что значит наибольшее и наименьшее значение функции
Наибольшее и наименьшее значение функции
Теория к заданию 12 из ЕГЭ по математике (профильной)
Наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение ординаты на рассматриваемом интервале.
Чтобы найти наибольшее или наименьшее значение функции необходимо:
Чтобы найти точки максимума или минимума необходимо:
Таблица производных некоторых элементарных функций:
Функция | Производная |
$c$ | $0$ |
$x$ | $1$ |
$x^n, n∈N$ | $nx^ |
$<1>/ | $-<1>/ |
$<1>/x<^n>, n∈N$ | $- |
$√^n | $<1>/ |
$sinx$ | $cosx$ |
$cosx$ | $-sinx$ |
$tgx$ | $<1>/ |
$ctgx$ | $-<1>/ |
$cos^2x$ | $-sin2x$ |
$sin^2x$ | $sin2x$ |
$e^x$ | $e^x$ |
$a^x$ | $a^xlna$ |
$lnx$ | $<1>/ |
$log_x$ | $<1>/ |
Основные правила дифференцирования
1. Производная суммы и разности равна производной каждого слагаемого
Производная суммы и разности равна производной каждого слагаемого
Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.
теория по математике 📈 функции
Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.
На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.
Остановимся подробнее на свойствах функций.
Нули функции
Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.
На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!
Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.
а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22
Находим х, разделив 22 на 11: х=22:11
Таким образом, мы нашли нуль функции: х=2
Пример №2. Найти нули функции у=f(x) по заданному графику.
Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.
Промежутки знакопостоянства
Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.
Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).
Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.
Возрастание и убывание функции
Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.
Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.
Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.
1. Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке
Теория:
Наибольшее и наименьшее значения функции можно найти по графику функции. Иногда это значения удаётся найти, используя свойства функции. В общем случае наибольшее и наименьшее значения функции находятся с помощью производной. Для этого сформулируем некоторые теоремы.
1. Если функция непрерывна на отрезке, то она достигает на нём и своего наибольшего, и своего наименьшего значений (Эта теорема доказывается в курсе высшей математики).
2. Наибольшего и наименьшего значений непрерывная функция может достигать как на концах отрезка, так и внутри него.
3. Если наибольшее (или наименьшее) значение достигается внутри отрезка, то только в стационарной или критической точке.
Как найти наименьшее и наибольшее значения функции на отрезке?
Пусть функция \(f(x)\) напрерывна на отрезке \([a; b]\), тогда:
2. Приравниваем производную к нулю, определяем точки экстремума функции, отбираем из них те, которые принадлежат отрезку \([a; b]\).
3. Находим значения функции y = f ( x ) в отобранных точках, и в конечных точках отрезка \(a\) и \(b\); выбираем среди полученных значений наименьшее ( y наим ) и наибольшее ( y наиб ).
А что делать, если нужно найти наибольшее или наименьшее значения функции, непрерывной на интервале? Один из вариантов — графический метод, который подразумевает построение графика функции и определение наименьшего или наибольшего значения функции по нему. Однако не всегда этот способ удобен, целесообразнее использовать следующую теорему.
а) если x = x 0 — точка максимума, то y наиб = f ( x o ) ;
На рисунках продемонстрированы геометрические иллюстрации данной теоремы.
Функция. Порядок нахождения наибольшего и наименьшего значения непрерывной функции на открытом либо бесконечном интервале X.
Последовательность выполнения вычислений для определения наименьшего и наибольшего значения функции на открытом или бесконечном интервале состоит из нижеописанных этапов.
Устанавливаем, будет ли интервал X подмножеством области определения функции.
Выделяем совокупность точек, в которых не существует первая производная и которые располагаются на промежутке X (традиционно указанные точки встречаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Когда указанных точек нет, то приступаем к последующему этапу.
Устанавливаем совокупность стационарных точек, расположенных в промежутке X. С этой целью производную функции приравниваем к нулю, находим корни образовавшегося уравнения и берем только подходящие. Когда стационарных точек нет либо ни одна из них не находится в интервал, то приступаем к последующему этапу.
Производим вычисления величин функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).
Как видим, последовательность выполняя действий до этого момента ничем не отличался от нахождения наибольшего и наименьшего значения функции на отрезке. Далее ход вычислений обусловлен интервалом X.
Когда интервал X характеризуется как:
(a;b), производим вычисления односторонних пределов ;
(a;b], устанавливаем величину функции в точке x=b и односторонний предел ;
[a;b), устанавливаем величину функции в точке x=a и односторонний предел ;
[a; +∞), выполняем вычисления величины функции в точке x=a и предел на +∞ ;
(a; +∞), производим вычисления одностороннего предела и предела на +∞
;
Получив значения функции и пределов, проводим последовательный анализ. Может быть получено множество вариантов ответов. Так, когда односторонний предел равен минус бесконечности (плюс бесконечности), то о максимальном (минимальном) значении функции ничего сказать нельзя для выбранного интервала.
Наибольшее и наименьшее значение функции.
Графические примеры наибольших и наименьших значений функций на отрезках и интервалах.
Эта парабола на области определения имеет только наименьшее значение. Наибольшего значения нет, так как её ветви уходят в бесконечность.
На отрезке [a;b] есть и наибольшее, и наименьшее значения. В этом примере наименьшее значение достигается во внутренней точке отрезка и совпадает с экстремумом (минимумом) функции, наибольшее — на одном из концов отрезка. В данном случае это y = f(b).
Функция рассматривается на интервале (a;b). В этом случае краевые точки a и b не входят в область определения функции на оси Ox, и, соответственно, не определены значения функции f(a) и f(b) на оси Oy. Однако, можно вычислить сколь угодно близкие к ним значения. Поэтому в этом примере функция имеет наименьшее значение, но не достигает наибольшего, его нет.
На этом полуинтервале (a;b] есть наибольшее значение приведенной функции, но наименьшего нет.
Кубическая парабола на области определения имеет два экстремума, но наименьшего и наибольшего значений не достигает: её ветви уходят в бесконечность. E(f) = (−∞; +∞) — область значений кубической параболы.
Здесь на отрезке [a;b] наибольшее значение достигается в точке максимума, а наименьшее в краевой точке отрезка.
Если вместо отрезка [a;b] рассматриваем интервал (a;b) с теми же концами, то наименьшего значения нет.
Непрерывная функция, заданная на отрезке, всегда имеет наибольшее и наименьшее значения. Но, если функция имеет разрывы, то могут быть различные варианты, как для интервалов, так и для отрезков. Посмотрите на этот график разрывной функции, заданной на отрезке [−2;3]. Здесь функция не имеет наибольшего значения: перед точкой разрыва она возрастает и достигает значений больших, чем в других частях отрезка, но наибольшего не достигает, так как в предполагаемой точке максимума x = 2 она определена другим значением, не у = 2, а y = −1.
Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.
Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте ссылки.