число 2.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π²Π΅Ρ€Π½ΠΎΠ΅ нСравСнство 4>0, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ этот ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» (1; +∞) ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ Ссли дискриминант мСньшС нуля

ΠœΡ‹ ΡƒΠΆΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈ, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π΄Π°Π²Π°ΠΉΡ‚Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрим, Ρ‡Ρ‚ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ дискриминантом ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

ВСрнСмся ΠΊ нашСй Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для нахоТдСня ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Β« b 2 βˆ’ 4ac Β», ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ находится ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ, принято Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ дискриминантом ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π±ΡƒΠΊΠ²ΠΎΠΉ Β« D Β».

По-Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, Ρ‡Π΅Ρ€Π΅Π· дискриминант Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊ:

По ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· вСрсий Ρ‚Π΅Ρ€ΠΌΠΈΠ½ «Дискриминант» ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ΅Π» ΠΎΡ‚ латинского discriminantis, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Β«ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ».

Π’ зависимости ΠΎΡ‚ Π·Π½Π°ΠΊΠ° Β« D Β» (дискриминанта) ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π΄Π²Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ корня. Рассмотрим всС Ρ‚Ρ€ΠΈ случая.

I случай
D > 0
(дискриминант большС нуля)

x1 =
βˆ’5 + 9
4
x2 =

βˆ’144x1 = 1x2 = βˆ’3

24x1 = 1x2 = βˆ’3

II случай
D = 0
(дискриминант Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ)

D = b 2 βˆ’ 4ac
D = (βˆ’8) 2 βˆ’ 4 Β· 16 Β· 1
D = 64 βˆ’ 64
D = 0

III случай
D
(дискриминант мСньшС нуля)

D = b 2 βˆ’ 4ac
D = (βˆ’6) 2 βˆ’ 4 Β· 9 Β· 2
D = 36 βˆ’ 72
D = βˆ’36
D

ΠžΡ‚Π²Π΅Ρ‚: Π½Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ

Рассмотрим Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, дискриминант ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 42.4. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅: Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нулячто Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля.

Π’ΠΎΠ³Π΄Π° Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нулячто Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля.

ΠžΡ‚Π²Π΅Ρ‚: Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

Π’ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ссли дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π° мноТСствС комплСксных чисСл. Π’ ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ Π΄Π²Π° сопряТСнных комплСксных числа. Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚: Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ любоС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° корня Π½Π° мноТСствС комплСксных чисСл.

ПодобноС ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, извСстноС ΠΏΠΎΠ΄ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ «ΠΎΡΠ½ΠΎΠ²Π½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π°Π»Π³Π΅Π±Ρ€Ρ‹», Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Гауссом Π² ΠΊΠΎΠ½Ρ†Π΅ XVIII Π²Π΅ΠΊΠ°: любоС алгСбраичСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏ-ΠΉ стСпСни ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏ комплСксных ΠΊΠΎΡ€Π½Π΅ΠΉ (ΠΏΡ€ΠΈ этом Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΡ€Π°Ρ‚Π½Ρ‹ΠΌΠΈ). Π­Ρ‚ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°ΡŽΡ‚ Ρ‚Ρƒ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΈΠ³Ρ€Π°ΡŽΡ‚ комплСксныС числа Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ алгСбраичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π”Π°Ρ‚Π° добавлСния: 2014-12-27 ; ΠŸΡ€ΠΎΡΠΌΠΎΡ‚Ρ€ΠΎΠ²: 12919 ; ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ авторских ΠΏΡ€Π°Π²? ;

Нам Π²Π°ΠΆΠ½ΠΎ вашС ΠΌΠ½Π΅Π½ΠΈΠ΅! Π‘Ρ‹Π» Π»ΠΈ ΠΏΠΎΠ»Π΅Π·Π΅Π½ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»? Π”Π° | НСт

Дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния – это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, находящССся ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Дискриминант обозначаСтся латинской Π±ΡƒΠΊΠ²ΠΎΠΉ D.

Π’ΠΈΠ΄ уравнСнияЀормула ΠΊΠΎΡ€Π½Π΅ΠΉΠ€ΠΎΡ€ΠΌΡƒΠ»Π° дискриминанта
ax 2 + bx + c = 0Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуляb 2 – 4ac
ax 2 + 2kx + c = 0Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуляk 2 – ac
x 2 + px + q = 0Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нулячто Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля
Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуляp 2 – 4q

ВсС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΊΠΎΡ€ΠΎΡ‡Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ дискриминанта:

Π’ΠΈΠ΄ уравнСнияЀормула
ax 2 + bx + c = 0Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля, Π³Π΄Π΅ D = b 2 – 4ac
ax 2 + 2kx + c = 0Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля, Π³Π΄Π΅ D = k 2 – ac
x 2 + px + q = 0Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля, Π³Π΄Π΅ D = Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля
Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля, Π³Π΄Π΅ D = p 2 – 4q

Дискриминант позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΈΠΌΠ΅Π΅Ρ‚ Π»ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½ΠΈ ΠΈ сколько ΠΈΡ…, Π½Π΅ Ρ€Π΅ΡˆΠ°Ρ само ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ нСсколько Ρ„ΠΎΡ€ΠΌΡƒΠ» дискриминанта, Ρ‡Π°Ρ‰Π΅ всСго ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΏΠ΅Ρ€Π²ΡƒΡŽ:

Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° относится ΠΊ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

которая являСтся ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Данная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π΄Π°ΠΆΠ΅ для Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

РСшСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Ρ‡Π΅Ρ€Π΅Π· дискриминант

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ сначала Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ дискриминант ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ Π΅Π³ΠΎ с Π½ΡƒΠ»Ρ‘ΠΌ. Π’ зависимости ΠΎΡ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°, Π»ΠΈΠ±ΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ ΠΊΠΎΡ€Π½ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅, Π»ΠΈΠ±ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ коэффициСнты:

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ коэффициСнты:

D = b 2 – 4ac = (-6) 2 – 4 Β· 1 Β· 9 = 36 – 36 = 0, D = 0

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ всСго ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ коэффициСнты:

D = b 2 – 4ac = (-4) 2 – 4 Β· 1 Β· (-5) = 16 + 20 = 36, D > 0

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как Π½Π°ΠΉΡ‚ΠΈ дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это матСматичСскоС равСнство, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ нСизвСстна ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ нСсколько Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ нСизвСстных Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΈΡ… подстановкС Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ Π²Π΅Ρ€Π½ΠΎΠ΅ числовоС равСнство.

НапримСр, возьмСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 8 + 4 = 12. ΠŸΡ€ΠΈ вычислСнии Π»Π΅Π²ΠΎΠΉ части получаСтся Π²Π΅Ρ€Π½ΠΎΠ΅ числовоС равСнство, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ 12 = 12.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 8 + x = 12, с нСизвСстной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ Ρ‚Π°ΠΊΠΈΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π½Π°ΠΊ равСнства Π±Ρ‹Π» ΠΎΠΏΡ€Π°Π²Π΄Π°Π½, ΠΈ лСвая Ρ‡Π°ΡΡ‚ΡŒ Ρ€Π°Π²Π½ΡΠ»Π°ΡΡŒ ΠΏΡ€Π°Π²ΠΎΠΉ.

Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ наибольшСй стСпСни, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ стоит нСизвСстноС. Если нСизвСстноС стоит Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ являСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это ax 2 + bx + c = 0, Π³Π΄Π΅ a β€” ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΈΠ»ΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт, Π½Π΅ Ρ€Π°Π²Π½Ρ‹ΠΉ Π½ΡƒΠ»ΡŽ, b β€” Π²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнт, c β€” свободный Ρ‡Π»Π΅Π½.

Π•ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ дискриминанта

Дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния β€” это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ находится ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ нахоТдСния ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Дискриминант Π² ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π΅ с латинского ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Β«ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΒ» ΠΈ обозначаСтся Π±ΡƒΠΊΠ²ΠΎΠΉ D.

Дискриминант β€” ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ΠΉ ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, сколько Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡ€Π½Π΅ΠΉ.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

Π§Π°Ρ‰Π΅ всСго для поиска дискриминанта ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π’ этом ΠΊΠ»ΡŽΡ‡Π΅ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для поиска ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния выглядит Ρ‚Π°ΠΊ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

Π­Ρ‚Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π΄Π°ΠΆΠ΅ для Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Но Π΅ΡΡ‚ΡŒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ β€” всС зависит ΠΎΡ‚ Π²ΠΈΠ΄Π° уравнСния. Π§Ρ‚ΠΎΠ±Ρ‹ Π² Π½ΠΈΡ… Π½Π΅ Π·Π°ΠΏΡƒΡ‚Π°Ρ‚ΡŒΡΡ, сохраняйтС Ρ‚Π°Π±Π»ΠΈΡ‡ΠΊΡƒ ΠΈΠ»ΠΈ распСчатайтС Π΅Π΅ ΠΈ Ρ…Ρ€Π°Π½ΠΈΡ‚Π΅ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния Ρ‡Π΅Ρ€Π΅Π· дискриминант

Π’ 8 классС Π½Π° Π°Π»Π³Π΅Π±Ρ€Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ поиску Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Для этого Π²Π°ΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅Π΄ использованиСм Ρ„ΠΎΡ€ΠΌΡƒΠ» Π½Π°ΠΉΡ‚ΠΈ дискриминант ΠΈ ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. Волько послС этого вычисляСм значСния ΠΊΠΎΡ€Π½Π΅ΠΉ. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ.

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ax 2 + bx + c = 0:

А Π²ΠΎΡ‚ ΠΈ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Π° Ρ‚Π°Π±Π»ΠΈΡ‡ΠΊΠ°: Π² Π½Π΅ΠΉ Π²Ρ‹ Π½Π°ΠΉΠ΄Π΅Ρ‚Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для поиска ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ дискриминанта:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ с Π»Π΅Π³ΠΊΠΎΡΡ‚ΡŒΡŽ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ, Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΎΠ²Π°Ρ‚ΡŒΡΡ. Π’ΠΏΠ΅Ρ€Π΅Π΄!

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ дискриминанта

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния 3.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ², Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ нСравСнств

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ нСравСнства

ЧисловоС нСравСнство β€” это Ρ‚Π°ΠΊΠΎΠ΅ нСравСнство, Π² записи ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎ ΠΎΠ±Π΅ стороны ΠΎΡ‚ Π·Π½Π°ΠΊΠ° находятся числа ΠΈΠ»ΠΈ числовыС выраТСния.

РСшСниС β€” Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ нСравСнство становится Π²Π΅Ρ€Π½Ρ‹ΠΌ.

Π Π΅ΡˆΠΈΡ‚ΡŒ нСравСнство Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ½ΠΎ выполняСтся.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ нСравСнство выглядит Ρ‚Π°ΠΊ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ нСравСнство ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ двумя способами:

РСшСниС нСравСнства графичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ нСравСнства Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΡ€Π½ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ax^2 + bx + c = 0. Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΡ€Π½ΠΈ, Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ дискриминант Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния.

Как дискриминант влияСт Π½Π° ΠΊΠΎΡ€Π½ΠΈ уравнСния:

РСшСниС нСравСнства ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ²

ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ² β€” это ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… нСравСнств.

Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ нСравСнство ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ f(x) ≀ 0, Π³Π΄Π΅ f(x) β€” Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ функция. ΠŸΡ€ΠΈ этом Π·Π½Π°ΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹ΠΌ: >, ΠΈΠ»ΠΈ β‰₯ β€” наносим ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΡƒ Π½Π°Π΄ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°ΠΌΠΈ со Π·Π½Π°ΠΊΠ°ΠΌΠΈ +.

Если нСравСнство со Π·Π½Π°ΠΊΠΎΠΌ

Плюс ΠΈΠ»ΠΈ минус: ΠΊΠ°ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π·Π½Π°ΠΊΠΈ

МоТно ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Π·Π½Π°ΠΊΠ°Ρ… ΠΏΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΡΡ‚Π°Ρ€ΡˆΠ΅Π³ΠΎ коэффициСнта a:

Ссли a > 0, ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·Π½Π°ΠΊΠΎΠ²: +, βˆ’, +,

Ссли a 0, ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·Π½Π°ΠΊΠΎΠ²: +, +,

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ. Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» потрСнируСмся Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… ΠΈ научимся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ² для ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… нСравСнств.

НСравСнство ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄:

Π’ этом вСсь смысл ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ²: ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ситуация Π½Π΅ мСняСтся ΠΈ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΠΎΠ΅ Ρ†Π΅Π»ΠΎΠ΅.

ΠžΡ‚ΠΎΠ±Ρ€Π°Π·ΠΈΠΌ эти Π΄Π°Π½Π½Ρ‹Π΅ Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

2 3 β€” Π½Π° этом ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ситуация Π½Π΅ измСняСтся. Π—Π½Π°Ρ‡ΠΈΡ‚ Π½ΡƒΠΆΠ½ΠΎ Π²Π·ΡΡ‚ΡŒ любоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ· этого ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΈ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π΅Π³ΠΎ Π² ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. НапримСр: Ρ… = 25.

Π£Π΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰ΠΈΠ΅ нСравСнству Ρ‚ΠΎΡ‡ΠΊΠΈ закрасим, Π° Π½Π΅ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰ΠΈΠ΅ β€” оставим пустыми.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠΎΠ³Π΄Π° дискриминант мСньшС нуля

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ² для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ нСравСнства Ρ…2+4Ρ…+3

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *