что значит когортное исследование
Что такое когортный анализ. Объясняем простыми словами
Проще говоря, когортный анализ покажет, как пользователи взаимодействуют с вашим продуктом или услугой в тот или иной период. Например, пользователи скачивали приложение с 1 по 31 августа — по этому признаку людей можно объединить в одну когорту. Благодаря анализу вы сможете проследить, кто из скачавших приложение пользуется им через месяц, три месяца, полгода и далее.
Когортный анализ способен показать полную картину о результатах промокампании и продвижения бизнеса, а также выявить закономерности, которые могут улучшить клиентский опыт и исправить существующие недочёты.
Также вы сможете отчётливо понимать, как затрагивают изменения вашего продукта как новых, так и старых пользователей по отдельности. Например, часто при изменении продукта снижаются бизнес-показатели по старым пользователям, поскольку они привыкли к прошлому дизайну сайта. Подобные изменения сильно затрагивают бизнес, но их сложно увидеть без применения когортного анализа.
Пример употребления на «Секрете»
«Предположим, вы заинтересовали инвестора, он провёл свою оценку рынка, и она его устроила. Следующий этап — сверка цифр. Инвестор просит у вас стандартный P&L-отчёт, балансы, когортный анализ и т. д. Практика показывает, что даже у крупных стартапов с хорошей выручкой таких отчётов нет, ими располагают максимум 2% компаний».
(Генеральный директор Skyeng Георгий Соловьёв — в колонке о том, как очаровать инвестора.)
Ошибки в употреблении
Когортный анализ часто путают с сегментацией. При анализе сегментов собирают аудиторию со схожими параметрами (пол, возраст, интересы), не учитывая время совершения её представителями конкретных действий. При анализе когорт, наоборот, анализируют пользователей с разными характеристиками, но которые совершили одно и то же действие в один промежуток времени.
Нюансы
Этапы когортного анализа:
Факты
Слово «когорта» происходит от латинского cohors, что переводится как «огороженное место». Во втором веке до нашей эры когортой обозначалось одно из главных тактических подразделений римской армии, структурная часть легиона, объединённая боевым строем и дисциплиной.
Термин «когортный анализ» используют и в медицине. Это исследование, которое позволяет выявить причины заболевания, устанавливает связи между факторами риска и их последствиями для здоровья. В течение определённого времени за когортой ведётся наблюдение, после этого ставится гипотеза о потенциальных причинах болезни.
Советы
Ранее «Секрет» перечислял важные шаги для правильного когортного анализа:
1) Выберите правильный набор метрик, а не метрики, которые пускают пыль в глаза (например, количество скачиваний).
2) Выберите правильный период для анализа — обычно это день, неделя или месяц, потому что короткие временные периоды лучше подходят для молодых бизнесов.
3) Совместите период и метрики — в это время 100% ваших пользователей делают определённое главное действие (покупают продукт, размещают фото и так далее).
4) Выберите второй период — неделя или месяц спустя — и проверьте, сколько пользователей всё ещё совершают это действие.
5) Повторяйте анализ в другое время, чтобы понять, что влияет на поведение пользователей.
Что такое когортный анализ?
Анализ действий клиентов на сайте компании или других интернет-площадках дает много ценной информации. Но аудитории разные, как и их ключевые метрики. Если попытаться проанализировать сразу все, можно запутаться и получить неверные данные. Для сбора ценных данных опытные аналитики используют когортный анализ, о котором мы поговорим в этой статье.
Рассмотрим подробно определение «когортного анализа». Понятие «когорта» появилось еще во втором веке до нашей эры. Им обозначалось одно из главных тактических подразделений римской армии. Буквальный перевод слова — огороженное место.
В контексте этой статьи обозначает сегмент целевой аудитории или группу людей, совершивших какое-то действие в определенный период времени (например, 1 или 5 июля). Временной признак очень важен, так как именно он отличает когорту от простого сегмента.
Пользователей объединяют в одну группу по общим характеристикам, опыту и временному признаку. Но надо понимать, что со временем общие атрибуты людей могут сильно меняться. Например, сегодня клиент купил пряники, через неделю заказал автомобильные диски, а через месяц приобрел лодку.
Когорты в маркетинге не представляют собой однородную целевую аудиторию: новички сайта или сервиса, постоянные пользователи, временные посетители и т.д. На первый взгляд кажется, что это совершенно разные группы, но с помощью этого инструмента маркетологи объединяют их в несколько когорт (римская армия состояла из 10).
Например, пользователь пришел на сайт из контекстной рекламы 17 июля и купил окно. Его можно включить сразу в три группы:
Суть когортного анализа — объединение клиентов (пользователей, посетителей) в группы по одинаковым характеристикам или атрибутам и отслеживание их поведения во времени.
Анализ поведения пользователей во времени дает ценную информацию об эффективности рекламных кампаний. В частности, можно определить влияние разных маркетинговых инструментов на ключевые показатели бизнеса: LTV, конверсии, ROI, Retention Rate, САС и т.д. Рассмотрим несколько наглядных примеров из практики, чего удалось добиться с помощью когортного анализа.
Не все люди быстро принимают решение о совершении покупки. Кто-то сомневается, кто-то не до конца решил, действительно ему нужен товар или нет, кто-то хочет рассмотреть альтернативные варианты в других магазинах и т.п. То есть пришедший сегодня потенциальный клиент, например, с контекстной рекламы, может не сразу совершить целевое действие.
Из-за длинного цикла продаж маркетологам не всегда удается объективно оценить эффективность и окупаемость рекламных каналов. Рассмотрим на небольшом примере ценность применения когортного анализа.
Например, в феврале 2020 года запустили контекстную рекламу в Яндексе. Прошел месяц, решили проанализировать первые результаты, посчитали ROI, а он оказался ниже 100%. Неопытный маркетолог примет решение «свернуть» РК или переделать объявления.
Но если объединить потенциальных клиентов, пришедших с этой рекламной кампании, в когорту и посмотреть на результаты спустя несколько месяцев, можно увидеть совершенно другие цифры:
На принятие решения у некоторых покупателей ушло 5 месяцев! Отслеживание поведения пользователей во времени позволило более точно оценить эффективность рекламной кампании. Такая «картинка» чаще характерна для компания с длинным циклом продаж и (или) дорогими товарами.
Можно узнать, какие рекламные каналы дают больше всего лояльных клиентов. Например, сделаем когорту пользователей с первой авторизацией с период с февраля по июль и разобьем на более мелкие группы по каналу привлечения. Далее каждый месяц оцениваем группы по коэффициентам удержания (Retention Rate) или повторных покупок (Repeat Purchase Rates).
По этим данным легко определить лучшие источники лояльных клиентов. Следовательно, мы можем продолжать вкладывать в них больше денег и быстрее наращивать объем лояльных покупателей.
Анализ проводится постоянно для определения точек «подогрева» аудитории. Например, один из коэффициентов популярного источника начал снижаться. Пользователям группы отправляется письмо с предоставлением персональный скидки (возможно любое другое действие) и коэффициент снова растет. Без когортного анализа провести такой трюк с высокой точностью сложно.
LTV (Lifetime Value) — пожизненная ценность клиента или доход, полученный от него за все время сотрудничества. Обычно этот показатель считают после окончания совместной работы.
Но ничто не мешает вам оценивать LTV по отдельным когортам за определенный промежуток времени (например, за месяц) и прогнозировать показатель на последующие периоды.
Также можно сравнивать пожизненную ценность клиентов и стоимость их привлечения по рекламным каналам. Так вы получите информацию о сроках окупаемости каналов и поймете, в какой стоит вкладывать больше ресурсов.
A/B тесты используют для проверки идей и гипотез. Например, вы решили обновить текст продающей страницы. В рамках тестирования делаете два варианта (со старым наполнением и новым) и какую-то часть аудитории отправляете на обновленную версию для оценки конверсии. Смотрите, в каком случае она выше, и принимаете решение по дальнейшим действиям.
Проблемы A/B теста в данной ситуации — невозможность прогнозирования в долгосрочной перспективе. Устранить недостаток поможет когортный анализ. Через месяц после окончания тестирования постройте отчет по пользователям, которые впервые попали на сайт через обновленную продающую страницу, и сравните показатели с когортой людей, которые новый текст не видели.
Полученная разница — реальное влияние обновленного текста на конверсию. Так вы поймете долговременный эффект от принятого решения.
Когортный анализ активно используют при «выкатывании» новых версий приложений. С помощью него оценивают уровень возврата пользователей (Retention Rate). Также маркетологи применяют инструмент для анализа наиболее эффективных рекламных каналов. И это не единственные примеры использования когорт в работе над мобильными приложениями: все ограничивается фантазией и навыками аналитика.
В предыдущем разделе описано несколько примеров использования инструмента, но в каких сферах его применяют чаще всего? В первую очередь он полезен в компаниях, привязанных к количеству клиентов. На их доходность отток пользователей влияет больше всего.
Не отказываются от применения когортного анализа и организации с большим количество постоянных клиентов. Его направляют на оценку маркетинговых действий, результаты которой позволяют улучшать рекламные кампании и грамотно перераспределять бюджет.
В целом, применение когортного анализа полезно для любого бизнеса. Но далее рассмотрим несколько наиболее популярных направлений применения.
Если собирать информацию из разных когорт о пользователях, со временем можно составить точный портрет целевой аудитории. Оценка лояльности, сезонности, готовности к онлайн-покупкам и т.д. — все это позволяет понять, кто интересуется товаром и чаще всего приобретает его.
Часто для проверки гипотез и идей применяют сплит-тестирование. Да, оно дает определенные результаты для принятия объективных решений, однако когортный анализ в этом плане лучше и дает более точные данные, так как рассматриваются разные группы целевой аудитории.
A/B тестирование — тоже полезный инструмент, но оценивает один показатель, а когортный анализ «прицепом» подтягивает информацию еще о двух параметрах — времени и месте.
Например, определяем оптимальный цвет кнопки на продающем лендинге. Сплит-тестирование показало, что 45% клиентов чаще кликают на зеленую, а 55% — на синюю.
Подключаем когорту по месяцу (времени) и месту и узнаем, что потенциальные клиенты из Сочи лучше щелкают по зеленой кнопке, потому что синий морской цвет им уже надоел, они всю жизнь его видят.
Это простой, но наглядный пример лучшего понимания целевой аудитории благодаря использованию когортного анализа. Более глубокие данные помогают генерировать больше идей и быстрее развивать бизнес.
В облачных проектах когортный анализ используют для оптимизации цикла продаж. Допустим, есть сервис с пробным периодом, триал-версией и платными тарифами. Руководство компании отслеживает ключевые метрики: доходы и расходы. Составляются когорты из пользователей пробного периода и триал-версии.
Далее в работу вступает аналитик, который определяет: кто чаще переходит на платные версии, какие тарифы выбирают, оттоки пользователей за определенные периоды и т.п. Все это — ценная информация, позволяющая оптимизировать цикл продаж и повысить прибыль SaaS-сервиса.
Во время обучения использования когортного анализа аналитикам предлагают рассматривать все возможные метрики для получения практического опыта. Но в реальной работе для достижения максимальной эффективности сосредотачиваются на целевых (самых важных) показателях.
Универсального набора метрик нет, выбор перечня зависит от конкретного продукта и отрасли бизнеса. Однако есть ряд показателей, которые рассматривают в большинстве случаев:
Работа аналитика заключается не только в организации когортного анализа и оценке полученных результатов, но и определении целевых показателей. Если выбрать несущественные для конкретного бизнеса метрики, от собранных данных не будет никакого толка, их не получится использовать для улучшения работы организации.
Перед проведением когортного анализа определяют четыре параметра:
Эти четыре параметра — столпы когортного анализа, определяются при работе в любой системе.
Отметим, что первый и последний параметры связаны между собой: признак определяют после выбора анализируемого ключевого показателя. Например, при оценке коэффициента повторных покупок в качестве признака выбирают «первую покупку».
Но опять же, не стоит загонять себя в жесткие рамки, потому что каждый проект индивидуален. Аналитик руководствуется собственными опытом, знаниями и рабочими инструментами.
Кстати, признаков может быть несколько. Когорты создаются в соответствии с текущими потребностями фирмы и предстоящего анализа. Второй и третий параметры аналитик также определяет на основе поставленных перед ним задач.
Поговорим об инструменте, который помогает проводить когортный анализ. Самый подходящий для новичков — Google Analytics. Для начала работы перейдите на страницу системы —> «Аудитория» —> «Когортный анализ».
Вверху доступна настройка четырех основных параметров, о которых говорили в предыдущем разделе статьи.
Пока что система проходит бета-тестирование, поэтому функции доступны с ограничениями:
Несмотря на значительные ограничения, система уже подходит для полноценного использования. После окончания бета-тестирования у аналитиков появится возможность в автоматизированном режиме проводить когортный анализ онлайн-проектов.
Также доступна визуализация анализируемого показателя: под настройками проекта расположен график для всех пользователей и трех групп на выбор.
В нашем случае по графику понимаем, что общий коэффициент удержания клиентов — 1,49%, а для группы пользователей, первый раз посетивших сайт в период с 31 мая по 6 июня, — 1,75%. Под графиком есть сводная таблица с данными по каждой когорте за весь отчетный период. Она идентична той, которую показывали в начале статьи, только здесь формируется автоматически, а не «ручками» в Excel.
На данном этапе развития система подходит для анализ небольших проектов. Можно вносить изменения в работу сервиса, улучшать предложения для клиентов и т.п. и отслеживать коэффициент удержания клиентов. Если он будет расти, значит, принимаются верные решения.
Рассмотрим другие сервисы, в которых составляются отчеты по когортному анализу. Они есть во многих рекламных и аналитических системах, поэтому начинающему аналитику часто сложно выбрать оптимальный вариант.
Более гибкие настройки (по сравнению с Google Analytics) для мобильного маркетинга предлагает AppsFlyer — в отчет допускается включение сразу нескольких фильтров, что позволяет получить больше ценной информации. Чтобы не тратить много времени на анализ маленьких групп, устанавливают ограничение по количеству пользователей.
Разработчики приложений используют AppMetrica и Adjust для аналитики возврата новых пользователей. Во втором сервисе возможно добавление в отчет второго показателя (например, количество сессий на пользователя):
Еще одна популярная система для когортного анализа приложений и веб-сайтов — Kissmetrics. Отличительная особенность — возможность формировать когорту сразу по двум признакам. Например, клиенты, посетившие сайт и сделавшие покупку на сумму от 1 000 рублей.
Также в Kissmetrics доступны группировки по разным признакам (не только по времени), например, по месту проживания, источнику трафика и т.п. Пример отчета в этой системе:
Как видите, есть много систем для работы с когортными отчетами. Но так как это направление только набирает популярность, многие работают в бета-режиме и с ограничениями. Поэтому аналитикам в крупных проектах приходится взаимодействовать с менее автоматизированными инструментами, об одном из которых поговорим далее.
Построить когортный отчет можно по данным из Google Sheets с помощью сводной таблицы. Для этого потребуется собрать исходные данные и добавить в Google Sheets в таком формате:
Соблюдайте заданный формат: в первом столбце — период формирования когорты (неделя регистрации), во втором — последующие периоды (недели транзакций) и в третьем — данные по рассматриваемому показателю (количество покупок).
Сводная таблица — самый простой и быстрый способ построить когортный отчет на основе исходных данных, которые, кстати, вы уже должны были добавить в Google Sheets.
Выделите нужный диапазон данных, откройте вкладку «Данные» и выберите «Сводная таблица». Справа появится панель настроек:
Сделайте следующие настройки:
Примените условное форматирования для придания отчету «читабельного» вида. Должна получиться примерно такая сводная таблица:
На создание отчета уходит несколько минут, но зато он дает массу ценной информации. Дальше в работу вступает аналитик, «читает» данные, делает выводы и принимает решения.
Когортный анализ — незаменимый инструмент для современного аналитика. Его применение позволяет получить больше ценной информации для развития продукта, чем, например, A/B тестирование. Но в целом сфера применения когорт довольно обширная и грамотный аналитик может адаптировать их использование под разные задачи.
Специальные инструменты и особенные знания для проведения когортного анализа не требуются. Большинство современных систем аналитики автоматизируют сбор данных и составление отчетов. Аналитику остается правильно интерпретировать полученные данные и использовать их для развития продукта.
Если нет возможности взаимодействовать с какой-либо системой аналитики, пользуйтесь подручными средствами — Google Sheets и сводные таблицы. В этой статье дается подробное описание подготовки отчета с их помощью.
Что такое когортный анализ и почему важно использовать его в маркетинге
Маркетинговые кампании с мгновенной отдачей — мечта маркетологов и даже реальность для простых товаров, которые можно купить спонтанно и в один клик. Но для сложных и дорогих продуктов подобная ситуация — фантастика, и затраты на рекламу окупаются дольше. Как оценивать эффективность таких кампаний? Учитывать фактор времени и детализировать по нему ваших клиентов. Для этого существует когортный анализ, о котором мы расскажем в статье.
Что такое когортный анализ
Когортный анализ — это метод исследования, где пользователей разделяют на группы (когорты) по определённым признакам и отслеживают их поведение за некоторый промежуток времени. Такой способ позволяет смотреть на действия пользователей в динамике.
Когорта — это группа людей, которых объединяет один или несколько признаков:
Именно привязка ко времени отличает когорту от сегмента — более широкого и общего понятия.
Например, выпускники Гарварда 2012 года — одна когорта, выпускники 2018 года — другая, но все они относятся к сегменту «выпускники Гарварда».
Когортные исследования помогают понять, как ключевые метрики отличаются для разных сегментов. Увидеть более подробную картину по рекламной кампании или другим маркетинговым действиям, например, ребрендинга, тестирования нового сайта и так далее.
Как применять когортный анализ
Когортное исследование — не универсальный метод, для него нужно достаточное количество пользователей. Желательно проводить анализ клиентов от 1000 человек в базе (их действий). Способ подходит для массовых B2C и B2B бизнесов с долгим циклом покупки.
Что помогает оценить когортный анализ:
Эффективность каналов привлечения
Когортный метод покажет, из каких каналов приходят наиболее лояльные пользователи. Тогда бизнес сможет выделять больший бюджет на эффективные каналы и активнее с ними работать. Зачем использовать именно когортный метод, если можно сразу после кампании оценить, сколько клиентов мы получили? Не всё так просто.
Например, с рекламы в Facebook в сервис перешло и зарегистрировалось 2000 пользователей. Маркетолог доволен — результат есть. Но 90% пользователей перестали заходить в сервис уже через месяц. Параллельно мы привлекали пользователей с помощью рассылки, и пришло 1000 человек, через месяц перестали пользоваться сервисом всего 15%. Если бы мы оценивали результат сразу после кампании, то решили бы, что Facebook — самый эффективный канал, а на самом деле там оказалась нецелевая аудитория.
Для долгого цикла покупки возврат инвестиций в рекламу — дело не быстрое. В крупных B2B сделках, в недвижимости, для электронных сервисов, которые могут трансформировать весь бизнес, принять решение о покупке нельзя сразу после первой рекламы. Надо набраться терпения и смотреть результаты через некоторое время.
Например, рекламная кампания прошла в январе, тогда пользователь K впервые узнал о сервисе Altcraft Platform и впервые зашёл на сайт. Для изучения возможностей и принятия решений в компании, где работает пользователь K, нужно время. Только через 4 месяца пользователь запросил демо у команды сервиса, а через 5 компании подписали договор. Если бы мы считали ROI за следующий месяц после кампании, то решили бы, что она провальная. Когортный анализ показал, что это не так.
Отслеживание и прогноз LTV
LTV (пожизненная ценность клиента) считает доход от клиента за весь период, пока он пользуется нашими продуктами или услугами. Метрика показывает, оправдывают ли себя расходы на привлечение новых клиентов. Когда мы знаем, как долго остаётся с нами пользователь и сколько на нас тратит, то можем рассчитать эти данные для похожих когорт.
Когортный анализ покажет, как поменяется конверсия после обновлений для А/Б-тестов не за время тестирования, а в долгой перспективе. Может оказаться, что удачный элемент привлёк больше пользователей, но они не совсем целевые: случайно кликнули, прошли регистрацию, но не стали использовать сервис.
Когортное исследование поможет узнать, через какое время клиент перестаёт активно пользоваться продуктом или вообще уходит. Предупреждён — вооружён: с данными о «критических» точках можно заранее поработать с пользователем.
Например, анализ показал, что 70% пользователей теряют интерес к сервису через 3 месяца. Тогда компании нужно обратить внимание на этот период: сделать рассылку с реактивацией, предложить бонус и так далее.
Как провести когортный анализ
1. Определяем цель и связанную с ней метрику, которую будем отслеживать за время анализа. Метрики — это основа для когортного анализа.
Цель — определить самый успешный канал продаж для мобильного приложения. Метрикой считаем конверсию — регистрацию. В перспективе рассматриваем, как менялся Retention Rate (коэффициент удержания клиентов), чтобы понять, сколько из зарегистрированных пользователей остались в приложении.
2. Определяем когорты, которые будем изучать.
Возьмём клиентов, которые совершили покупку с рекламы в Instagram, Facebook, рекламы в Яндексе и Google за июнь — это 4 разные когорты.
3. Проводим анализ разных когорт за выбранный промежуток времени.
Рассмотрим результат всех четырех когорт за 3 месяца после месяца регистрации. Оценим, сколько пользователей оставались активными после регистрации в каждый из месяцев.
Когортный анализ проводят в Google Таблицы или Microsoft Excel. Но разбираться, как сделать метрику правильно (формулу для её расчёта) в таблице, придётся самостоятельно. В Google Аналитике когортное исследование автоматизировано, но возможности для разделения на когорты ограничены: можно отследить только первое действие пользователя в определённом промежутке времени.
Данные визуализируются в виде графика и таблицы.
Примеры когортного анализа
Разберём несколько примеров когортного анализа для разных метрик.
Проверка эффективности каналов
Цель — определить, какой канал оказался самым эффективным для привлечения новых подписчиков рассылки. Будем исследовать 4 когорты по каналам привлечения: окно на сайте, реклама в Facebook, партнёрские посты ВКонтаке. Каждая когорта рассчитывается с 15-30 марта — срок проведения кампании. Со всех каналов на рассылку подписалось 3000 пользователей. Больше всего пользователей (1600) пришли с рекламы Facebook. Через 5 месяцев из всех подписавшихся активных осталось 782. Рассмотрим в динамике, как проходила отписка от каждого канала за этот срок.
По первым результатам мы могли сделать вывод, что реклама Facebook была самой эффективной в привлечении подписчиков. В итоге оказалось, что пользователям подписка неинтересна, или, возможно, они подписались случайно. Через 5 месяцев только 6% ещё открывали письма. Самую качественную аудиторию из всех привлекли партнёрские посты ВКонтакте, 58% подписчиков из этого канала продолжали читать рассылку.
Расчёт LTV
Цель — определить LTV для пользователей, которые пришли в приложение для доставки продуктов на дом в 2020 году. Для этого рассматриваем 3 когорты — клиентов, которые сделали первый заказ в январе, феврале или марте 2020 года. Изучаем, как менялось их поведение в течение полугода. Для каждого посчитаем ARPU — средний доход с клиента. Рассчитываем сумму в рублях.
В таблице видим, что самые большие суммы клиенты тратили в марте 2020 года. И начинали меньше заказывать уже к 4-5 месяцу после первой регистрации. С одной стороны, можно считать, что рекламные кампании марта были самыми успешными, если даже пользователи, которые пришли раньше, стали заказывать больше в этом месяце. С другой стороны, вспомним, что с марта 2020 года во многих регионах России ввели карантин, когда для многих доставка продуктов стала необходимостью. Тогда можно объяснить и спад активности к последним месяцам при таких же рекламных кампаниях. Карантин начали ослаблять, и пользователи снова стали ходить за покупками сами.
Тестирование
Нужно проанализировать результат теста дизайна нового раздела дополнительных заказов для интернет-магазина. Есть два новых дизайна A и B, также старый — Old. Выделим их в 3 когорты — по кликам пользователей на каждый из дизайнов неделю с 5 по 11 июля. Дальше рассмотрим конверсию с каждого дизайна за 3 следующих месяца.
В итоге дизайн A получил больше кликов за первую неделю, но показатели конверсии были ниже дизайнов B и Old. Также новый дизайн не показал значительного роста конверсии по сравнению со старым — можно сделать вывод, что концепция обоих новых дизайнов не самая удачная.
Вывод
Когортный анализ — инструмент, который требует подготовки: долгого сбора данных, понимания, какую метрику надо исследовать сейчас, чтобы улучшить показатели бизнеса в будущем. Но затраты стоят результата — глубокого и подробного понимания маркетинга компании, правильного распределения бюджета и эффективных стратегий на основе данных.