Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния числа Π½Π° само сСбя.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ числа?

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ числа ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ†Π΅Π»ΠΎΠ΅ число, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ являСтся Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ†Π΅Π»Ρ‹ΠΌ числом.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π’Π°Π±Π»ΠΈΡ†Π° умноТСния ΠΈ вывСски ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… чисСл Π΄ΠΎ 15

Π›ΡŽΠ±ΠΎΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ†Π΅Π»Ρ‹ΠΌΠΈ числами, Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ.

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ²: 1 2 = 1 ΠΈ 4 2 = 16

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ, являСтся Π»ΠΈ число ΠΏΠΎΠ»Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ?

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ·Π°Ρ†ΠΈΠΈ числа, Ссли ΠΎΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈ являСтся Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… чисСл, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ это ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ΡŒ Π½Π° вопрос, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ 2704 Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈΠΌΠ΅Π΅ΠΌ: 2704 = 2 Γ— 2 Γ— 2 Γ— 2 Γ— 13 Γ— 13 = 2 4 Γ— 13 2.

√2704 = √ (2 2 Γ— 2 2 Γ— 13 2) = 2 Γ— 2 Γ— 13 = 52

ΠŸΡ€Π°Π²ΠΈΠ»Π° идСального ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°

Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ числа Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ Π΅Π³ΠΎ сосСдСй плюс ΠΎΠ΄ΠΈΠ½. НапримСр: ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ сСми (7 2 ) Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ смСТных чисСл (6 ΠΈ 8) плюс ΠΎΠ΄ΠΈΠ½. 7 2 = 6 Γ— 8 + 1 = 48 + 1 = 49. Ρ… 2 = (Ρ…-1). (Ρ… + 1) + 1.

Π‘ΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ матСматичСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΠΌ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ ΠΈ арифмСтичСской прогрСссиСй.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ОписаниС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Β§2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π°

ОписаниС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΡ‹ сдСлали, носит Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Β«Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π°Β».

ΠŸΡ€ΠΈΠ±Π°Π²ΠΈΠΌ ΠΈ Π²Ρ‹Ρ‡Ρ‚Π΅ΠΌ ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΌΡƒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΡŽ `(1/2)^2`, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

ПокаТСм, ΠΊΠ°ΠΊ примСняСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° для разлоТСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ.

ВыдСляСм ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈΠ· ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π°:

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для разности ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ², ΠΈΠΌΠ΅Π΅ΠΌ:

ΠœΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 3 x 2 ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Ρ‚ΠΎ выраТСния, Ρ‚. ΠΊ. Π΅Ρ‰Ρ‘ Π½Π΅ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ этого Π² школС. Π­Ρ‚ΠΎ Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎΠ·ΠΆΠ΅, ΠΈ ΡƒΠΆΠ΅ Π² Π—Π°Π΄Π°Π½ΠΈΠΈ β„–4 Π±ΡƒΠ΄Π΅ΠΌ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ПокаТСм, ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½:

`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ `x=1/2` Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° Ρ€Π°Π²Π½ΠΎ `11/4`, Π° ΠΏΡ€ΠΈ `x!=1/2` ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ `11/4` добавляСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, поэтому ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ число, большСС `11/4`. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Ρ‘Ρ…Ρ‡Π»Π΅Π½Π° Ρ€Π°Π²Π½ΠΎ `11/4` ΠΈ ΠΎΠ½ΠΎ получаСтся ΠΏΡ€ΠΈ `x=1/2`.

Π Π°Π·Π»ΠΎΠΆΠΈΡ‚Π΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΄Ρ€ΠΎΠ±ΠΈ `/` ΠΈ сократитС эту Π΄Ρ€ΠΎΠ±ΡŒ.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΊ этому ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°. ИмССм:

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚Π΅ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ ΠΈ сократитС Π΄Ρ€ΠΎΠ±ΡŒ `<8x^2+10x-3>/<2x^2-x-6>`.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚

ГСомСтричСски Ρ‚Π°ΠΊΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° с цСлочислСнной стороной.

НапримСр, 9 β€” это ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ 3 Γ— 3 (ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° 3 Γ— 3 Ρ‚ΠΎΡ‡ΠΊΠΈ).

БвязанныС понятия

Π’ матСматичСском Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΈ ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π΄Π΅Π»Π°Ρ… ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ мноТСство β€” мноТСство, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ смыслС ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€. Π‘Π°Π·ΠΎΠ²Ρ‹ΠΌ являСтся понятиС ограничСнности числового мноТСства, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ обобщаСтся Π½Π° случай ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ мСтричСского пространства, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° случай ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ частично упорядочСнного мноТСства. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ограничСнности мноТСства Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ смысла Π² ΠΎΠ±Ρ‰ΠΈΡ… топологичСских пространствах, Π±Π΅Π· ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ.

Упоминания Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅

БвязанныС понятия (ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅)

Π’ ΠΎΠ±Ρ‰Π΅ΠΉ Π°Π»Π³Π΅Π±Ρ€Π΅, Ρ‚Π΅Ρ€ΠΌΠΈΠ½ ΠΊΡ€ΡƒΡ‡Π΅Π½ΠΈΠ΅ относится ΠΊ элСмСнтам Π³Ρ€ΡƒΠΏΠΏΡ‹, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΌ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΉ порядок, ΠΈΠ»ΠΈ ΠΊ элСмСнтам модуля, Π°Π½Π½ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌ рСгулярным элСмСнтом ΠΊΠΎΠ»ΡŒΡ†Π°.

Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ чисСл Π³Π»Π°Π΄ΠΊΠΈΠΌ числом называСтся Ρ†Π΅Π»ΠΎΠ΅ число, всС простыС Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠ°Π»Ρ‹.

Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ (особСнно Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΉ), коммутативная Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° β€” изобраТаСмая Π² наглядном Π²ΠΈΠ΄Π΅ структура Π½Π°ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Π³Ρ€Π°Ρ„Π°, Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ слуТат ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ, Π° Ρ€Ρ‘Π±Ρ€Π°ΠΌΠΈ β€” ΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΡ‹. ΠšΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для Π»ΡŽΠ±Ρ‹Ρ… Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° для ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΡ… ΠΈΡ… ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ композиция ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡƒΡ‚ΠΈ ΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠΎΠ² Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π²ΠΈΡΠ΅Ρ‚ΡŒ ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° ΠΏΡƒΡ‚ΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

УравнСния β€” это матСматичСскоС равСнство, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ нСизвСстна ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ нСсколько Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. ЗначСния нСизвСстных Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΈΡ… подстановкС Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ Π²Π΅Ρ€Π½ΠΎΠ΅ числовоС равСнство.

НапримСр, возьмСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 3 + 4 = 7. ΠŸΡ€ΠΈ вычислСнии Π»Π΅Π²ΠΎΠΉ части получаСтся Π²Π΅Ρ€Π½ΠΎΠ΅ числовоС равСнство, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ 7 = 7.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ 3 + x = 7, с нСизвСстной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ Ρ‚Π°ΠΊΠΈΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π½Π°ΠΊ равСнства Π±Ρ‹Π» ΠΎΠΏΡ€Π°Π²Π΄Π°Π½, ΠΈ лСвая Ρ‡Π°ΡΡ‚ΡŒ Ρ€Π°Π²Π½ΡΠ»Π°ΡΡŒ ΠΏΡ€Π°Π²ΠΎΠΉ.

Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ наибольшСй стСпСни, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ стоит нСизвСстноС. Если нСизвСстноС стоит Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни β€” это ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это ax2 + bx + c = 0, Π³Π΄Π΅ a β€” ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΈΠ»ΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт, Π½Π΅ Ρ€Π°Π²Π½Ρ‹ΠΉ Π½ΡƒΠ»ΡŽ, b β€” Π²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнт, c β€” свободный Ρ‡Π»Π΅Π½.

Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ мСсторасполоТСниС коэффициСнтов, Π΄Π°Π²Π°ΠΉΡ‚Π΅ потрСнируСмся ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΈΡ….

Π•ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π½ΡƒΠΆΠ½ΠΎ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° дискриминант. Π§Ρ‚ΠΎΠ±Ρ‹ Π΅Π³ΠΎ Π½Π°ΠΉΡ‚ΠΈ, Π±Π΅Ρ€Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ: D = b 2 βˆ’ 4ac. А Π²ΠΎΡ‚ свойства дискриминанта:

Π‘ этим Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈΡΡŒ. А сСйчас посмотрим ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅ Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ ΠΈ Π½Π΅ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ ΠΈΠ»ΠΈ Π½Π΅ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ β€” всС зависит ΠΎΡ‚ ΠΎΡ‚ значСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ коэффициСнта.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π³Π΄Π΅ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт, Ρ‚ΠΎΡ‚ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ стоит ΠΏΡ€ΠΈ ΠΎΠ΄Π½ΠΎΡ‡Π»Π΅Π½Π΅ Π²Ρ‹ΡΡˆΠ΅ΠΉ стСпСни, Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅.

НСпривСдСнным Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π³Π΄Π΅ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹ΠΌ.

Π”Π°Π²Π°ΠΉΡ‚Π΅-ΠΊΠ° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… β€” Π²ΠΎΡ‚ Ρƒ нас Π΅ΡΡ‚ΡŒ Π΄Π²Π° уравнСния:

Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· Π½ΠΈΡ… ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅ (ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ мыслСнно прСдставляСм ΠΏΡ€ΠΈ x 2 ), Π° Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ называСтся ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ.

КаТдоС Π½Π΅ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅, Ссли произвСсти Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠ΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ β€” Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠ±Π΅ Π΅Π³ΠΎ части Π½Π° ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ коэффициСнт.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. ΠŸΡ€Π΅Π²Ρ€Π°Ρ‚ΠΈΠΌ Π½Π΅ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅: 8x 2 + 20x β€” 9 = 0 β€” Π² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅.

Для этого Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΎΠ±Π΅ части исходного уравнСния Π½Π° ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт 8:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠžΡ‚Π²Π΅Ρ‚: Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π½Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ x 2 + 2,5x β€” 1,125 = 0.

ΠŸΠΎΠ»Π½Ρ‹Π΅ ΠΈ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния

Π’ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π΅ΡΡ‚ΡŒ условиС: a β‰  0. Оно Π½ΡƒΠΆΠ½ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 + bx + c = 0 Π±Ρ‹Π»ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ. Если a = 0, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π΅Ρ‚Π΅Ρ‚ Π²ΠΈΠ΄ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ: bx + c = 0.

Π§Ρ‚ΠΎ касаСтся коэффициСнтов b ΠΈ c, Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π½Ρ‹ Π½ΡƒΠ»ΡŽ, ΠΊΠ°ΠΊ ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Ρ‚Π°ΠΊ ΠΈ вмСстС. Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ принято Π½Π°Π·Π²Π°Ρ‚ΡŒ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹ΠΌ.

НСполноС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€”β€” это ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ax 2 + bx + c = 0, Π³Π΄Π΅ ΠΎΠ±Π° ΠΈΠ»ΠΈ хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· коэффициСнтов b ΠΈ c Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ.

ПолноС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€” это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ всС коэффициСнты ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ ΠΎΡ‚ нуля.

Π’Π°ΠΊΠΈΠ΅ уравнСния ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ ΠΎΡ‚ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΡ… Π»Π΅Π²Ρ‹Π΅ части Π½Π΅ содСрТат Π»ΠΈΠ±ΠΎ слагаСмого с нСизвСстной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Π»ΠΈΠ±ΠΎ свободного Ρ‡Π»Π΅Π½Π°, Π»ΠΈΠ±ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ. ΠžΡ‚ΡΡŽΠ΄Π° ΠΈ ΠΈΡ… Π½Π°Π·Π²Π°Π½ΠΈΠ΅ β€” Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния.

РСшСниС Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

Как ΠΌΡ‹ ΡƒΠΆΠ΅ Π·Π½Π°Π΅ΠΌ, Π΅ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ Π²ΠΈΠ΄Π° Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π”Π°Π²Π°ΠΉΡ‚Π΅ рассмотрим ΠΏΠΎ шагам, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния ΠΏΠΎ Π²ΠΈΠ΄Π°ΠΌ.

Как Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 = 0

НачнСм с Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… b ΠΈ c Ρ€Π°Π²Π½Ρ‹ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, с ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²ΠΈΠ΄Π° ax 2 = 0.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 = 0 Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ x 2 = 0. Π’Π°ΠΊΠΎΠ΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΊΠΎΠ³Π΄Π° ΠΌΡ‹ Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ»ΠΈ ΠΎΠ±Π΅ части Π½Π° Π½Π΅ΠΊΠΎΠ΅ число a, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ. ΠšΠΎΡ€Π½Π΅ΠΌ уравнСния x 2 = 0 являСтся Π½ΡƒΠ»ΡŒ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ 0 2 = 0. Π”Ρ€ΡƒΠ³ΠΈΡ… ΠΊΠΎΡ€Π½Π΅ΠΉ Ρƒ этого уравнСния Π½Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ свойства стСпСнСй.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 = 0 ΠΈΠΌΠ΅Π΅Ρ‚ СдинствСнный ΠΊΠΎΡ€Π΅Π½ΡŒ x = 0.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ βˆ’6x 2 = 0.

Как Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 + с = 0

ΠžΠ±Ρ€Π°Ρ‚ΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния Π²ΠΈΠ΄Π° ax 2 + c = 0, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… b = 0, c β‰  0. ΠœΡ‹ Π΄Π°Π²Π½ΠΎ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ слагаСмыС Π² уравнСниях носят двусторонниС ΠΊΡƒΡ€Ρ‚ΠΊΠΈ: ΠΊΠΎΠ³Π΄Π° ΠΌΡ‹ пСрСносим ΠΈΡ… ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ части уравнСния Π² Π΄Ρ€ΡƒΠ³ΡƒΡŽ, ΠΎΠ½ΠΈ Π½Π°Π΄Π΅Π²Π°Π΅Ρ‚ ΠΊΡƒΡ€Ρ‚ΠΊΡƒ Π½Π° Π΄Ρ€ΡƒΠ³ΡƒΡŽ сторону β€” ΠΌΠ΅Π½ΡΡŽΡ‚ Π·Π½Π°ΠΊ Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ.

Π•Ρ‰Π΅ ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ссли ΠΎΠ±Π΅ части уравнСния ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ число (ΠΊΡ€ΠΎΠΌΠ΅ нуля) β€” Ρƒ нас получится Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. Ну Π΅ΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Ρ†ΠΈΡ„Ρ€Π°ΠΌΠΈ.

Π”Π΅Ρ€ΠΆΠΈΠΌ всС это Π² Π³ΠΎΠ»ΠΎΠ²Π΅ ΠΈ ΠΊΠΎΠ»Π΄ΡƒΠ΅ΠΌ Π½Π°Π΄ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ (ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌ Β«Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ прСобразования»): ax 2 + c = 0:

Ну всС, Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ Π³ΠΎΡ‚ΠΎΠ²Ρ‹ ΠΊ Π²Ρ‹Π²ΠΎΠ΄Π°ΠΌ ΠΎ корнях Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Π’ зависимости ΠΎΡ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ a ΠΈ c, Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ β€” c/Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ. Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ случаи.

НСполноС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 + c = 0 Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ ax 2 + c = 0, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Найти Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния 8x 2 + 5 = 0.

ΠžΡ‚Π²Π΅Ρ‚: ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 8x 2 + 5 = 0 Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ.

Как Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 + bx = 0

ΠžΡΡ‚Π°Π»ΠΎΡΡŒ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ Π²ΠΈΠ΄ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΊΠΎΠ³Π΄Π° c = 0.

НСполноС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 + bx = 0 ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ разлоТСния Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ. Как Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

Π Π°Π·Π»ΠΎΠΆΠΈΠΌ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ располоТСн Π² Π»Π΅Π²ΠΎΠΉ части уравнСния β€” вынСсСм Π·Π° скобки ΠΎΠ±Ρ‰ΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ x.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΎΡ‚ исходного уравнСния ΠΊ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠΌΡƒ x * (ax + b) = 0. А это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ совокупности Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ x = 0 ΠΈ ax + b = 0, послСднСС β€” Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅, Π΅Π³ΠΎ ΠΊΠΎΡ€Π΅Π½ΡŒ x = βˆ’b/a.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 + bx = 0 ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° корня:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 0,5x 2 + 0,125x = 0

0,5x = 0,125,
Ρ… = 0,125/0,5

ΠžΡ‚Π²Π΅Ρ‚: Ρ… = 0 ΠΈ Ρ… = 0,25.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π’ΠΈΠ΅Ρ‚Π°

Если Π² школьной Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Ρ‡Π°Ρ‰Π΅ всСго ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, Ρ‚ΠΎ Π² школьной Π°Π»Π³Π΅Π±Ρ€Π΅ Π²Π΅Π΄ΡƒΡ‰ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π’ΠΈΠ΅Ρ‚Π°. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π·Π²ΡƒΡ‡ΠΈΡ‚ Ρ‚Π°ΠΊ:

Π‘ΡƒΠΌΠΌΠ° ΠΊΠΎΡ€Π½Π΅ΠΉ x 2 + bx + c = 0 Ρ€Π°Π²Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ коэффициСнту с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ, Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ равняСтся свободному Ρ‡Π»Π΅Π½Ρƒ.

Если Π΄Π°Π½ΠΎ x 2 + bx + c = 0, Π³Π΄Π΅ x₁ ΠΈ xβ‚‚ ΡΠ²Π»ΡΡŽΡ‚ΡΡ корнями, Ρ‚ΠΎ справСдливы Π΄Π²Π° равСнства:

Π—Π½Π°ΠΊ систСмы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ принято ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Π½ΠΎΠΉ скобкой, ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ значСния x₁ ΠΈ xβ‚‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΠΎΠ±ΠΎΠΈΠΌ равСнствам.

Рассмотрим Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ Π’ΠΈΠ΅Ρ‚Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅: x 2 + 4x + 3 = 0.

Пока нСизвСстно, ΠΊΠ°ΠΊΠΈΠ΅ ΠΊΠΎΡ€Π½ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. Но Π² соотвСтствии с Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ сумма этих ΠΊΠΎΡ€Π½Π΅ΠΉ Ρ€Π°Π²Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ коэффициСнту с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ. Он Ρ€Π°Π²Π΅Π½ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ΠΌ, Π·Π½Π°Ρ‡ΠΈΡ‚ Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ минус Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅:

ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ соотвСтствуСт свободному Ρ‡Π»Π΅Π½Ρƒ. Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС свободным Ρ‡Π»Π΅Π½ΠΎΠΌ являСтся число Ρ‚Ρ€ΠΈ. Π—Π½Π°Ρ‡ΠΈΡ‚:
Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

НСобходимо ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Ρ€Π°Π²Π½Π° Π»ΠΈ сумма ΠΊΠΎΡ€Π½Π΅ΠΉ βˆ’4, Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ 3. Для этого Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΡ€Π½ΠΈ уравнСния x 2 + 4x + 3 = 0. Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ для Ρ‡Ρ‘Ρ‚Π½ΠΎΠ³ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ коэффициСнта:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ корнями уравнСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ числа βˆ’1 ΠΈ βˆ’3. Π˜Ρ… сумма равняСтся Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ коэффициСнту с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π²Π΅Ρ€Π½ΠΎΠ΅.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ βˆ’1 ΠΈ βˆ’3 ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ Π’ΠΈΠ΅Ρ‚Π° Π΄ΠΎΠ»ΠΆΠ½ΠΎ Ρ€Π°Π²Π½ΡΡ‚ΡŒΡΡ свободному Ρ‡Π»Π΅Π½Ρƒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ числу 3. Π­Ρ‚ΠΎ условиС Ρ‚Π°ΠΊΠΆΠ΅ выполняСтся:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΏΡ€ΠΎΠ΄Π΅Π»Π°Π½Π½Ρ‹Ρ… вычислСний Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ ΡƒΠ±Π΅Π΄ΠΈΠ»ΠΈΡΡŒ Π² справСдливости выраТСния:

Когда Π΄Π°Π½Π° сумма ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния, принято Π½Π°Ρ‡ΠΈΠ½Π°Ρ‚ΡŒ ΠΏΠΎΠ΄Π±ΠΎΡ€ подходящих ΠΊΠΎΡ€Π½Π΅ΠΉ. Π’Π΅ΠΎΡ€Π΅ΠΌΠ°, обратная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ Π’ΠΈΠ΅Ρ‚Π°, ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΈΡ… условиях ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊΠΎΠΌ. Π’ΠΎΡ‚ ΠΎΠ½Π°:

ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°

Если числа x1 ΠΈ x2 Ρ‚Π°ΠΊΠΎΠ²Ρ‹, Ρ‡Ρ‚ΠΎ ΠΈΡ… сумма Ρ€Π°Π²Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ коэффициСнту уравнСния x 2 + bx + c = 0, взятому с ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌ Π·Π½Π°ΠΊΠΎΠΌ, Π° ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ свободному Ρ‡Π»Π΅Π½Ρƒ, Ρ‚ΠΎ эти числа ΠΈ Π΅ΡΡ‚ΡŒ ΠΊΠΎΡ€Π½ΠΈ x 2 + bx + c = 0.

ΠžΠ±Ρ‹Ρ‡Π½ΠΎ вся ΡΡƒΡ‚ΡŒ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ Π² Ρ‚ΠΎΠΌ самом Π²Ρ‹Π²ΠΎΠ΄Π΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄Π°Π΅Ρ‚ пСрвая Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°. Π’Π°ΠΊ, ΠΏΡ€ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π’ΠΈΠ΅Ρ‚Π° стало понятно, Ρ‡Ρ‚ΠΎ сумма x1 ΠΈ x2 Ρ€Π°Π²Π½Π° βˆ’b, Π° ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ c. Π’ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ это ΠΈ Π΅ΡΡ‚ΡŒ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°: x 2 βˆ’ 6x + 8 = 0.

2 βˆ’ 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΡ‰Π΅ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Ρ‚ΡŒ ΠΊΠΎΡ€Π½ΠΈ, Π½ΡƒΠΆΠ½ΠΎ ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ. Число 8 ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΡƒΡ‚Π΅ΠΌ пСрСмноТСния чисСл 4 ΠΈ 2 Π»ΠΈΠ±ΠΎ 1 ΠΈ 8. Но значСния x1 ΠΈ x2 Π½Π°Π΄ΠΎ ΠΏΠΎΠ΄Π±ΠΈΡ€Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½ΠΈ удовлСтворяли ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ равСнству Ρ‚ΠΎΠΆΠ΅.

МоТно ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ значСния 1 ΠΈ 8 Π½Π΅ подходят, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ Π½Π΅ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ равСнству x1 + x2 = 6. А значСния 4 ΠΈ 2 подходят ΠΎΠ±ΠΎΠΈΠΌ равСнствам:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Как Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π’ΠΈΠ΅Ρ‚Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ разлоТСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ. Выглядит ΠΎΠ½Π° Ρ‚Π°ΠΊ:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° разлоТСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π°

Если x1 ΠΈ x2 β€” ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° ax 2 + bx + c, Ρ‚ΠΎ справСдливо равСнство ax 2 + bx + c = a (x βˆ’ x1) (x βˆ’ x2).

Дискриминант: Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния, ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΊΠΎΡ€Π½Π΅ΠΉ. Выглядит ΠΎΠ½Π° Ρ‚Π°ΠΊ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π³Π΄Π΅ D = b 2 βˆ’ 4ac β€” дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

Π­Ρ‚Π° запись ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎΠ±Ρ‹ Π»Π΅Π³ΠΊΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΎΠ½Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π°ΡΡŒ. Π”Π°Π²Π°ΠΉΡ‚Π΅ Ρ€Π°Π·Π±ΠΈΡ€Π°Ρ‚ΡŒΡΡ.

Π’Ρ‹Π²ΠΎΠ΄ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΠΌ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

ΠŸΡƒΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄ Π½Π°ΠΌΠΈ Π΅ΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ax 2 + bx + c = 0. Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ ряд Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅,

послС Ρ‡Π΅Π³ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π’Π°ΠΊ, ΠΌΡ‹ ΠΏΡ€ΠΈΡˆΠ»ΠΈ ΠΊ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ исходному ax 2 + bx + c = 0.

ΠžΡ‚ΡΡŽΠ΄Π° Π²Ρ‹Π²ΠΎΠ΄Ρ‹ ΠΏΡ€ΠΎ ΠΊΠΎΡ€Π½ΠΈ уравнСния Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅:

И Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ Π²Ρ‹Π²ΠΎΠ΄: Π΅ΡΡ‚ΡŒ Ρƒ уравнСния ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ»ΠΈ Π½Π΅Ρ‚, зависит ΠΎΡ‚ Π·Π½Π°ΠΊΠ° выраТСния Π² ΠΏΡ€Π°Π²ΠΎΠΉ части. ΠŸΡ€ΠΈ этом Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π·Π½Π°ΠΊ этого выраТСния задаСтся Π·Π½Π°ΠΊΠΎΠΌ числитСля. ΠŸΠΎΡ‚ΠΎΠΌΡƒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ принято Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ дискриминантом ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΈ обозначаСтся Π±ΡƒΠΊΠ²ΠΎΠΉ D.

По Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΈ Π·Π½Π°ΠΊΡƒ дискриминанта ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Π΅ΡΡ‚ΡŒ Π»ΠΈ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ Ρƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния, ΠΈ сколько.

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ ΠΊΠΎΡ€Π½Π΅ΠΉ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΊΠΎΡ€Π½Π΅ΠΉ β€” это ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ комплСксныС ΠΊΠΎΡ€Π½ΠΈ.

Π’ 8 классС Π½Π° Π°Π»Π³Π΅Π±Ρ€Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ поиску Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Для этого Π²Π°ΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅Π΄ использованиСм Ρ„ΠΎΡ€ΠΌΡƒΠ» Π½Π°ΠΉΡ‚ΠΈ дискриминант ΠΈ ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ послС этого Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ значСния ΠΊΠΎΡ€Π½Π΅ΠΉ. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ.

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ax 2 + bx + c = 0:

Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ с Π»Π΅Π³ΠΊΠΎΡΡ‚ΡŒΡŽ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ, Π΄Π°Π²Π°ΠΉΡ‚Π΅ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ!

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния ΠΌΡ‹ ΡƒΠΆΠ΅ Π·Π½Π°Π΅ΠΌ, ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ знания Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ βˆ’4x 2 + 28x β€” 49 = 0.

ΠžΡ‚Π²Π΅Ρ‚: СдинствСнный ΠΊΠΎΡ€Π΅Π½ΡŒ 3,5.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 54 β€” 6x 2 = 0.

ΠžΡ‚Π²Π΅Ρ‚: Π΄Π²Π° корня 3 ΠΈ β€” 3.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ x 2 β€” Ρ… = 0.

ΠžΡ‚Π²Π΅Ρ‚: Π΄Π²Π° корня 0 ΠΈ 1.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ x 2 β€” 10 = 39.

ΠžΡ‚Π²Π΅Ρ‚: Π΄Π²Π° корня 7 ΠΈ βˆ’7.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5. Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 3x 2 β€” 4x+94 = 0.

D = (-4) 2 β€” 4 * 3 * 94 = 16 β€” 1128 = βˆ’1112

Π’ школьной ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ Π·Π° 8 класс Π½Π΅Ρ‚ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ трСбования ΠΈΡΠΊΠ°Ρ‚ΡŒ комплСксныС ΠΊΠΎΡ€Π½ΠΈ, Π½ΠΎ Ρ‚Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΡΠΊΠΎΡ€ΠΈΡ‚ΡŒ Ρ…ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Если дискриминант ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ β€” сразу пишСм ΠΎΡ‚Π²Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚ ΠΈ Π½Π΅ мучаСмся.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΡ€Π½Π΅ΠΉ для Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… Π²Ρ‚ΠΎΡ€Ρ‹Ρ… коэффициСнтов

Рассмотрим частный случай. Π€ΠΎΡ€ΠΌΡƒΠ»Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π³Π΄Π΅ D = b 2 β€” 4ac, ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΡƒΡŽ, ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния с Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ коэффициСнтом ΠΏΡ€ΠΈ x. Рассмотрим, ΠΊΠ°ΠΊ появилась эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°.

2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π‘Π°ΠΌΡ‹Π΅ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΡƒΠΆΠ΅ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ D = 4D1, ΠΈΠ»ΠΈ D1= D/4. ΠŸΡ€ΠΎΡ‰Π΅ говоря, D1 β€” это Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ дискриминанта. И получаСтся, Ρ‡Ρ‚ΠΎ Π·Π½Π°ΠΊ D1 являСтся ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠΌ наличия ΠΈΠ»ΠΈ отсутствия ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ. Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния со Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ коэффициСнтом 2n, Π½ΡƒΠΆΠ½ΠΎ:

Π£ΠΏΡ€ΠΎΡ‰Π°Π΅ΠΌ Π²ΠΈΠ΄ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

Если ΠΌΡ‹ Ρ…ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΡˆΠΊΠΎΠ»Ρƒ всСгда ΠΎΠ΄Π½ΠΎΠΉ Ρ‚Ρ€ΠΎΠΏΠΈΠ½ΠΊΠΎΠΉ, Π° ΠΏΠΎΡ‚ΠΎΠΌ Π²Π΄Ρ€ΡƒΠ³ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΈ ΠΏΡƒΡ‚ΡŒ ΠΊΠΎΡ€ΠΎΡ‡Π΅ β€” это Π·Π½Π°Ρ‡ΠΈΡ‚ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Ρƒ нас Π΅ΡΡ‚ΡŒ Π²Ρ‹Π±ΠΎΡ€: ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ сСбС Π·Π°Π΄Π°Ρ‡Ρƒ ΠΈ ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ врСмя Π½Π° Π΄ΠΎΡ€ΠΎΠ³Ρƒ ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ³ΡƒΠ»ΡΡ‚ΡŒΡΡ ΠΏΠΎ ΠΏΡ€ΠΈΠ²Ρ‹Ρ‡Π½ΠΎΠΌΡƒ ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚Ρƒ.

Π’Π°ΠΊ ΠΆΠ΅ ΠΈ ΠΏΡ€ΠΈ вычислСнии ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Π’Π΅Π΄ΡŒ ΠΏΡ€ΠΎΡ‰Π΅ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 11x 2 β€” 4 x β€” 6 = 0, Ρ‡Π΅ΠΌ 1100x 2 β€” 400x β€” 600 = 0.

Часто ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Π΅ΠΈΡ… частСй Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ число. НапримСр, Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ Π°Π±Π·Π°Ρ†Π΅ ΠΌΡ‹ упростили ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 1100x 2 β€” 400x β€” 600 = 0, просто Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ² ΠΎΠ±Π΅ части Π½Π° 100.

Π’Π°ΠΊΠΎΠ΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΊΠΎΠ³Π΄Π° коэффициСнты Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π·Π°ΠΈΠΌΠ½ΠΎ простыми числами. Π’ΠΎΠ³Π΄Π° принято Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠ±Π΅ части уравнСния Π½Π° наибольший ΠΎΠ±Ρ‰ΠΈΠΉ Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π΅Π³ΠΎ коэффициСнтов.

А ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±Π΅ΠΈΡ… частСй ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ Π΄Ρ€ΠΎΠ±Π½Ρ‹Ρ… коэффициСнтов. Π£ΠΌΠ½ΠΎΠΆΠ°Ρ‚ΡŒ Π² Π΄Π°Π½Π½ΠΎΠΌ случаС Π»ΡƒΡ‡ΡˆΠ΅ Π½Π° наимСньшСС ΠΎΠ±Ρ‰Π΅Π΅ ΠΊΡ€Π°Ρ‚Π½ΠΎΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅ΠΉ Π΅Π³ΠΎ коэффициСнтов. НапримСр, Ссли ΠΎΠ±Π΅ части ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° НОК (6, 3, 1) = 6, Ρ‚ΠΎ ΠΎΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ простой Π²ΠΈΠ΄ x 2 + 4x β€” 18 = 0.

Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ корнями ΠΈ коэффициСнтами

ΠœΡ‹ ΡƒΠΆΠ΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΠΊΠΎΡ€Π½ΠΈ уравнСния Ρ‡Π΅Ρ€Π΅Π· Π΅Π³ΠΎ коэффициСнты:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Из этой Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ зависимости ΠΌΠ΅ΠΆΠ΄Ρƒ корнями ΠΈ коэффициСнтами.

НапримСр, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π’ΠΈΠ΅Ρ‚Π°:

МоТно Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΡƒΠΆΠ΅ записанныС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ с ΠΈΡ… ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ряд Π΄Ρ€ΡƒΠ³ΠΈΡ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ корнями ΠΈ коэффициСнтами ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ сумму ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния Ρ‡Π΅Ρ€Π΅Π· Π΅Π³ΠΎ коэффициСнты:

Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

А Π΅Ρ‰Π΅ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π°. ΠŸΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ ΠΈΠΌ, Ссли ΡƒΠΆΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈΡΡŒ с Ρ‚Π΅ΠΌΠΎΠΉ ΠΈ Ρ‰Π΅Π»ΠΊΠ°Π΅Ρ‚Π΅ Π·Π°Π΄Π°Ρ‡ΠΊΠΈ Π»Π΅Π³ΠΊΠΎ ΠΈ Π±Π΅Π· ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊΠΎΠ²:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число β€” Ρ†Π΅Π»ΠΎΠ΅ число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ†Π΅Π»ΠΎΠ³ΠΎ числа (ΠΈΠ½Ρ‹ΠΌΠΈ словами, число, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ†Π΅Π»Ρ‹ΠΉ). ГСомСтричСски Ρ‚Π°ΠΊΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° с цСлочислСнной стороной.

НапримСр, 9 β€” это ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ 3 Γ— 3 (ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° 3 Γ— 3 Ρ‚ΠΎΡ‡ΠΊΠΈ).

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² начинаСтся Ρ‚Π°ΠΊ:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, … (ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ A000290 Π² OEIS)

Π’Π°Π±Π»ΠΈΡ†Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ²

_0_1_2_3_4_5_6_7_8_9
0_0149162536496481
1_100121144169196225256289324361
2_400441484529576625676729784841
3_90096110241089115612251296136914441521
4_1600168117641849193620252116220923042401
5_2500260127042809291630253136324933643481
6_3600372138443969409642254356448946244761
7_4900504151845329547656255776592960846241
8_6400656167246889705672257396756977447921
9_8100828184648649883690259216940996049801

Бвойства

ГСомСтричСскоС прСдставлСниС

ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΡ

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° обобщаСтся Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹. Π’ частности, Π² ΠΊΠΎΠ»ΡŒΡ†Π°Ρ… Π²Ρ‹Ρ‡Π΅Ρ‚ΠΎΠ² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°ΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ Π²Ρ‹Ρ‡Π΅Ρ‚Ρ‹.

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ

Бсылки

ПолСзноС

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ «ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число» Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… словарях:

ΠšΠ’ΠΠ”Π ΠΠ’ΠΠžΠ• Π§Π˜Π‘Π›Πž β€” (ΠΎΡ‚ Π»Π°Ρ‚. quadratum. ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚). ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Ρ‚Π΅ ΠΊΠ°ΠΊΠΎΠ³ΠΎ Π½ΠΈΠ±ΡƒΠ΄ΡŒ числа, ΠΏΠΎΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ само Π½Π° сСбя. Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ иностранных слов, Π²ΠΎΡˆΠ΅Π΄ΡˆΠΈΡ… Π² состав русского языка. Π§ΡƒΠ΄ΠΈΠ½ΠΎΠ² А.Н., 1910. ΠšΠ’ΠΠ”Π ΠΠ’ΠΠžΠ• Π§Π˜Π‘Π›Πž ΠΎΡ‚ Π»Π°Ρ‚. quadratum, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚. ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΎΠ³ΠΎ Π½ΠΈΠ±ΡƒΠ΄ΡŒβ€¦ … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ иностранных слов русского языка

Π¦Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число β€” – это Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ полигональноС число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ прСдставляСт ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ ΠΈ всС ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ находятся Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… слоях. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число Ρ€Π°Π²Π½ΠΎ числу Ρ‚ΠΎΡ‡Π΅ΠΊ Π²Π½ΡƒΡ‚Ρ€ΠΈ данного… … ВикипСдия

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠ΅ число β€” ГСомСтичСскоС прСдставлСниС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ числа: 1 + 4 + 9 + 16 = 30. Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠ΅ чис … ВикипСдия

100 (число) β€” 100 сто 97 Β· 98 Β· 99 Β· 100 Β· 101 Β· 102 Β· 103 70 Β· 80 Β· 90 Β· 100 Β· 110 Β· 120 Β· 130 200 Β· 100 Β· 0 Β· 100 Β· 200 Β· 300 Β· 400 Ѐакторизация: 2Γ—2Γ—5Γ—5 … ВикипСдия

200 (число) β€” 200 двСсти 197 Β· 198 Β· 199 Β· 200 Β· 201 Β· 202 Β· 203 170 Β· 180 Β· 190 Β· 200 Β· 210 Β· 220 Β· 230 100 Β· 0 Β· 100 Β· 200 Β· 300 Β· 400 Β· 500 … ВикипСдия

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ΅ число β€” Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ΅ число это число ΠΊΡ€ΡƒΠΆΠΊΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ расставлСны Π² Ρ„ΠΎΡ€ΠΌΠ΅ равностороннСго Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, см. рисунок. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, с чисто арифмСтичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния, n Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ΅ число это сумма n ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.… … ВикипСдия

30 (число) β€” 30 Ρ‚Ρ€ΠΈΠ΄Ρ†Π°Ρ‚ΡŒ 27 Β· 28 Β· 29 Β· 30 Β· 31 Β· 32 Β· 33 0 Β· 10 Β· 20 Β· 30 Β· 40 Β· 50 Β· 60 Ѐакторизация: 2Γ—3Γ—5 Римская запись: XXX Π”Π²ΠΎΠΈΡ‡Π½ΠΎΠ΅: 1 1110 … ВикипСдия

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ (число) β€” ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ число Ρ†Π΅Π»ΠΎΠ΅ число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π²ΠΈΠ΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ†Π΅Π»ΠΎΠ³ΠΎ числа (ΠΈΠ½Ρ‹ΠΌΠΈ словами, число, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ†Π΅Π»Ρ‹ΠΉ). ГСомСтричСски Ρ‚Π°ΠΊΠΎΠ΅ число ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π² Π²ΠΈΠ΄Π΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ … ВикипСдия

10 (число) β€” Π£ этого Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ значСния, см. 10 (значСния). 10 Π΄Π΅ΡΡΡ‚ΡŒ 7 Β· 8 Β· 9 Β· 10 Β· 11 Β· 12 Β· 13 20 Β· 10 Β· 0 Β· 10 Β· 20 Β· 30 Β· 40 Ѐакторизация: 2Γ—5 Римская запись: X Π”Π²ΠΎΠΈΡ‡Π½ΠΎΠ΅ … ВикипСдия

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *