что значит не буферизованная оперативная память
Что такое небуферизованная память?
в Компьютеры 03.09.2018 0 1,483 Просмотров
Существует два основных типа оперативной памяти (ОЗУ); это буферизованная память – или регистровая память – и небуферизованная память. Небуферизованная память быстрее, и чаще значительно дешевле, чем буферизованная память. Таким образом – это тип модуля, который можно найти практически во всех домашних настольных и портативных компьютерах. Буферизованная память более дорогая, чем небуферизованный тип, и она также медленнее из-за того, как она обрабатывает хранение и восстановление данных.
Буферизованная память, однако, намного более стабильна, чем небуферизованные формы, поэтому она используется в основном на компьютерах с мейнфреймом и в серверах.
Небуферизованная память на сегодняшний день является наиболее распространенной формой модуля памяти компьютера, который можно найти в повседневном использовании. Эти модули памяти дешёвые для производства по сравнению с буферизованными модулями памяти, частично из-за их общего использования на домашних и коммерческих компьютерах, а также из-за того, что используется меньше аппаратного обеспечения. В небуферизованном модуле памяти нет встроенного оборудования для работы в качестве регистра для инструкций между чипом RAM и контроллером памяти компьютера. Это приводит к более быстрой скорости работы, но увеличивает риск критической ошибки потери памяти, возникающей из-за случайного характера размещения и восстановления информации, особенно в периоды интенсивной активности.
Чаще всего именуемая зарегистрированной памятью является буферизованной памятью. Небуферизованная память, как ни странно, сохранила своё имя и не была изменена на незарегистрированную память. Буферизованная память отличается от небуферизованного типа тем, что в ней имеется аппаратный регистр, который хранит информацию в кеше за один такт работы микросхемы памяти. Хотя эта операция может привести к более медленному времени работы микросхемы памяти, она обеспечивает дополнительную стабильность и снижает риск ошибок памяти.
В общем бытовом использовании разница в скорости между двумя типами модулей памяти кажется незначительной. В периоды интенсивного обмена информацией проявляется латентность, наблюдаемая с помощью регистра. Буферизованная память обычно используется в серверных компьютерах и системах мейнфреймов для обеспечения стабильности и защиту от повреждения, которая может возникать в небуферизованных модулях, когда они подвергаются постоянному интенсивному использованию. Хотя буферизованные модули являются более дорогими и, как правило, более медленными в работе, стабильность памяти и безопасность данных более чем компенсируются в рабочей среде.
Что такое небуферизованная оперативная память?
Небуферизованная и буферизованная RAM — это просто еще одна классификация, используемая для описания назначения RAM. Даже если вы знаете, как проверять типы ОЗУ на своем ПК, он покажет DDR3 или DDR4, но не скажет вам, буферизована она или нет.
Помимо классификации SRAM и DRAM, буферная и небуферизованная RAM имеют только одно основное отличие.
В большинстве случаев вы, вероятно, уже используете небуферизованную ОЗУ, но не многие люди точно знают, что такое небуферизованная ОЗУ.
Эта статья покажет вам разницу между буферизованной и небуферизованной оперативной памятью.
Как работает оперативная память?
Чтобы лучше понять, что такое небуферизованная оперативная память, вам нужно сначала узнать, как она работает.
RAM означает оперативную память. Он получает доступ к данным, сохраняя их и перемещая в другое место по мере чтения. Это самый простой способ объяснить это, и скорость этого определяется оперативной памятью.
Скорость оперативной памяти напрямую влияет на то, насколько быстро процессор может получить к ней доступ и обработать. Что касается скорости, у него есть скорость передачи (измеряется в мегагерцах) и задержка CAS, которые могут помочь улучшить процесс передачи данных.
Вам может потребоваться меньшая задержка CAS, поскольку это задержка того, сколько тактов необходимо, чтобы данные были легко доступны. Что касается скорости, вы хотите, чтобы она была выше, поскольку это то, насколько быстро ОЗУ может получить доступ к своим данным.
Различия между буферизованным и небуферизованным ОЗУ
Небуферизованная оперативная память
Для небуферизованной ОЗУ это дает ОЗУ прямой доступ к контроллеру памяти и, следовательно, увеличивает общую электрическую нагрузку.
Предоставляя прямой доступ к ОЗУ, ему не нужно циклически перебирать данные в регистре, что дает ему значительное преимущество перед буферизованным ОЗУ.
Это дешевле, но с меньшей стабильностью.
Небуферизованная оперативная память регулярно используется для настольных компьютеров и ноутбуков, поскольку буфер не требуется для этого типа системы.
Буферизованная RAM
Буферизованное ОЗУ имеет регистр, который ОЗУ должно пройти, прежде чем сможет получить доступ к контроллеру памяти. По сути, это «буфер», который обеспечивает стабильность всего процесса и в то же время снижает электрическую нагрузку.
Это особый тип ОЗУ, который используется для серверов и систем в рабочем пространстве. Это намного сложнее, и вам, вероятно, не стоит об этом беспокоиться, поскольку ИТ-специалисты специализируются на этом и обычно настраивают его от вашего имени.
Имеет ли небуферизованная оперативная память лучшую производительность?
Как упоминалось ранее, буферное ОЗУ жертвует тактовым циклом, чтобы пройти через регистр перед тем, как пройти через контроллер памяти. Этот тактовый цикл важен с точки зрения скорости, потому что именно здесь возникает задержка CAS.
Даже наличие 1-2 меньших задержек CAS в вашей оперативной памяти может значительно улучшить вашу производительность, а буферная RAM жертвует целым тактовым циклом, чтобы пройти через регистр.
ОЗУ без буферизации всегда будет лучше с точки зрения производительности, но стабильность и надежность намного ниже по сравнению с ОЗУ с буферизацией. Вам не следует беспокоиться об этом, если вы просто используете свой компьютер лично.
Вывод
Когда дело доходит до личного использования, небуферизованная оперативная память — лучший вариант. Даже в этом случае только определенные материнские платы могут поддерживать буферную ОЗУ. Что касается оперативной памяти, то опасности нет даже при более высокой электрической нагрузке.
Небуферизованная оперативная память дешевле и эффективнее, поэтому нет причин приобретать буферизованную оперативную память для личного использования. Все, что вам нужно знать, это то, какая оперативная память совместима с вашим ПК, и выбрать небуферизованную оперативную память.
В чем разница между регистровой, небуферизованной, полностью буферизованной памятью и памятью с поддержкой ECC?
Модули памяти могут изготавливаться по-разному, чтобы обеспечить поддержку дополнительных функций. Эти функции требуют наличия дополнительных компонентов.
Модули регистровой памяти содержат регистры или буферы, обеспечивающие контроль за передачей данных, что повышает надежность хранения и передачи. Они также позволяют повысить масштабируемость памяти (становится возможной установка большего объема оперативной памяти). Из-за этого регистровая память используется преимущественно в серверах. Некоторые модули регистровой памяти DIMM содержат функцию контроля четности. Она используется для дополнительной проверки на наличие ошибок. Для использования этой функции системная плата компьютера должна поддерживать контроль четности. При этом модули регистровой памяти с контролем четности могут использоваться в системах, которые поддерживают только регистровую память. В этом случае функция контроля четности просто не используется. Регистровые модули памяти поддерживают функцию ECC, но не вся память с функцией ECC является регистровой.
Полностью буферизованная берет на себя некоторые функции контроллера памяти (микросхемы, которая управляет передачей данных в оперативной памяти), выполняя их прямо на модуле памяти. Это открывает дополнительные возможности масштабирования памяти. Память с полной буферизацией нельзя использовать в компьютере, который поддерживает регистровую память, и наоборот. Полностью буферизованная память поддерживает технологию ECC, но не вся память с поддержкой ECC является полностью буферизованной.
Небуферизованная память — это оперативная память, которая не содержит никаких буферов или регистров. Этот тип памяти наиболее часто используется в настольных компьютерах и ноутбуках. Вы не можете использовать регистровую память или полностью буферизованную память в компьютере, который поддерживает только небуферизованную память.
Память с технологией ECC (код коррекции ошибок) содержит дополнительную микросхему памяти, которая позволяет материнской плате обнаруживать и исправлять ошибки в отдельных битах. Это повышает надежность хранения данных и может помочь при выявлении потенциально неисправных модулей памяти. Все регистровые модули памяти и модули памяти с полной буферизацией также поддерживают технологию ECC (код коррекции ошибок). Но также существует память с поддержкой ECC и без буферизации, которая обычно используется в наиболее производительных рабочих станциях. В некоторых случаях небуферизованную память с поддержкой ECC можно использовать в компьютере, который поддерживает установку небуферизованной памяти, но не поддерживает технологию ECC. В этом случае подобная функция памяти просто не будет использоваться.
Серверная память: DDR3/4, Buffered, …unBuffered, ECC? Помогаем разобраться с выбором памяти для различных платформ
Пока компьютерный прогресс бежит сломя голову, в стане серверов остаются доступными совершенно различные конфигурации, как современные, так и 5-10 летние железки. И в момент подбора комплектующих для апгрейда возникает закономерный вопрос, а какую память и в каком количестве доустанавливать или менять? Помимо привычного разъема DIMM используется и SO-DIMM, а о том, что бывает память с ECC и без нее, буферизованная и нет, знает каждый школьник.
Платформы Intel
За более чем 40-летнюю историю существования компания Intel разработала и выпустила десятки серверных платформ. Сейчас две из них пользуются повышенным вниманием: V3/V4 Xeon процессоры распространены благодаря относительно дешевым ценам в пересчете на 1 ядро, а также Xeon Scalable из-за неимоверного разнообразия процессоров.
Чтобы не запутаться в версиях/ревизиях посмотрим на типы процессоров Intel, разделив их на большие группы по архитектуре.
LGA 1151
1151 сокет использовался для 3 платформ продолжительное время. Начальным этапом стали процессоры Skylake-S, содержащие 4 физических ядра. Потом их сменили процессоры Kaby Lake-S, и наконец завершающим семейством стали CPU Coffee Lake-S WS. Все поколения оснащались 2-канальным контроллером памяти. По мере совершенствования архитектуры он перешел с частоты 1866 МГц к 2666 МГц. Платы на LGA 1151 поддерживают до 4 разъемов DIMM (2 модуля Х 2 канала), как с ECC, так и без нее. Совсем редко попадаются конфигурации с DDR3L памятью (от 1333 до 1600 МГц). Максимальный объем памяти 64 Гбайт.
Для Skylake, Kaby Lake и Coffee Lake LGA 1151 можно использовать DDR4 память с ECC частотой от 1866МГц до 2666 МГц (как не буферизированная, так и регистровая). Существует 2 типа плат: с 2 разъемами и с 4 разъемами DIMM. Для 2 разъемов используйте парные модули, чтобы задействовать оба канала. Для 4 разъемов устанавливайте память парами (2х DIMM в 2 канала или 4х DIMM в 2 канала). В зависимости от версии процессора используйте максимально разрешенную частоту для достижения максимальной производительности подсистемы памяти.
LGA 2066
Платформа LGA 2066 с процессорами Skylake-W поддерживают до 8 разъемов DIMM (2×4 канала), ECC с частотой от 1600 до 2666 МГц. Тип памяти DDR4. Максимальный объем памяти 512 Гбайт.
Для Skylake LGA 2066 можно использовать DDR4 память (ECC RDIMM, Registered ECC RDIMM, Registered ECC LRDIMM, Registered ECC LRDIMM) частотой 1600-2666МГц. Существует 2 основных конфигурации с 4 слотами и 8.
В материнскую плату с 4/8 слотами лучше всего устанавливать память по 4 модуля для максимальной производительности. Для достижения максимальной емкости задействуйте 8 слотов. В зависимости от версии процессора используйте максимально разрешенную частоту для достижения максимальной производительности подсистемы памяти.
LGA 3647
Платформа LGA 3647 поддерживает до 12 разъемов DIMM (2×6 каналов), ECC с частотой от 2133 до 2666 МГц. Тип памяти DDR4. В список не включены процессоры Xeon Platinum 92ХХ.
8 слотов памяти при 6 (А, B, C, D, E, F) каналах. Два канала разделены на ранги (А1 ранг + А2 ранг и D1 + D2), типичная ситуация, когда «А» и «D» канал делят пополам. Допускается установка различных конфигураций, но наиболее производительная – установка 6 модулей без «2» рангов.
4 слота памяти при 6 (А, B, C, D, E, F) каналах. Из 6 каналов чаще всего выброшен канал «С» и «F». Другими словами, система из 6 канальной превращается в 4 канальную. Соответственно уменьшается пропускная способность и суммарная производительность.
6 и 12 слотов памяти прекрасно соотносятся с 6 канальными контроллерами памяти. Здесь все просто – для достижения максимальной скорости ПСП используем 6 или 12 модулей.
LGA 1200
Для Comet Lake-S LGA 1200 нужно использовать DDR4 память с и без ECC частотой до 2933 МГц. Существует 2 типа плат: с 2 разъемами и с 4 разъемами DIMM (SO-DIMM). Для 2 разъемов используйте парные модули, чтобы задействовать оба канала. Для 4 разъемов устанавливайте память парами (2х DIMM в 2 канала или 4х DIMM в 2 канала). В зависимости от версии процессора используйте максимально разрешенную частоту для достижения максимальной производительности подсистемы памяти.
LGA 4189 (v2)
Наиболее производительные платформы от Intel. Оговоримся сразу, Socket LGA 4189 и LGA 4189v2 не совместимы между собой. «Свежайшие» Ice Lake-SP появились совсем недавно и поддерживают память с частотой 3200 МГц. Фактическое размещение модулей может быть разным, как и конфигурации DIMM на материнских платах. В таблице нет ошибки с наименованиями. Intel действительно выпустила 2 поколения процессоров под разные сокеты с похожими названиями:
ark.intel.com/content/www/us/en/ark/products/codename/189143/cooper-lake.html#@Server
ark.intel.com/content/www/us/en/ark/products/codename/74979/ice-lake.html#@Server
Мало того, даже названия самих процессоров слишком похожи. Добавляет путаницы общее принадлежность CPU к «3rd Generation Intel Xeon Scalable Processors». В любом случае разбирать конфигурацию памяти лучше раздельно, из-за различий в количестве поддерживаемых каналов. Первая ревизия LGA 3647 оснащена контроллером памяти с 6 каналами. На рынке присутствуют платы со слотами кратными 3, и 6, где память подключается логично. Но встречаются модели с меньшим числом слотов DIMM. 4х DIMM вариант просто не задействует 2 из 6 каналов, а 8-ми модульные системы разделяют А и D канал на 2 банка (А1+А2, D1+D2). Выбор частот совместимых модулей велик – от 2666 до 3200 МГц.
Процессоры Ice Lake-SP поддерживают 8 каналов памяти, значит устанавливаются модули кратно 4 и 8. Конечно сейчас появятся в продаже материнские платы с конфигурацией DIMM 2+2 слота (это минус 4 канала памяти), ли с разделяемыми каналами на банки.
Тонкости подбора модулей в различных конфигурациях
Начиная с конца 2019 года производители микросхем постепенно начали переходить на нормы тех. процесса менее 20 нм. Это позволило удвоить объем памяти на модуле. К сожалению не все процессоры Intel способны работать с новыми планками. При выборе памяти для старых платформ убедитесь, что материнская плата получила обновление BIOS в котором заявлена совместимость с 16 Гбит микросхемами.
Список новых 16 Гбит модулей Kingston:
Простое правило наращивания частоты никто не отменял. Чем больше использованных каналов и выше частота памяти, тем выше производительность сервера. В конфигурациях, где материнская плата не реализует часть каналов скорость работы с памятью существенно ниже.
Пример установки 384Гб памяти в плату тремя различными способами. В первых двух неправильно заполненные каналы приводят к двукратному снижению ПСП. Оптимальный режим – это установка высокочастотной памяти по 1 планке в каждый канал без использования второго банка. Причем о ранговости обязательно нужно помнить!
2-ранговая память всегда будет быстрее 1-ранговой. Однако учтите, что не все системы могут работать с 2-ранговой памятью, установленной во все слоты памяти. Не стоит использовать 2-ранговуе модули в разделенных канала. И тем более смешивать их с 1-ранговыми.
Платы с разделенными каналами позволяют покупать сервера в минимальной комплектации экономя средства на начальном этапе. Дальнейший апгрейд подсистемы памяти часто происходит с ошибками. Практически любая материнская плата позволяет работать с 1 модулем, но в дальнейшем добавление модулей строго регламентируется производителем. Конечно идеальный вариант – это доустановка аналогичных планок, чтобы задействовать все каналы. Но стоимость комплектующих зачастую неподъемна. Поэтому, выбирая начальную конфигурацию с памятью, которая использует 1 банк из канала учитывайте особенности апгрейда. Деление каналов позволяет суммарно установить больше памяти в ущерб производительности.
Вернемся к конечному подбору модулей памяти. Быстрый и эффективный способ – выяснить причастность процессора/ов к определенному семейству. Для этого используйте сайт ark.intel.com. После определения посетите страницу сервера или материнской платы. Запишите название, и продолжите подбор на сайте в разделе «Manufacturer Qualification». Далее по названию вашей материнской платы «Motherboard» найдите подходящие модули памяти. Если в сервере уже установлено какое-то количество планок, то через сторонние утилиты или открыв сервер и найдя память запишите и выясните конфигурацию модуля. Вам важно понять ранговость, частоту, наличие ECC и т.п. А далее можно смело переходить на страницу выбора памяти с фиксированным BOM.
FAQ по серверной памяти
По умолчанию вся серверная память «де-факто» имеет поддержку ECC. Другое дело остальные характеристики. Их значения не всегда правильно трактуются.
UDIMM — обычная память для настольных компьютеров. У такой памяти в маркировке присутствует буква U (Unbuffered). Почему мы включаем такую память в обзор? Многие серверные 1-процессорные платы поддерживают помимо процессоров Xeon десктопные CPU. В них нет совместимости с ECC, поэтому допускается установка UDIMM в такие системы со всеми вытекающими последствиями.
ECC — любая память может быть с ЕСС и без. В сервера устанавливается только с ECC. Большинство ошибок при работе памяти удается исправить во время работы, даже если они появляются, не теряя данные.
Registered DIMM (FBDIMM) — регистровая память с коррекцией ошибок (ECC). Позволяет масштабировать емкость используемых рангов без появления ошибок и перегрузки контроллера памяти в процессоре. Установленная микросхема берет на себя управление адресами.
LRDIMM — эволюционное развитие Registered DIMM (FBDIMM). На такие модули ставят вспомогательный контроллер. Он управляет как адресами, так и питанием модуля. Дополнительный бонус – создание памяти глубиной до 4 рангов и более высокая частота работы в сравнении с Registered DIMM. В результате LRDIMM обладает массой положительных свойств за исключением цены.
Видимый эффект от применения LRDIMM в сравнении с Registered DIMM.
Неочевидные характеристики
Частота и тайминги: покупать память с частотой выше поддерживаемой вашим сервером не приведет к росту пропускной способности. Это 100% аксиома, потому что редкий случай, когда материнская плата позволяет менять частоту. Классический вариант – поддерживаемая частота считывается из SPD микросхемы и выбирается поддерживаемая процессором.
Ранги памяти: 1R,2R и 4R.
Модули памяти могут быть одно, двух, четырех или даже восьмиранговыми. Самые распространенные – это 1-2 ранговые модули, которые не накладывают множество ограничений в отличие от 4-8 ранговых. Производители материнских плат в инструкциях подробно расписывают поддерживаемые конфигурации пулов памяти при различной ранговости памяти. Часть оборудования позволяет устанавливать разноранговые модули, но не во все разъемы.
Чип RCD: Rambus или IDT.
Register Clock Driver (RCD) – микросхема управления, устанавливаемая на модули. Есть 2 крупных производителя (Rambus и IDT). Нет никаких ограничений в выборе того или иного производителя. Используется в паре с буферами и температурными сенсорами.
Схема подбора памяти
Выводы
→ В разделе «Manufacturer Qualification» выбирается память по производителю системной платы:
выбрать
→ В разделе памяти с фиксированным BOM подбирается память исходя из требуемых характеристик: подобрать
Для получения дополнительной информации о продуктах Kingston обращайтесь на официальный сайт компании.
Поддержка DDR4 2400/2133 non-ECC, не буферизованная
Это обычная память для домашних десктопов, ECC работает только на платах которые ее поддерживают.
ECC-память (англ. error-correcting code memory, память с коррекцией ошибок) — тип компьютерной памяти, которая автоматически распознаёт и исправляет спонтанно возникшие изменения (ошибки) битов памяти. Память не поддерживающая коррекцию ошибок, обозначается non-ECC.
Как правило, память с коррекцией ошибок может исправлять изменения одного бита в одном машинном слове. Это значит, что при чтении одного машинного слова из памяти будет прочтено то же значение, что было до этого записано, даже если в промежутке между записью и чтением один бит был случайно изменён (например, под действием космических лучей). Обычная память, как правило, не способна определить, была ли ошибка, хотя некоторые виды памяти с контролем чётности способны определить, что произошла ошибка, но не способны её исправить.
Память с коррекцией ошибок используется в большинстве компьютеров, для которых важна бесперебойная работа, в том числе в большинстве серверов. Для работы памяти в режиме коррекции ошибок требуется поддержка со стороны контроллера оперативной памяти, который может быть составной частью чипсета или встраиваться в систему на кристалле, единую с вычислительными ядрами.
Наиболее базовый алгоритм коррекции ошибок основан на коде Хэмминга. Однако существуют и другие алгоритмы, способные исправлять более одной ошибки.
На практике широко применяется DDR* SDRAM ECC-память для серверов с кодом класса SECDED (исправление одиночных и детектирование двойных ошибок). На модулях памяти на каждые 8 микросхем добавляется ещё по одной микросхеме, которая хранит ECC-коды размером 8 бит на каждые 64 бита основной памяти [2].
Также схемы ECC-защиты данных могут применяться для встроенной в микропроцессоры памяти: кэш-памяти, регистрового файла. Иногда контроль также добавляют в вычислительные схемы.