что значит описать систему

Описание системы

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

Описание системы обусловлено потребностью построения системы, ее исследования и управления. Системы описывают для достижения самых различных целей во всех сферах человеческой деятельности: от искусства до точных наук.

Очевидно, что вначале осуществляется (явно или лишь «в уме») вербальное описание системы, которое представляет собой, как правило, совокупность различных высказываний, интерпретация которых далеко не однозначна. Оно словесное описание может быть развернутым, красочным, всем понятным или кратким, четким с использованием некоего профессионального языка. Но во всех случаях при использовании естественного языка не обеспечивается однозначная трактовка слов и фраз, что достаточно часто служит серьезным препятствием на пути деятельности человека.

Математическое же описание, отражающее наиболее существенные для преследуемых целей свойства, позволяет добиться практически однозначной интерпретации описания системы и использовать богатый арсенал средств математики.

Поскольку под системой что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать системуможно понимать некоторое множество объектов, взаимодействующих в направлении достижения единой для этого множества цели, то в самом общем случае ее целесообразно описывать в виде следующей математической системы

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему,

где что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему— компоненты системы (элементы, подмножества), что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему— множество отношений, заданных на этом множестве – математическая структура этой системы.

Использование для описания систем теоретико-множественного языка обусловлено не только лаконичностью записи, но и рядом более существенных причин. Первая из них заключается в преследуемых целях. Чаще всего описание систем используется не для того, чтобы показать, что они из себя представляют в целом, а для исследования их свойств, которые обусловлены определенными взаимосвязями (отношениями) между компонентами системы. Большинство выражаемых словесно фактов представляют собой описание лингвистических отношений, основу которых составляют термы и функторы. Вполне естественно, что их формализмом выступают теоретико-множественные отношения (термы – элементы, функторы – отношения).

На практике такого рода структуры приобретают более «приземленный», иногда называемый «рабочий» вид. Так в работе [41] приводится следующий вид обобщенного формализованного описания системы

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему– компоненты системы;

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему– свойства системы;

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему– связи между компонентами системы;

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему– цели системы;

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему– лицо, представляющее объект в виде системы для исследования или принятия решений (для искусственных систем);

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему– язык наблюдателя, описывающего систему.

Такого рода квазиматематическое описание целесообразно применять в целях некоторой базовой (исходной) структуризации. Можно рекомендовать его реализацию в виде следующей последовательности этапов:

1. Вначале важно установить границы системы, поэтому вначале производят разделение системы и окружающей ее среды. Здесь следует помнить, что в системе действуют законы, вообще говоря, отличные (хоть в чем-то) от законов окружающей ее среды;

2. Далее устанавливаются каналы связи системы со средой (структурирование внешних связей). При этом для выявленных этих связей должны быть описаны проходящие по ним сигналы (что, куда и как идет);

3.Осуществляется содержательное описание системы. В первую очередь это описание выполняемых ею функций, причем функционирование системы должно представляться как нечто целое.

4.Затем формируется внутренняя структура системы, в результате чего должны будут выделены элементы система и связи между ними.

Обратим внимание на включение таких компонентов, как исследователь что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать системуи его язык что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему. Это обстоятельство подчеркивает субъективный характер описания систем и трудности формализованного описания реальных систем.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 5. Системы объектов

Информатика. 6 класса. Босова Л.Л. Оглавление

Разнообразие систем.

Ключевые слова:

Состояние сложного, составного объекта определяется не только значениями его собственных признаков, но и состояниями объектов-частей. Например, автомобиль переходит в состояние торможения, когда нажата педаль тормоза.

Подход к описанию сложного объекта, при котором не просто называют его составные части, но и рассматривают их взаимодействие и взаимовлияние, принято называть системным подходом. При этом сложный объект называют системой, а его части — компонентами (элементами) системы.

Любой реальный объект достаточно сложен. Поэтому его можно рассматривать как систему.

Различают материальные, нематериальные и смешанные системы. В свою очередь, материальные системы разделяют на природные и технические (рис. 15).

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

Примеры природных систем вам хорошо известны: Солнечная система, растение, живой организм и прочее.

Технические системы создаются людьми. Примеры технических систем: автомобиль, компьютер, система вентиляции.

Примеры нематериальных систем: разговорный язык, математический язык, нотные записи.

Смешанные системы содержат в себе материальные и нематериальные компоненты. Среди них можно выделить так называемые социальные системы. Социальные системы образуют люди, объединённые одним занятием, интересами, целями, местом проживания и т. д. Примеры социальных систем: оркестр, футбольный клуб, население города.

Состав и структура системы

Любая система определяется не только набором и признаками её элементов, но также взаимосвязями между элементами. Одни и те же элементы, в зависимости от объединяющих их взаимосвязей, могут образовывать различные по своим свойствам системы. Например, из деталей одного и того же конструктора ребёнок собирает разные сооружения.

Из одного и того же набора продуктов (мясо, капуста, картофель, морковь, лук, помидоры) мама может приготовить первое (щи) или второе (рагу) блюдо.

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

Из молекулы одного и того же химического вещества. (углерода) состоят алмаз и графит. Но алмаз — самое твёрдое вещество в природе, а графит — мягкий, из него делают грифели для карандашей. А всё потому, что в алмазе молекулы углерода образуют кристаллическую структуру, а у графита — слоистую.

Структура — это порядок объединения элементов, составляющих систему.

Состав и структуру системы описывают с помощью схемы состава. В состав системы может входить другая система. Первую называют надсистемой, вторую — подсистемой. Имя надсистемы на схеме состава всегда располагают выше имён всех её подсистем. В этом случае говорят о многоуровневой структуре системы, в которой один и тот же компонент может одновременно быть надсистемой и подсистемой. Например, головной мозг — подсистема нервной системы птицы и надсистема, в состав которой входят передний мозг, средний мозг и т. д. (рис. 16).

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

Во многих случаях связь между объектами очевидна, но не сразу понятно, в составе какой надсистемы их нужно рассматривать.

Например, дорожное покрытие изнашивается оттого, что по городу ездят автомобили, автобусы, троллейбусы и прочие наземные транспортные средства. Наземные транспортные средства и дороги — составные части транспортной системы города.

Дерево может погибнуть от насекомых-вредителей, если уменьшится численность птиц. Насекомые, птицы, деревья — компоненты системы «Парк» или «Лес» (рис. 17).

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

Главное свойство любой системы — возникновение системного эффекта. Заключается оно в том, что при объединении элементов в систему у системы появляются новые признаки, которыми не обладал ни один из элементов в отдельности.

В качестве примера системы рассмотрим самолёт. Главное его свойство — способность к полёту. Ни одна из составляющих его частей в отдельности (крылья, фюзеляж, двигатели и т. д.) этим свойством не обладает, а собранные вместе строго определённым способом, они такую возможность обеспечивают. Вместе с тем, если убрать из системы «самолёт* какой-нибудь элемент (например, крыло), то не только это крыло, но и весь самолёт потеряет способность летать.

Система и окружающая среда

Выделив некоторую систему из окружающей среды, мы как бы проводим вокруг неё замкнутую границу, за пределами которой остаются не вошедшие в систему объекты. Эти объекты оказывают влияние на систему. Сама система также оказывает влияние на окружающую среду. Поэтому говорят, что система и среда взаимодействуют между собой.

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

Если, например, рассмотреть в качестве системы ученический коллектив одного класса, то весь остальной коллектив школы будет относиться к среде этой системы.

Воздействия среды на систему называют входами системы, а воздействия системы на среду — выходами системы. На рисунке 18 эти связи изображены стрелками.

Например, дерево можно выделить из окружающей среды как систему, состоящую из корня, ствола, веток и листьев. Входы этой системы — вода, солнечный свет, углекислый газ, минеральные вещества и т. д. Выходы — кислород, тень от кроны, древесина, молодые побеги и многое другое (рис. 19).

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

Для большинства реальных систем список входов и выходов бесконечен.

Система как «чёрный ящик»

Очень часто человек не знает, как «внутри» устроена система, с которой он имеет дело. Человеку куда важнее знать, к каким результатам на выходе приведут определённые воздействия на входе системы. В таких случаях говорят, что система рассматривается как «чёрный ящик».

что значит описать систему. Смотреть фото что значит описать систему. Смотреть картинку что значит описать систему. Картинка про что значит описать систему. Фото что значит описать систему

Представить некоторую систему в виде «чёрного ящика» — это значит указать её входы и выходы, а также зависимость между ними. Такое описание позволяет целенаправленно использовать данную систему. Например, всякие инструкции для пользователей сложной бытовой техники являются описаниями «чёрного ящика». В них объясняется, что нужно сделать на входе (включить, нажать, повернуть и пр.), чтобы достичь определённого результата на выходе (постирать белье, получить фруктовый сок, выполнить вычисления и пр.). Однако, что при этом происходит «внутри», не объясняется.

Самое главное

Система — это целое, состоящее из частей, взаимосвязанных между собой. Части, образующие систему, называются её компонентами.

Структура — это порядок объединения элементов, составляющих систему.

При системном подходе учитывается взаимодействие и взаимовлияние всех компонентов системы.

Всякая система приобретает новые качества, которыми не обладал ни один из её элементов в отдельности (свойство системного эффекта).

Воздействия среды на систему называют входами системы, а воздействия системы на среду — выходами системы.

Источник

Методы описания систем

В сложных случаях, когда решение принимается, например, в условиях дефицита времени или в других экстремальных обстоятельствах, плодотворно использование ЭВМ в оценке возможных альтернатив, т.е. использование проблемно-ориентированной человеко-машинной системы. Такие системы различаются по типам задач выбора. В настоящее время существует несколько самостоятельных направлений развития человеко-машинных систем :

1. Программы и пакеты программ для решения конкретных хорошо определенных задач выбора. Примером может служить математическое обеспечение ЭВМ для статистической обработки данных (т.е. выбора в условиях стохастической неопределенности). К этому же направлению относятся системы программного обеспечения оптимизационных задач, современные базы данных и пр.;

2. Создание баз знаний и экспертных систем. Экспертная система определяется как «воплощение в ЭВМ компоненты опыта эксперта, основанной на знании в такой форме, что машина может дать интеллектуальный совет или принять интеллектуальное решение относительно выполняемой функции»*;

3. Участие лица, принимающего решения, в попытках формализ овать задачу выбора, в сравнении и оценивании с помощью ЭВМ различных альтернатив разными способами.

Организация принятия решения предполагает:

а) декомпозицию альтернатив на свойства, удобные для сравнения;

б) возможное ранжирование этих свойств по важности;

в) выбор числовых характеристик свойств (критериев) и операций предпочтения, утверждение экспертных процедур для искусственной оценки свойств;

г) выбор методов композиции;

д) выбор вида информации для окончательного решения;

е) окончательное решение.

** Моделирование процессов с многократным отслеживанием хода их протекания каждый раз для разных условий называется имитационным моделированием.

Описание системы должно включать :

В соответствии с современными системными воззрениями при изучении сложных объектов (систем) следует составлять три вида описания, которые выражают принцип подхода к познанию системы:

Любая система может изучаться извне и изнутри. Изучение извне означает рассмотрение взаимодействия системы с внешней средой, или рассмотрение функций системы. Исследование системы изнутри означает изучение ее структуры. Понятно, что работа системы и ее внутреннее устройство тесно взаимосвязаны: нет структур без функций, как и функций без структур.

Системный анализ требует одновременного учета устройства системы и ее функций. Однако для определенных целей иногда ограничиваются изучением либо только структур, либо только функций.

Современные технические и технологические объекты и их системы управления характеризуются большим числом элементов, множеством связей и взаимосвязей, значительным объемом перерабатываемой информации. Такие системы называют сложными, большими или системами со сложной структурой.

Эффективность функционирования системы в первую очередь зависит от структуры и связей между ее элементами. Структура системы играет первостепенную роль как при анализе, так и при синтезе систем самого разного типа. Действительно, наиболее важный этап разработки модели как раз и состоит в выборе структуры модели интересующей нас системы.

Для систем, состоящих из большого числа взаимосвязанных подсистем, наиболее эффективно вначале наметить основные подсистемы и установить главные взаимосвязи между ними, а затем уже переходить к детальному моделированию механизмов функционирования различных подсистем.

Структурный анализ систем позволяет оценить соответствие структуры системы поставленным целям ее функционирования и достичь значительной экономии времени и средств при ее проектировании.

Целями структурного анализа являются:

— разработка правил символического отображения систем;

— оценка качества структуры системы;

— изучение структурных свойств системы в целом и ее подсистем;

— выработка заключения об оптимальности структуры системы и рекомендаций по дальнейшему ее совершенствованию.

Морфологическое описание объекта (системы) дает представление о строении (структуре) системы, о наличии и видах связей между ее элементами и содержит количественные и качественные данные.

Таким образом, в структурном подходе можно выделить два этапа: определение состава системы, т.е. полное перечисление ее подсистем, элементов, и выяснение связей между ними.

Следует различать формальную, или логическую и материальную структуры системы. Одной формальной структуре может соответствовать множество различных материальных структур.

В этом эвристическая ценность формальной структуры: она дает возможность увидеть, предположить и мысленно проанализировать возможные альтернативы ее материального наполнения и, следовательно, выбрать лучшую.

Характер связей между элементами системы весьма многообразен. Различают связи направленные и ненаправленные, постоянные и переменные и т.д. Следует отметить, что некоторые виды связей представляют чисто теор етический интерес, например структуры только с равноправными связями. В реальных системах любые связи носят причинно-следственный характер, т.е. являются направленными. Наличие ненаправленных связей может свидетельствовать о нерациональном построении системы.

В случае, когда необходимо построить более сложную модель объекта, структурные модели используются в качестве основы, как «первое приближение». Кроме того, они обладают наглядностью и понятны широкому кругу специалистов, служат удобной формой общения исследователей различных специальностей, а также удобной формой представления полученных результатов.

В качестве наиболее распространенных выделяют класс древовидных или иерархических структур.

Между уровнями иерархической структуры могут существовать взаимоотношения строгого подчинения подсистем (узлов) нижележащего уровня одной из подсистем вышележащего уровня (такие иерархии называют сильными или иерархиями типа «дерева»). Могут быть связи и в пределах одного уровня иерархии, может один и тот же узел нижележащего уровня иерархии быть одновременно подчинен нескольким узлам вышележащего уровня (такие иерархии называют структурами со слабыми связями), могут существовать и более сложные взаимоотношения (например иерархии типа «слоев», «эшелонов» и др.).

В реальных системах встречаются различные отступления от идеальной иерархической структуры (рис.2.): подсистема данного уровня связана только с одной подсистемой (элементом) нижнего уровня (рис.2.а); подсистема (элемент) данного уровня связана более чем с одной подсистемой верхнего уровня (рис.2.б); подсистема, элемент данного уровня связаны с подсистемами высших уровней, минуя ближайший верхний уровень (рис.2.в); на самом верхнем уровне имеется несколько вершин (незавершенность иерархии, рис.2.г); подсистемы, элементы одного уровня связаны между собой (внутриуровневая зависимость, рис. 2.д); связи подсистем данного уровня с внешней средой не контролируются подсистемами других уровней (нарушение субординации внешних связей, рис.2.е).

Перечисленные типы нарушений идеальности иерархии являются единичными, на практике встречаются всевозможные их комбинации. Нарушения могут быть вызваны несовершенством самой структуры или наличием связей через внешнюю среду, т.е. подсистемы, элементы данной системы одновременно входят в другие системы с другой структурой.

Для морфологического описания объекта (системы) часто используется представление его в виде дерева декомпозиции.

Граф должен удовлетворять следующим условиям: не содержать замкнутых циклов (петель) и несвязанных вершин, т.е. иметь форму дерева. Для построения дерева исследуемой системы необходимо знать полный перечень всех существующих и потенциал ьно возможных элементов, реализующих функции объекта и его подсистем.

Естественно, встает вопрос: до какого уровня следует разукрупнять объект, проблему? Уровень детализации зависит от целей исследования и определяется лицом, осуществляющим его.

Например, при проведении прогнозных исследований (нормативное прогнозирование) главная цель делится на подцели до тех пор, пока не становятся ясны пути достижения (средства достижения) каждой подцели. Заведомо достижимые цели называются элементарными.

В основу расчленения (декомпозиции) системы при ее морфологическом описании могут быть положены три подхода: объектный, функциональный и смешанный.

При объектном подходе из системы выделяют подсистемы, каждая из которых может рассматриваться как самостоятельная система соответствующего уровня иерархии. При этом каждая подсистема может быть описана информационно и функционально.

Объектный подход к декомпозиции системы рекомендуется в тех случаях, когда система имеет количественно сложную структуру при небольшой сложности и разнообразии составляющих ее подсистем. В этом случае выделяют группы сходных по свойствам подсистем и анализируют наиболее типичную подсистему каждой группы, благодаря чему существенно снижается объем описания системы. В основу функционального подхода положен функциональный признак расчленения системы. Его рекомендуется применять в том случае, когда число подсистем структурируемой системы невелико, но их функциональное описание является весьма сложным. В этом случае выделяется группа сходных функций и рассматривается возможность их реализации независимо от принадлежности к тем или иным подсистемам.

Достоинства отображения объекта в виде дерева заключаются в наглядности представления связей внутри системы и взаимодействия ее со средой. Однако такое представление объекта имеет и существенный недостаток. Дело в том, что дерево фиксирует только вертикальные связи между элементами системы и не отражает горизонтальные связи между ними. В результате погрешность исследования будет тем значительнее, чем сильнее горизонтальные связи и слабее вертикальные.

При системном анализе после структуризации объекта осуществляют его анализ и синтез, заключающиеся в изучении того, как влияют отдельные локальные изменения или изменения некоторых подсистем на всю систему в целом, так как деятельность любой части системы оказывает влияние на деятельность всех ее других частей.

Дерево декомпозиции позволяет определить соотношение между объектом и фоном, взаимосвязи между различными подсистемами и элементами объекта, очертить область поиска информации, необходимой для исследования и использования в разработке, выделить структурные элементы, подлежащие проверке на патентную чистоту, сформулировать номенклатуру технико-экономических показателей для оценки его технического уровня.

1.7. Описание системы на функциональном,
структурном и информационном уровнях

Система – упорядоченная совокупность элементов или частей, которые взаимодействуют между собой. Система представляет собой антоним хаоса. Следовательно, система – это машина, механизм, живой организм.

Для любых систем очень важно наличие интегративных качеств.

Интегративные качества – качества, присущие системе в целом, но не свойственные ни одному из ее элементов в отдельности. Отсюда вывод: система не сводится к простой совокупности элементов и расчленяя систему на отдельные части, изучая каждую из них в отдельности, нельзя познать все свойства системы в целом.

К изучению системы можно подойти на основании трех принципов:

1. Функционального. 2. Структурного. 3.Информационного.

При изучении систем прежде всего нас интересуют ее функции (что она делает). Функции системы проявляются в ее поведении. Выделяя систему из окружающего мира, устанавливаем грань между системой и окружающей средой. При этом предполагается, что внешняя среда воздействует на систему через входы системы, а система воздействует на окружающую среду через свои выходы.

Внешняя среда характеризуется определенной совокупностью внешних по отношению к региону экономических условий, ввозом ресурсов (инвестиционных, материальных, энергетических, трудовых).

Внутреннее состояние региональной системы может быть описано через характеристики состояния производственных фондов, внутренних финансовых ресурсов, наличием и величиной запаса материальных ресурсов, технологическими показателями и т.д.

Выходные параметры: продукция, производимая экономикой региона и вывозимая из нее, величина ее доходности.

Основная функция региональной подсистемы – производство продукции, а также подготовка кадров за счет большого количества вузов.

Система может быть однофункциональной и многофункциональной.

Однофункциональная система – это простой регулятор. Экономика является многофункциональной системой. В этом и сложность ее функционирования.

Структурное описание дает представление о строении системы, т.е. об ее элементном составе, а также о наличии характера связей между элементами системы. Такое описание существенно расширяет возможности, позволяет глубже понять механизм функционирования системы, выявить зависимость ее поведения от изменения параметров, ее внутреннего состояния; активно воздействовать в процессе управления не только на входы, но и на внутренние состояния (на отдельные элементы).

Изучение структурных элементов системы обычно начинается с определения ее элементного состава. Функционирование сложной системы может быть представлено взаимодействием входящих в нее подсистем. А под элементом системы будем понимать подсистему, внутрь которой структурное описание не проникает.

С точки зрения характера отношений между элементами структуры в основной классификации обычно делят на:

Информационное описание – это информационное отображение функционального структурного описания системы. Его результатом является соответствующее описание и построение информационной модели. Оно обеспечивает:

· получение информации от всех подчиненных данной системы, а также от внешней среды и от их воздействия на систему в целом;

· установление наиболее эффективных воздействий, а также контрольных параметров для выдачи данных, требующихся от всех подсистем;

· накопление и хранение основного массива данных;

· выработку выходной информации, которая отражает функционирование всех подсистем и системы в целом.

Об авторе:
Этот материал взят из источника в свободном доступе интернета. Вся грамматика источника сохранена.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *