что значит машинное обучение

Что такое машинное обучение и как оно работает

что значит машинное обучение. Смотреть фото что значит машинное обучение. Смотреть картинку что значит машинное обучение. Картинка про что значит машинное обучение. Фото что значит машинное обучение

Что такое машинное обучение?

Единого определения для machine learning (машинного обучения) пока нет. Но большинство исследователей формулируют его примерно так:

Машинное обучение — это наука о том, как заставить ИИ учиться и действовать как человек, а также сделать так, чтобы он сам постоянно улучшал свое обучение и способности на основе предоставленных нами данных о реальном мире.

Вот как определяют машинное обучение представители ведущих ИТ-компаний и исследовательских центров:

Nvidia: «Это практика использования алгоритмов для анализа данных, изучения их и последующего определения или предсказания чего-либо».

Университет Стэнфорда: «Это наука о том, как заставить компьютеры работать без явного программирования».

McKinsey & Co: «Машинное обучение основано на алгоритмах, которые могут учиться на данных, не полагаясь на программирование на основе базовых правил».

Вашингтонский университет: «Алгоритмы машинного обучения могут сами понять, как выполнять важные задачи, обобщая примеры, которые у них есть».

Университет Карнеги Меллон: «Сфера машинного обучения пытается ответить на вопрос: «Как мы можем создавать компьютерные системы, которые автоматически улучшаются по мере накопления опыта и каковы фундаментальные законы, которые управляют всеми процессами обучения?»

История машинного обучения

Дмитрий Ветров, профессор-исследователь, заведующий Центром глубинного обучения и байесовских методов Факультета компьютерных наук ВШЭ, отмечает: изначально компьютеры использовались для задач, алгоритм решения которых был известен человеку. И только в последние годы пришло понимание, что они могут находить способ решать задачи, для которых алгоритма решения нет или он не известен человеку. Так появился искусственный интеллект в широком смысле и технологии машинного обучения в частности.

Как связаны машинное и глубокое обучение, ИИ и нейросети

Нейросети — один из видов машинного обучения.

Глубокое обучение — это один из видов архитектуры нейросетей.

что значит машинное обучение. Смотреть фото что значит машинное обучение. Смотреть картинку что значит машинное обучение. Картинка про что значит машинное обучение. Фото что значит машинное обучение

Глубокое обучение также включает в себя исследование и разработку алгоритмов для машинного обучения. В частности — обучения правильному представлению данных на нескольких уровнях абстракции. Системы глубокого обучения за последние десять лет добились особенных успехов в таких областях как обнаружение и распознавание объектов, преобразование текста в речь, поиск информации.

Какие задачи решает машинное обучение?

С помощью машинного обучения ИИ может анализировать данные, запоминать информацию, строить прогнозы, воспроизводить готовые модели и выбирать наиболее подходящий вариант из предложенных.

Особенно полезны такие системы там, где необходимо выполнять огромные объемы вычислений: например, банковский скоринг (расчет кредитного рейтинга), аналитика в области маркетинговых и статистических исследований, бизнес-планирование, демографические исследования, инвестиции, поиск фейковых новостей и мошеннических сайтов.

В Леруа Мерлен используют Big Data и Machine Learning, чтобы находить остатки товара на складах.

В маркетинге и электронной коммерции машинное обучение помогает настроить сервисы и приложения так, чтобы они выдавали персональные рекомендации.

Стриминговый сервис Spotify с помощью машинного обучения составляет для каждого пользователя персональные подборки треков на основе того, какую музыку он слушает.

Сегодня ключевые исследования сфокусированы на разработке машинного обучения с эффективным использованием данных — то есть систем глубокого обучения, которые могут обучаться более эффективно, с той же производительностью, за меньшее время и с меньшими объемами данных. Такие системы востребованы в персонализированном здравоохранении, обучении роботов с подкреплением, анализе эмоций.

Китайский производитель «умных» пылесосов Ecovacs Robotics обучил свои пылесосы распознавать носки, провода и другие посторонние предметы на полу с помощью множества фотографий и машинного обучения.

«Умная» камера на базе микрокомпьютера Raspberry Pi 3B+ с помощью фреймворка TensorFlow Light научилась распознавать улыбку и делать снимок ровно в этот момент, а также — выполнять голосовые команды.

В сфере инвестиций алгоритмы на базе машинного обучения анализируют рынок, отслеживают новости и подбирают активы, которые выгоднее всего покупать именно сейчас. При этом с помощью предикативной аналитики система может предсказать, как будет меняться стоимость тех или иных акций за конкретный период и корректирует свои данные после каждого важного события в отрасли.

Согласно исследованию BarclayHedge, более 50% хедж-фондов используют ИИ и машинное обучение для принятия инвестиционных решений, а две трети — для генерации торговых идей и оптимизации портфелей.

Наконец, машинное обучение способствует настоящим прорывам в науке.

Нейросеть AlphaFold от DeepMind в 2020 году смогла расшифровать механизм сворачивания белка. Над этой задачей ученые-биологи бились больше 50 лет.

Как устроено машинное обучение

По словам Дмитрия Ветрова, процесс машинного обучения выглядит следующим образом.

Есть большое число однотипных задач, в которых известны условие и правильный ответ или один из возможных ответов. Например, машинный перевод, где условие — фраза на одном языке, а правильный ответ — ее перевод на другой язык.

Модель машинного обучения, например, глубинная нейронная сеть, работает по принципу «черного ящика», который принимает на вход условие задачи, а на выходе выдает произвольный ответ. Например, какой-либо текст на втором языке.

У «черного ящика» есть дополнительные параметры, которые влияют на то, как будет обрабатываться входной сигнал. Процесс обучения нейросети заключается в поиске таких значений параметров, при которых она будет выдавать ответ, максимально близкий к правильному. Когда мы настроим параметры нужным образом, нейросеть сможет правильно (или максимально близко к этому) решать и другие задачи того же типа — даже если никогда не знала ответов к ним.

что значит машинное обучение. Смотреть фото что значит машинное обучение. Смотреть картинку что значит машинное обучение. Картинка про что значит машинное обучение. Фото что значит машинное обучение

Основные виды машинного обучения

1. Классическое обучение

Это простейшие алгоритмы, которые являются прямыми наследниками вычислительных машин 1950-х годов. Они изначально решали формальные задачи — такие, как поиск закономерностей в расчетах и вычисление траектории объектов. Сегодня алгоритмы на базе классического обучения — самые распространенные. Именно они формируют блок рекомендаций на многих платформах.

что значит машинное обучение. Смотреть фото что значит машинное обучение. Смотреть картинку что значит машинное обучение. Картинка про что значит машинное обучение. Фото что значит машинное обучение

Но классическое обучение тоже бывает разным:

Обучение с учителем — когда у машины есть некий учитель, который знает, какой ответ правильный. Это значит, что исходные данные уже размечены (отсортированы) нужным образом, и машине остается лишь определить объект с нужным признаком или вычислить результат.

Такие модели используют в спам-фильтрах, распознавании языков и рукописного текста, выявлении мошеннических операций, расчете финансовых показателей, скоринге при выдаче кредита. В медицинской диагностике классификация помогает выявлять аномалии — то есть возможные признаки заболеваний на снимках пациентов.

Обучение без учителя — когда машина сама должна найти среди хаотичных данных верное решение и отсортировать объекты по неизвестным признакам. Например, определить, где на фото собака.

Эта модель возникла в 1990-х годах и на практике используется гораздо реже. Ее применяют для данных, которые просто невозможно разметить из-за их колоссального объема. Такие алгоритмы применяют для риск-менеджмента, сжатия изображений, объединения близких точек на карте, сегментации рынка, прогноза акций и распродаж в ретейле, мерчендайзинга. По такому принципу работает алгоритм iPhoto, который находит на фотографиях лица (не зная, чьи они) и объединяет их в альбомы.

2. Обучение с подкреплением

Это более сложный вид обучения, где ИИ нужно не просто анализировать данные, а действовать самостоятельно в реальной среде — будь то улица, дом или видеоигра. Задача робота — свести ошибки к минимуму, за что он получает возможность продолжать работу без препятствий и сбоев.

Обучение с подкреплением инженеры используют для беспилотников, роботов-пылесосов, торговли на фондовом рынке, управления ресурсами компании. Именно так алгоритму AlphaGo удалось обыграть чемпиона по игре Го: просчитать все возможные комбинации, как в шахматах, здесь было невозможно.

3. Ансамбли

Это группы алгоритмов, которые используют сразу несколько методов машинного обучения и исправляют ошибки друг друга. Их получают тремя способами:

Ансамбли работают в поисковых системах, компьютерном зрении, распознавании лиц и других объектов.

4. Нейросети и глубокое обучение

Самый сложный уровень обучения ИИ. Нейросети моделируют работу человеческого мозга, который состоит из нейронов, постоянно формирующих между собой новые связи. Очень условно можно определить их как сеть со множеством входов и одним выходом. Нейроны образуют слои, через которые последовательно проходит сигнал. Все это соединено нейронными связями — каналами, по которым передаются данные. У каждого канала свой «вес» — параметр, который влияет на данные, которые он передает.

ИИ собирает данные со всех входов, оценивая их вес по заданным параметрами, затем выполняет нужное действие и выдает результат. Сначала он получается случайным, но затем через множество циклов становится все более точным. Хорошо обученная нейросеть работает, как обычный алгоритм или точнее.

Настоящим прорывом в этой области стало глубокое обучение, которое обучает нейросети на нескольких уровнях абстракций.

Здесь используют две главных архитектуры:

Нейросети с глубоким обучением требуют огромных массивов данных и технических ресурсов. Именно они лежат в основе машинного перевода, чат-ботов и голосовых помощников, создают музыку и дипфейки, обрабатывают фото и видео.

Проблемы машинного обучения

Перспективы машинного обучения: не начнет ли ИИ думать за нас?

Вопрос о том, не сделает ли машинное обучение ИИ умнее человека, изначально не совсем корректный. Дело в том, что в природе нет универсальной иерархии в плане интеллекта. Мы по умолчанию считаем себя умнее остальных существ, но, к примеру, белка способна запоминать местонахождения тысячи тайников с запасами, что не под силу даже очень умному человеку. А у осьминогов каждое щупальце способно мыслить и действовать самостоятельно.

Так же и с ИИ: он уже превосходит нас во всем, что касается сложных вычислений, но по-прежнему не способен сам ставить себе новые задачи и решать их, подбирая нужные данные и условия. Это ограничение в последние годы пытаются преодолеть в рамках сильного ИИ, но пока безуспешно. Надежду на решение этой проблемы внушают квантовые компьютеры, которые выходят за пределы обычных вычислений.

Зато мы в ближайшем будущем сможем заметно расширить свои возможности с помощью ИИ, передавая ему рутинные и затратные операции, общаясь и управляя техникой при помощи нейроинтерфейсов.

Источник

Машинное обучение

Что такое машинное обучение?

Машинное обучение — это подраздел искусственного интеллекта (ИИ) и науки о данных, специализирующийся на использовании данных и алгоритмов для имитации процесса наработки опыта человеком с постепенным повышением точности.

Компания IBM внесла немалый вклад в историю машинного обучения. Так, ввод в обиход термина «машинное обучение» приписывают одному из сотрудников компании, Артуру Самюэлю в его исследовании (PDF, 481 КБ) (внешняя ссылка) игры в шашки. В 1962 году самопровозглашенный мастер по шашкам Роберт Нили сыграл партию с компьютером IBM 7094 и проиграл. По сравнению с современными возможностями это достижение кажется сущим пустяком, но оно считается важной вехой в области искусственного интеллекта. В следующие пару десятилетий технологии в области хранения данных и вычислительные мощности достигнут такого уровня, что будут созданы революционные в то время (но привычные и любимые сегодня) продукты, например система рекомендаций Netflix или беспилотные автомобили.

Машинное обучение является важным компонентом науки о данных, которая сейчас развивается стремительными темпами. С помощью статистических методов алгоритмы обучаются классифицировать данные, строить прогнозы и выделять важные моменты в ходе проектов по сбору и анализу данных. От этих выкладок зависит дальнейшее принятие решений в отношении приложений и предприятий, а в идеале они должны положительно сказаться на основных показателях роста. По мере дальнейшего роста и развития больших данных будет расти и рыночный спрос на специалистов по анализу и обработке данных, от которых будет требоваться помощь в определении самых актуальных проблем бизнеса и поиск данных для их решения.

Машинное обучение, глубокое обучение и Нейронные сети

Так как люди часто путают глубокое обучение и машинное обучение, давайте остановимся на отличительных особенностях каждого из этих понятий. Машинное обучение, глубокое обучение и нейронные сети — все это подразделы искусственного интеллекта. Но при этом глубокое обучение является подвидом машинного обучения, а нейронные сети, в свою очередь, — подвидом глубокого обучения.

Разница между глубоким и машинным обучением заключается в способе обучения алгоритмов. В глубоком обучении большая часть процесса извлечения признаков автоматизирована, что практически исключает необходимость контроля со стороны человека и позволяет использовать большие наборы данных. Лекс Фридман в своей лекции в Массачусетском технологическом институте (00:30) (внешняя ссылка) называет глубокое обучение «масштабируемым машинным обучением». Эффективность классического, «неглубокого» машинного обучения в большей степени зависит от контроля со стороны человека. Набор признаков для понимания разницы между входными данными определяется специалистом-человеком. Обычно для машинного обучения требуются более структурированные данные.

Безусловно, для алгоритмов «глубокого» машинного обучения также можно использовать размеченные наборы данных (этот принцип еще называется «контролируемым» обучением), но это необязательно. Глубокое обучение может работать с неструктурированными данными в исходном формате (например, это может быть текст или изображения): алгоритм способен самостоятельно определять набор признаков для различения разных категорий данных. В отличие от машинного обучения, вмешательство человека при обработке данных не требуется, что открывает намного больше возможностей применения этой технологии. Считается, что ускорение развития таких областей, как компьютерное зрение, обработка естественного языка и распознавание речи, произошло в основном благодаря глубокому обучению и нейронным сетям.

Нейронные сети или искусственные нейронные сети (ANN) представляют собой комплект уровней узлов: входной уровень, один или несколько скрытых и выходной уровень. Каждый узел (искусственный нейрон) связан с другими узлами с определенным весом и пороговым значением. Если вывод какого-либо узла превышает пороговое значение, то этот узел активируется и отправляет данные на следующий уровень сети. В противном случае данные на следующий уровень сети не передаются. Понятие «глубина» в глубоком обучении характеризует всего лишь количество уровней нейронной сети. Нейронную сеть, в которой больше трех уровней (включая входной и выходной) уже можно отнести к алгоритму глубокого обучения (глубокой нейронной сети). Нейронная сеть с двумя-тремя уровнями считается простой нейронной сетью.

Для того чтобы подробней ознакомиться с разными концепциями, обратитесь к публикации «AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the Difference?»

Как работает машинное обучение

Согласно UC Berkeley (внешняя ссылка), система обучения алгоритма машинного обучения состоит из трех основных частей.

Методы машинного обучения

Стили машинного обучения можно разделить на три основных категории.

Контролируемое машинное обучение

Контролируемое обучение (контролируемое машинное обучение) — это метод обучения алгоритма с помощью размеченных наборов данных, что позволяет точно классифицировать данные или прогнозировать результаты. Так как входные данные поступают в модель, она сама регулирует веса до тех пор, пока не будет достаточно уточнена. Все это выполняется в рамках процесса перекрестной проверки, предназначенной для предотвращения чрезмерного или недостаточного обучения. Контролируемое обучение с успехом используется в организациях для совершенно реальных задач, например для классификации спама и переноса его в отдельную папку в вашем почтовом ящике. В контролируемом обучении используются такие методы, как нейронные сети, наивный байесовский классификатор, линейная регрессия, логистическая регрессия, метод случайного леса, метод опорных векторов (SVM) и другие.

Неконтролируемое машинное обучение

Неконтролируемое обучение (или неконтролируемое машинное обучение) использует обучающие алгоритмы для анализа и классификации неразмеченных наборов данных. Эти алгоритмы без вмешательства человека обнаруживают закономерности или связи в данных, которые в ином случае могли бы остаться незамеченными. Такая способность обнаруживать сходства и различия в информации делает эту технологию идеальным вариантом для анализа исследовательских данных, создания стратегий перекрестных продаж, сегментации клиентов, а также для распознавания образов и шаблонов. Также это помогает уменьшить число признаков в модели, применив процедуру понижения размерности с использованием анализа главных компонентов (PCA) или сингулярного разложения (SVD). Также при неконтролируемом обучении используются нейронные сети, кластеризация методом k-средних, вероятностная кластеризация и другие методы.

Полуконтролируемое обучение

Полуконтролируемое обучение предлагает золотую середину между контролируемым и неконтролируемым обучением. На этапе обучения используется размеченный набор данных небольшого размера, по которому настраивается алгоритм классификации и извлечения признаков из более крупного, неразмеченного набора данных. Полуконтролируемое обучение приходит на помочь в том случае, если отсутствует достаточный объем помеченных данных для обучения алгоритма контролируемого машинного обучения (или маркировка данных стоит слишком дорого).

Для более подробного знакомства с различиями между этими подходами, обратитесь к веб-станице «Контролируемое и неконтролируемое обучение: в чем разница?»

Машинное обучение с подкреплением

Машинное обучение с подкреплением — это поведенческая модель машинного обучения, аналогичная контролируемому типу, однако для обучения этого алгоритма не применяется эталонный набор данных. Модель постепенно обучается методом проб и ошибок. Таким образом, последовательность успешных решений приводит к закреплению процесса, поскольку задача решается наилучшим образом.

Хороший пример тому — система IBM Watson®, которая в 2011 году стала победителем в игре Jeopardy!. Система использовала обучение с подкреплением для принятия решений о том, стоит ли пытаться дать ответ (или задать вопрос), какой квадрат выбрать на доске и какую сделать ставку — особенно в случае двойных ставок.

Варианты использования машинного обучения в реальном мире

Вот лишь несколько примеров применения машинного обучения в повседневной жизни:

Распознавание речи: технология, использующая обработку естественного языка (NLP) для записи человеческой речи в виде текста. Также называется «автоматическое распознавание речи» (ASR), «компьютерное распознавание речи» или «преобразование речи в текст». Во многих мобильных устройствах распознавание речи встроено в системы голосового поиска (например, Siri) или программы для переписки.

Обслуживание клиентов: практически повсеместно операторов-людей заменяют на онлайн-чатботов. Они способны ответить на частые вопросы (FAQ) по определенной тематике, например по доставке, или дать персонализированный совет, предложить сопутствующие товары или помочь подобрать размер одежды или обуви. Чатботы полностью перевернули наши представления о взаимодействии с клиентами на сайтах и в социальных сетях. В качестве примеров можно привести виртуальных помощников на сайтах интернет-магазинов, приложения для обмена сообщениями типа Slack и Facebook Messenger, а также задачи, которые обычно выполняют виртуальные и голосовые помощники.

Компьютерное зрение: эта ИИ-технология позволяет компьютерам и системам извлекать осмысленную информацию из цифровых изображений, видеоматериалов и других визуальных данных, а затем на основе этой информации принимать решения. Именно способность к принятию решений и отличает эту технологию от обычного распознавания изображений. В основе компьютерного зрения лежат сверточные нейросети, а область применения этой технологии весьма обширна: от распознавания лиц на фото в социальных сетях до анализа медицинских рентгеновских снимков пациентов и проектирования беспилотных автомобилей.

Модули рекомендаций: алгоритмы ИИ могут проанализировать данные о прошлом поведении покупателей и выявить тенденции, которые помогут повысить эффективность стратегий перекрестных продаж. Благодаря этому сервису покупатели получают дополнительные рекомендации при оформлении заказов в интернет-магазине.

Автоматизация биржевой торговли: платформы высокочастотной торговли на базе ИИ не просто оптимизируют портфели акций, но и совершают тысячи и даже миллионы сделок без малейшего вмешательства человека.

Проблемы машинного обучения

Развитие технологий машинного обучение, несомненно, сильно облегчает нашу жизнь. Однако внедрение машинного обучения на предприятиях породило также и ряд проблем этического характера, связанных с технологиями ИИ. Вот некоторые из них:

Технологическая сингулярность

Несмотря на то, что эта тема активно будоражит умы населения, многие исследователи не видят реальных оснований тому, что уже в ближайшем будущем ИИ станет умнее человека. Это явление иногда называют «сверхразумом», что Ник Бустрём определяет как «интеллект, который многократно превосходит самых выдающихся людей в умственном развитии практически в каждой области: в научно-технической деятельности, житейской мудрости и развитии социальных навыков». Несмотря на то, что появление Сильного ИИ и сверхразума обществу не грозит, эта идея породила ряд интересных вопросов, связанных с использованием автономных систем типа беспилотных автомобилей. Считать, что беспилотные автомобили никогда не попадут в ДТП — утопия, поэтому встает вопрос: кто будет нести ответственность в таких ситуациях? Должны ли мы по-прежнему стремиться к созданию полностью автономных автомобилей, или все же стоит ограничиться интеграцией этой технологии, оставив транспортные средства полуавтономными и отдав безопасность на поруки водителю? Единого ответа на эти вопросы до сих пор нет, но чем стремительнее развиваются инновационные технологии ИИ, тем чаще возникают этические дискуссии такого толка.

Влияние ИИ на рынок труда

Сейчас очень многие опасаются, что искусственный интеллект вытеснит их с рабочих мест, но, возможно, пришло время пересмотреть эти убеждения. Мы видим, что каждая революционная технология порождает сдвиг рыночного спроса в сторону той или иной категории специалистов. Например, если посмотреть на автомобильную промышленность, то многие крупные производители типа GM сейчас переключаются на производство электромобилей, чтобы идти в ногу с экологическими инициативами. Энергетическая отрасль никуда не девается, но теперь она больше нацелена на производство электроэнергии, чем топлива. То же самое касается и искусственного интеллекта: на рынке неизбежно появится спрос на специалистов в других областях. Например, в цене будут люди, способные управлять этими системами в условиях ежедневного роста объемов данных и стремительных перемен. Также ничто не заменит людей при решении более сложных, нестандартных проблем в тех сферах, которых, скорее всего, коснется переквалификация, например обслуживание клиентов. Важным аспектом ИИ и его влияния ИИ на рынок труда будет содействие людям при переходе в эти новые области рыночного спроса.

Конфиденциальность

Как правило, тема конфиденциальности обсуждается в контексте конфиденциальности данных, их защиты и безопасности, и в последние годы регулирующие органы немалого достигли на этом поприще. Так, в 2016 году был разработан закон GDPR, обеспечивающий защиту персональной информации людей в странах Европейского Союза и Европейской экономической зоны. Благодаря этому закону люди получили больше контроля над своими данными. Отдельные штаты США разрабатывают свои правила, например Закон Калифорнии о защите конфиденциальности потребителей (CCPA), требующий от предприятий информировать потребителей о сборе их данных. Этот новый закон заставил компании пересмотреть свои способы хранения и использования персональных данных (PII). Все это привело к тому, что предприятия стали больше вкладывать в безопасность, стремясь устранить все возможные уязвимости и возможности слежки, взлома и кибератак.

Предвзятость и дискриминация

Случаи проявления предвзятости и дискриминации при использовании некоторых ИИ-систем подняли ряд этических вопросов, связанных с использованием искусственного интеллекта. Как защититься от предвзятости и дискриминации, если сами учебные данные могут быть предвзятыми? Хотя обычно компании реализуют автоматизацию с самыми благими намерениями, агентство Reuters (внешняя ссылка) рассказывает о нескольких непредвиденных последствиях внедрения ИИ в процессы найма сотрудников. Так, стремясь автоматизировать и упростить процесс найма, компания Amazon неумышленно фильтровала потенциальных соискателей технических должностей по половому признаку. В конечном счете компании пришлось свернуть проект автоматизации. В свете таких событий Harvard Business Review (внешняя ссылка) поднимает и другие, не менее острые вопросы, касающиеся использования ИИ в процессах трудоустройства. Например, какие данные должно быть разрешено использовать для оценки соискателя должности?

Предвзятость и дискриминация не ограничиваются одним только управлением персоналом. Эти эффекты проявляются и в ряде других областей, начиная от ПО для распознавания лиц и заканчивая алгоритмами социальных сетей.

Чем больше предприятия стали осознавать риски, связанные с ИИ, тем активнее стала подниматься тема этики искусственного интеллекта и человеческих ценностей. Например, в прошлом году генеральный директор IBM Арвинд Кришна сообщил, что IBM прекратила разработку универсальных продуктов для распознавания и анализа лиц. Глава компании подчеркнул, что «IBM выступает решительно против любых технологий (включая технологии распознавания лиц других компаний) для массовой слежки, идентификации по расовому признаку, нарушения основных прав и свобод, а также для любых других целей, не согласующихся с нашими ценностям и Принципами доверия и прозрачности».

Более подробные сведения об этом событии можно найти в нашей публикации в блоге, посвященной политике IBM и отражающей точку зрения компании на «Принцип точного регулирования для контроля экспорта технологий распознавания лиц».

Ответственность

За отсутствием мало-мальски значимых законов, регулирующих разработки в области ИИ и его использование, нет и реального механизма обеспечения этичности ИИ. Сейчас организации стараются соблюдать эти нормы главным образом потому, что неэтичное использование ИИ в итоге отрицательно сказывается на прибыли. Для заполнения этого пробела специалисты по этике и исследователи совместно выработали нравственные нормы, регулирующие создание ИИ-моделей и их распространение в обществе. Но пока они носят только рекомендательный характер, и исследование (внешняя ссылка) (PDF, 984 КБ) показывает, что разобщенная ответственность вкупе с недальновидностью и неспособностью предусмотреть возможные последствия — не очень хороший план по предотвращению ущерба обществу.

Более подробно о позиции IBM в отношении этики использования ИИ можно узнать здесь.

Машинное обучение и IBM Cloud

IBM Watson Machine Learning обеспечивает поддержку на всех этапах жизненного цикла машинного обучения. Воспользуйтесь предложениями, предназначенными для создания моделей машинного обучения там, где хранятся данные, и их развертывания в гибридной мультиоблачной среде.

IBM Watson Machine Learning в составе IBM Cloud Pak for Data помогает специалистам по ИИ и данным ускорить разработку и упростить развертывание ИИ на основе облачной платформы данных и ИИ. IBM Watson Machine Learning Cloud, управляемая услуга в среде IBM Cloud, предлагает самый быстрый способ перехода от экспериментальных моделей к производственному использованию. Для небольших команд, которым требуется масштабировать среды машинного обучения, IBM Watson Machine Learning Server предлагает простую установку в любом частном или общедоступном облаке.

Для того чтобы приступить к работе, зарегистрируйтесь для получения IBMid и создайте учетную запись IBM Cloud.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *