что значит неполярные молекулы
Полярные и неполярные молекулы – две группы, на которые подразделяются все диэлектрики.
Полярные по-другому называются дипольными. А неполярные являются нейтральными или бездипольными.
Что такое полярность в химии
Полярность – свойство, показывающее изменение распределения электронной плотности около ядер, если сравнивать с изначальным ее распределением в образующих данную связь нейтральных частицах.
Поляризуемость — способность поляризоваться под воздействием электрического поля.
Мерой полярности называется электрический момент диполя. В нейтральных соединениях он равен нулю. Его значение зависит от разности электроотрицательностей элементов.
Длина диполя — расстояние между его полюсами. Данная характеристика также влияет на степень полярности.
Любое соединение состоит из ядра (положительные частицы) и электронов (отрицательные частицы). И положительные, и отрицательные частицы имеют свой электрический центр тяжести.
Если центры тяжести частиц совпадают, то соединение считается неполярным. Если же полюса не накладываются друг на друга, то в этом случае речь идет о дипольной связи.
Примеры полярных молекул
Эта связь образуется, если вещество состоит из атомов разных элементов и ассиметрична (имеются неспаренные электроны). Такие соединения имеют угловую, изогнутую геометрическую форму.
Примеры неполярных молекул
Эта связь также может встречаться в соединениях, состоящих из атомов разных элементов и при этом являющихся симметричными (линейные, тетраэдрические и т. д.). Такими веществами являются: BeH2, BF3, CH4, CO2(углекислый газ) и SO3.
При нейтральной связи электронное облако равномерно распределяется между ядрами всех атомов данного вещества. Поэтому ядра действуют на него в равной мере.
Как определить полярность молекулы и от чего она зависит
Чтобы определить, является ковалентная связь дипольной или нет, необходимо посмотреть на химическую формулу вещества.
Если молекула состоит из атомов одного и того же вещества, то она в любом случае нейтральна.
Если же молекулярное строение является сложным, то речь может идти как о полярной, так и неполярной ковалентной связи. Это зависит от геометрической формы.
Что значит неполярные молекулы
ХИМИЯ ЕГЭ | Химический кампус | Регина Ли запись закреплена
Полярная молекула или неполярная?
#ХимКампус_статья
Такие вопросы попадаются в тренировочных заданиях по теме «Химическая связь». Важно заметить, что полярная связь не равно полярная молекула! Полярность определяется неравномерным распределением электронной плотности вокруг молекулы.
Если электронная плотность распределена равномерно, то молекула считается неполярной. Если какой-то участок молекулы перетягивает на себя эту электронную плотность, то молекула – полярная (появляется разные полюсы – области частичного заряда).
Если полярная молекула не то же самое, что и полярная связь, тогда как определить этот момент?
ПОЛЯРНЫЕ МОЛЕКУЛЫ
Полярная молекула имеет асимметричную форму, неподеленную электронную пару или центральный атом, связанный с другими атомами с разными значениями электроотрицательности. Обычно полярная молекула содержит ионные или полярные ковалентные связи. Приведем примеры:
Полярные молекулы часто гидрофильны («любят воду») и растворимы в полярных растворителях. Полярные молекулы часто имеют более высокие температуры плавления, чем неполярные молекулы с аналогичными молярными массами. Это связано с межмолекулярными силами между полярными молекулами, такими как водородная связь!
НЕПОЛЯРНЫЕ МОЛЕКУЛЫ
Неполярные молекулы образуются либо тогда, когда электроны одинаково распределяются между атомами в молекуле, либо когда расположение электронов в молекуле симметрично, так что дипольные заряды компенсируют друг друга. Приведем примеры неполярных молекул:
Неполярные молекулы обладают некоторыми общими свойствами. Они, как правило, нерастворимы в воде при комнатной температуре, гидрофобны («боятся воды») и способны растворять другие неполярные соединения.
Мы помним золотое правило «подобное растворяется в подобном». Это означает, что полярные растворители растворяют полярные вещества, и наоборот. Это объясняет, почему спирт и вода полностью смешиваются (как полярные) и почему масло и вода не смешиваются (неполярные с полярными).
Дополнительную информацию и объяснение на примерах можно почитать в файлике ниже!
Полярные и неполярные молекулы (Пример)
ЧТО ТАКОЕ ПОЛЯРНЫЕ И НЕПОЛЯРНЫЕ МОЛЕКУЛЫ
Во всякой молекуле имеются как положительно заряженные частицы — ядра атомов, так и отрицательно заряженные — электроны. Для каждого рода частиц (или, вернее, зарядов) можно найти такую точку, которая будет являться как бы их «электрическим центром тяжести».
Эти точки называются полюсами молекулы. Если в молекуле электрические центры тяжести положительных и отрицательных зарядов совпадут, то молекула будет неполярной.
Пример неполярной молекулы
Но если молекула построена несимметрично, например состоит из двух разнородных атомов, то, как мы уже говорили, общая пара электронов может быть в большей или меньшей степени смещена в сторону одного из атомов. Очевидно, что в этом случае, вследствие неравномерного распределения положительных и отрицательных зарядов внутри молекулы, их электрические центры тяжести не совпадут и получится полярная молекула (рис.).
Полярные молекулы это
Полярные молекулы являются диполями. Этим термином обозначают вообще всякую электронейтральную систему, т. е. систему, состоящую из положительных и отрицательных зарядов, распределенных таким образом, что их электрические центры тяжести не совпадают.
Расстояние между электрическими центрами тяжести тех и других зарядов (между полюсами диполя) называется длиной диполя. Длина диполя характеризует степень полярности молекулы. Понятно, что для различных полярных молекул длина диполя различна; чем она больше, тем резче выражена полярность молекулы.
Рис. 2. Схемы строения молекул СO2 и CS2
На практике степень полярности тех или иных молекул устанавливают путем измерения так называемого дипольного момента молекулы т, который определяется как произведение длины диполя l на заряд его полюса е:
Дипольные моменты
Дипольные моменты некоторых веществ
Хлористый водород……. 1,04
Двуокись углерода……. 0
Йодистый водород…….. 0,38
Окись углерода ……. 0,11
Определение величин дипольных моментов позволяет сделать много интересных выводов относительно строения различных молекул. Рассмотрим некоторые из этих выводов.
Рис. 3. Схема строения молекулы воды
Как и следовало ожидать, дипольные моменты молекул водорода и азота равны нулю; молекулы этих веществ совершенно симметричны и, следовательно, электрические заряды в них распределены равномерно. Отсутствие полярности у двуокиси углерода и у сероуглерода показывает, что их молекулы также построены симметрично. Строение молекул этих веществ схематически изображено на рис. 2.
Несколько неожиданным является наличие довольно большого дипольного момента у воды. Так как формула воды аналогична формулам двуокиси углерода и сероуглерода, то следовало ожидать, что её молекулы будут построены так же симметрично, как и молекулы CS2 и СО2.
Однако ввиду экспериментально установленной полярности молекул воды (полярности молекул) это предположение приходится отбросить. В настоящее время молекуле воды приписывают несимметричное строение (рис. 3): два атома водорода соединены с атомом кислорода так, что их связи образуют угол около 105°. Аналогичное расположение атомных ядер имеется и в других молекулах такого же типа (H2S, SO2), обладающих дипольными моментами.
Полярностью молекул воды объясняются многие ее физические свойства.
Вы читаете, статья на тему Полярные и неполярные молекулы
Похожие страницы:
Понравилась статья поделись ей
Полярные и неполярные молекулы — строение, свойства и примеры
Полярные и неполярные молекулы – две группы, на которые подразделяются все диэлектрики.
Полярные по-другому называются дипольными. А неполярные являются нейтральными или бездипольными.
Что такое полярность в химии
Полярность – свойство, показывающее изменение распределения электронной плотности около ядер, если сравнивать с изначальным ее распределением в образующих данную связь нейтральных частицах.
Поляризуемость — способность поляризоваться под воздействием электрического поля.
Мерой полярности называется электрический момент диполя. В нейтральных соединениях он равен нулю. Его значение зависит от разности электроотрицательностей элементов.
Длина диполя — расстояние между его полюсами. Данная характеристика также влияет на степень полярности.
Любое соединение состоит из ядра (положительные частицы) и электронов (отрицательные частицы). И положительные, и отрицательные частицы имеют свой электрический центр тяжести.
Если центры тяжести частиц совпадают, то соединение считается неполярным. Если же полюса не накладываются друг на друга, то в этом случае речь идет о дипольной связи.
Примеры полярных молекул
Эта связь образуется, если вещество состоит из атомов разных элементов и ассиметрична (имеются неспаренные электроны). Такие соединения имеют угловую, изогнутую геометрическую форму.
Например, это такие газы как NH3, SO2, NO2 и жидкость – вода.
Примеры неполярных молекул
В качестве примера таких связей можно привести молекулы, состоящие из одинаковых атомов: H2, Cl2, O2, N2, F2 и т. д.
Эта связь также может встречаться в соединениях, состоящих из атомов разных элементов и при этом являющихся симметричными (линейные, тетраэдрические и т. д.). Такими веществами являются: BeH2, BF3, CH4, CO2(углекислый газ) и SO3.
При нейтральной связи электронное облако равномерно распределяется между ядрами всех атомов данного вещества. Поэтому ядра действуют на него в равной мере.
Как определить полярность молекулы и от чего она зависит
Чтобы определить, является ковалентная связь дипольной или нет, необходимо посмотреть на химическую формулу вещества.
Если молекула состоит из атомов одного и того же вещества, то она в любом случае нейтральна.
Если же молекулярное строение является сложным, то речь может идти как о полярной, так и неполярной ковалентной связи. Это зависит от геометрической формы.
Элементарная физика
2.1 Полярные и неполярные молекулы
Диэлектриками (или изоляторами) называются вещества, не способные проводить электрический ток. Идеальных изоляторов в природе не существует. Bce вещества хотя бы в ничтожной степени проводят электрический ток. Однако вещества, называемые диэлектриками, проводят ток в раз хуже, чем вещества, называемые проводниками.
Ecли диэлектрик внести в электрическое поле, то это поле и сам диэлектрик претерпевают существенные изменения. Чтобы понять, почему это происходит, нужно учесть, что в составе атомов и молекул имеются положительно заряженные ядра и отрицательно заряженные электроны.
Так как положительный заряд всех ядер молекулы равен суммарному заряду электронов, то молекула в целом электрически нейтральна. Если заменить положительные заряды ядер молекул суммарным зарядом +q, находящимся в центре «тяжести» положительных зарядов, а заряд всех электронов – суммарным отрицательным зарядом –q, находящимся в центре «тяжести» отрицательных зарядов, то молекулу можно рассматривать как электрический диполь с электрическим моментом, определяемым формулой (7.1)
У симметричных молекул в отсутствие внешнего электрического поля центры тяжести положительных и отрицательных зарядов совпадают. Такие молекулы не обладают собственным дипольным моментом и называются неполярными.
У несимметричных молекул центры тяжести зарядов разных знаков сдвинуты друг относительно друга. B этом случае молекулы обладают собственным дипольным моментом и называются полярными.
Под действием внешнего электрического поля заряды в неполярной молекуле смещаются друг относительно друга: положительные по направлению поля, отрицательные против поля. B результате молекула приобретает дипольный момент, величина которого, как показывает опыт, пропорциональна напряженности поля. B рационализованной системе коэффициент пропорциональности записывают в виде , где
– электрическая постоянная, а
– величина, называемая поляризуемостью молекулы. Учтя, что направления
и
совпадают, можно написать
Процесс поляризации неполярной молекулы протекает так, как если бы положительные и отрицательные заряды молекулы были связаны друг с другом упругими силами. Поэтому говорят, что неполярная молекула ведет себя во внешнем поле как упругий диполь.
Действие внешнего поля на полярную молекулу сводится в основном к стремлению повернуть молекулу так, чтобы ее дипольный момент установился по направлению поля. На величину дипольного момента внешнее поле практически не влияет. Следовательно, полярная молекула ведет себя во внешнем поле как жесткий диполь.
К диэлектрикам относятся еще и вещества (NaCl, KCl, KBr, …), молекулы которых имеют ионное строение. Ионные кристаллы представляют собой пространственные решетки с правильным чередованием ионов разных знаков. В этих кристаллах нельзя выделить отдельные молекулы, а рассматривать их можно как систему двух вдвинутых одна в другую ионных подрешеток. При наложении на ионный кристалл электрического поля происходит некоторая деформация кристаллической решетки или относительное смещение подрешеток, приводящее к возникновению дипольных моментов.
Таким образом, внесение всех трех групп диэлектриков во внешнее электрическое поле приводит к возникновению отличного от нуля результирующего электрического момента диэлектрика, или, иными словами, к поляризации диэлектрика. Поляризацией диэлектрика называется процесс ориентации диполей или появления под воздействием внешнего электрического поля ориентированных по полю диполей.
Соответственно трем группам диэлектриков различают три вида поляризации:
электронная, или деформационная, поляризация диэлектрика с неполярными молекулами, заключающаяся в возникновении у атомов индуцированного дипольного момента за счет деформации электронных орбит;
ориентационная, или дипольная, поляризация диэлектрика с полярными молекулами, заключающаяся в ориентации имеющихся дипольных моментов молекул по полю. Естественно, что тепловое движение препятствует полной ориентации молекул, но в результате совместного действия обоих факторов (электрическое поле и тепловое движение) возникает преимущественная ориентация дипольных моментов молекул по полю. Эта ориентация тем сильнее, чем больше напряженность электрического поля и ниже температура;
ионная поляризация диэлектриков с ионными кристаллическими решетками, заключающаяся в смещении подрешетки положительных ионов вдоль поля, а отрицательных – против поля, приводящем к возникновению дипольных моментов.