что значит попарно различные числа
Теория для 19 задания ЕГЭ
Цифры и числа – это не синонимы. Цифры – это символы, которыми записывают числа. Числа состоят из цифр, как слова состоят из букв. Пример: число \(1806\) состоит из цифр \(1\), \(8\), \(0\) и \(6\).
Однозначные числа – числа, состоящие из одной цифры, например \(7\). Двухзначные числа – состоящие из двух цифр, например \(29\). Трехзначные – из трёх, например \(341\). И так далее.
Простое число – число, имеющее только два делителя, – единицу и само себя (при этом число \(1\) простым не считается). Пример: \(13\) или \(277\).
Составное число – число, имеющее больше двух делителей. Например, \(12\) или \(735\).
Натуральное число – целое положительное число. Пример: \(5\), \(34\), \(6908\)…
\(0\) – не натуральное, \(-7\) – тоже.
Четное число – целое число делящиеся на \(2\). Нечетное число – целое число не делящиеся на \(2\). Пример: \(12\), \(1000\), \(106\) – четные; \(3\), \(99\), \(9000001\) – нечетные.
Если написано «попарно различные числа», это означает, что все числа в наборе разные. То есть, любые \(2\) числа не равны друг другу. (Для меня загадка, почему в задачах не пишут просто «все числа разные»).
Если цифры числа неизвестны, их можно записать буквами и провести сверху черточку. Пример: \(\overline
Любое двухзначное число можно представить как: \(\overline
Трехзначное: \(\overline
Четырехзначное: \(\overline
\(n\) – значное: \(\underbrace<\overline
На \(2\): последняя цифра числа делится на \(2\) (в том числе \(0\))
На \(3\): сумма цифр числа делится на \(3\). Например, число \(4635\) делится на \(3\), т.к. \(4+6+3+5=18\) (а \(18\) делится на \(3\))
На \(4\): две последние цифры либо нули, либо образуют число, делящееся на \(4\)
На \(5\): последняя цифра \(0\) или \(5\)
На \(6\): одновременно соблюдаются признаки делимости на \(2\) и \(3\)
На \(7\): признаков делимости, увы, нет
На \(8\): три последние цифры нули или образуют число, делящееся на \(8\)
На \(9\): сумма цифр числа делится на \(9\)
На \(11\): разность между суммой цифр, стоящих на нечетных местах, и суммой цифр, стоящих на четных местах, делится на \(11\).
Например, число \(281765\) делится на \(11\), т.к. сумма цифр нечетных мест \(2+1+6=9\), сумма цифр на четных \(8+7+5=20\), т.е. разность между ними \(11\), а \(11\) делится на \(11\)
Если разность равна нулю – число тоже будет делиться на \(11\). Пример: число \(5247\).
На \(25\): две последнее цифры \(00\), \(25\), \(50\) или \(75\)
На \(100\): две последнее цифры \(00\)
На \(125\): три последнее цифры \(000\) или образуют число, делящееся на \(125\).
Число \(b\) делится на число \(a\), если найдётся такое целое число \(q\), что \(b=a \cdot q\).
Обозначается \(b \,\vdots \, a\). Например, \(6\) делится на \(2\), т.к. \(6=2\cdot 3\).
Также в этом случае число \(b\) называют кратным числу \(a\).
Общим делителем чисел называют такое число, которое является делителем для каждого из них. Например, общим делителем чисел \(12\) и \(30\) будет число \(4\).
Два числа называются взаимно простыми, если их общим делителем является только \(1\). Например: \(12\) и \(5\); \(25\) и \(14\); \(3\) и \(11\).
Замечание: два любых простых числа автоматически являются взаимно простыми.
Если одно из двух чисел делится на некоторое число, то и их произведение делится на это число. Например, \(9m\, \vdots \, 3\), так как \(9\) делится на \(3\) (здесь и далее \(m\), \(k\) и \(n\) – любые целые числа).
Если два числа делятся на некоторое число, то и их сумма, и их разность делятся на это число. Например, \((3k+9m)\, \vdots \, 3\), так как \(3k\) – делится на \(3\) и \(9m\) – делится на \(3\). Еще пример: \((99-88+77)\, \vdots \, 11\).
Если одно из чисел делится на некоторое число, а второе нет, то их сумма и их разность не делятся на это число. Например, если \(k\) целое, то: \((3k+17)\) \(3\); \((930-174)\)
\(10\).
Если произведение нескольких чисел делится на некоторое простое число, то хотя бы одно из них делится на это простое число. Например, если \(5k\,⋮\,3\), то \(k\,⋮\,3\).
Каждое натуральное число, большее единицы, либо является простым, либо может быть разложено на простые множители.
Примеры:
число \(20\) может быть разложено в произведение \(2\cdot 2\cdot 5\)
число \(105 =21 \cdot 5=7\cdot 3 \cdot5\)
число \(17\) – является простым числом и разложено быть не может.
Замечание: разложение \(17\) как \(17\cdot 1\) – не подходит, т.к. единица не считается простым числом.
Любые два разложения одного и того же числа могут отличаться только порядком множителей.
Например, разложение числа \(6\) мы можем записать либо как \(2\cdot 3\), либо как \(3\cdot 2\) и более никак.
Замечание: вот именно поэтому \(1\) не считается простым числом, ведь иначе любое число имело бы бесконечно много разложений: \(2\cdot 3\cdot 1\); \(2\cdot 1\cdot 3\cdot 1\); \(2\cdot 1\cdot 3\cdot 1\cdot 1\cdot 1\)….
Взаимно простые числа: определение, примеры и свойства
В этом статье мы расскажем о том, что такое взаимно простые числа. В первом пункте сформулируем определения для двух, трех и более взаимно простых чисел, приведем несколько примеров и покажем, в каких случаях два числа можно считать простыми по отношению друг к другу. После этого перейдем к формулировке основных свойств и их доказательствам. В последнем пункте мы поговорим о связанном понятии – попарно простых числах.
Что такое взаимно простые числа
Взаимно простыми могут быть как два целых числа, так и их большее количество. Для начала введем определение для двух чисел, для чего нам понадобится понятие их наибольшего общего делителя. Если нужно, повторите материал, посвященный ему.
Если мы возьмем два простых числа, то по отношению друг к другу они будут взаимно простыми во всех случаях, однако такие взаимные отношения образуются также и между составными числами. Возможны случаи, когда одно число в паре взаимно простых является составным, а второе простым, или же составными являются они оба.
На практике довольно часто приходится определять взаимную простоту двух целых чисел. Выяснение этого можно свести к поиску наибольшего общего делителя и сравнению его с единицей. Также удобно пользоваться таблицей простых чисел, чтобы не производить лишних вычислений: если одно из заданных чисел есть в этой таблице, значит, оно делится только на единицу и само на себя. Разберем решение подобной задачи.
Решение
Оба числа явно имеют больше одного делителя, поэтому сразу назвать их взаимно простыми мы не можем.
Как мы уже говорили раньше, определение таких чисел можно распространить и на случаи, когда у нас есть не два числа, а больше.
Обычно взаимная простота чисел не является очевидной с первого взгляда, этот факт нуждается в доказательстве. Чтобы выяснить, будут ли некоторые числа взаимно простыми, нужно найти их наибольший общий делитель и сделать вывод на основании его сравнения с единицей.
Решение
Сверимся с таблицей простых чисел и определим, что все три этих числа в ней есть. Тогда их общим делителем может быть только единица.
Ответ: все эти числа будут взаимно простыми по отношению друг к другу.
Решение
Ответ: семь больше единицы, значит, взаимно простыми эти числа не являются.
Основные свойства взаимно простых чисел
Такие числа имеют некоторые практически важные свойства. Перечислим их по порядку и докажем.
Это свойство мы уже доказывали. Доказательство можно посмотреть в статье о свойствах наибольшего общего делителя. Благодаря ему мы можем определять пары взаимно простых чисел: достаточно лишь взять два любых целых числа и выполнить деление на НОД. В итоге мы должны получить взаимно простые числа.
Это все свойства взаимно простых чисел, о которых бы мы хотели вам рассказать.
Понятие попарно простых чисел
Зная, что из себя представляют взаимно простые числа, мы можем сформулировать определение попарно простых чисел.
Задача 18 Профильного ЕГЭ по математике на числа и их свойства, Статград
Задача 18 Профильного ЕГЭ по математике (числа и их свойства)
Это новая и непростая задача 18 была предложена на одной из Тренировочных работ Статграда. Публикуем наше решение!
У Вовы есть набор из n грузиков попарно различных натуральных масс в граммах и чашечные весы, которые находятся в равновесии, если на каждой из двух их чаш лежат грузики с одинаковыми суммарными массами. Известно, что, какие бы два из них ни положили на одну чашу весов, всегда можно положить на другую чашу один или несколько из оставшихся грузиков так, что весы уравновесятся.
а) Может ли у Вовы быть ровно 6 грузиков, среди которых есть грузик массой 5 г?
б) Может ли у Вовы быть ровно 5 грузиков?
в) Известно, что среди грузиков Вовы есть грузик массой 1 г. Какую наименьшую массу может иметь самый тяжелый грузик Вовы?
а) Да, может. Набор грузов массами 3, 4, 5, 6, 7, 8 подходит.
Пары грузов 3+4, 3+5 уравновешиваются грузами 7 и 8.
Пары 3+6 и 4+5, 3+7 и 4+6, 3+8, 4+7 и 5+6, 4+8 и 5+7 уравновешивают друг друга.
Пара 5+8 уравновесится парой грузов 6+7.
Пара 6+8 уравновесится тройкой 3+7+4.
Пара 7+8 – тройкой 5+6+4.
б) Сколько всего грузиков может быть? Расположим их массы в порядке возрастания:
a c и e > c, а масса двух легких не превышает b + c и меньше 2с. Значит, d + e = a + b + c.
Два самых легких грузика a и b можно уравновесить только одним из тяжелых, поскольку
a + b c и e > c,
или d + e = d + c, но тогда е = с, и это противоречие с условием, массы грузов различны.
Или же d + e = е + c, но тогда d = с – снова противоречие.
Значит, и 5 грузиков не может быть.
в) Пусть среди грузиков Вовы есть один массой 1 г.
В пункте (б) доказано, что 3, 4 или 5 грузов у Вовы быть не может, то есть число грузов больше или равно 6.
Пример для 6 грузов получен в пункте (а). Правда, в нем не было грузика массой 1 грамм. В наборе 3, 4, 5, 6, 7, 8 самый тяжелый груз имеет массу 8 граммов. Может быть, мы подберем набор из 6 грузов, где самый тяжелый весит 6 граммов?
Поскольку a, b, c, d, e, f – массы грузов – натуральные числа, причем различные,
a ≥ 1, b ≥ 2… f ≥ 6.
Возьмем набор 1, 2, 3, 4, 5, 6. Но уравновесить самые тяжелые грузы не получается – поскольку
5 +6 = 11, а 1 + 2 + 3 + 4 = 10. Значит, масса самого тяжелого груза не меньше 7 грамм.
Возьмем набор 1, 2, 3, 4, 5, 6, 7.
По сравнению с пунктом (а), в нем добавились новые пары грузов. И все их можно уравновесить:
1 + 7 = 3+ 5;
2 + 7 = 3 + 6;
4 + 7 = 5 + 6;
5 + 7 = 2 + 4 + 6;
6 + 7 = 1 + 3 + 4 + 5.
Мы нашли набор, где масса самого тяжелого груза равна 7 грамм.
Ответ: 7.
Что значит попарно различные числа
Можно ли n попарно различных натуральных чисел расположить по кругу так, чтобы сумма любых двух соседних чисел являлась точным квадратом, если:
Будем подбирать числа так, чтобы их суммы были квадратами четных чисел, не очень отличающихся по величине. В пункте б) еще учтем, что сумма двух из этих квадратов должна быть равна сумме двух других.
а) Решая систему
находим пример: 54, 10, 90.
б) Решая систему
(последнее уравнение является следствием остальных, но это неважно), выберем
Тогда
Получили пример: 63, 193, 3, 1.
в) Решая систему
находим
Ответ: а) да; б) да; в) да.
Комментарий. При ответе «это возможно» мы не обязаны объяснять, как придуман пример. Тем не менее мы постарались объяснить, как такой пример можно придумать. Для решения этой системы проще всего сложить все уравнения, разделить пополам и получить сумму всех чисел. После чего, вычитая из нее какие-либо уравнения, можно найти отдельные неизвестные. Но для этого нужно, чтобы сумма была четной (возьмем все слагаемые четными) и чтобы после деления на 2 она не оказалась слишком маленькой (возьмем все слагаемые примерно одинаковыми). Есть примеры с гораздо меньшими числами. Например, в пункт а годятся 5, 20, 44.
Критерии оценивания выполнения задания | Баллы |
---|---|
Верно получены все перечисленные (см. критерий на 1 балл) результаты. | 4 |
Верно получены три из перечисленных (см. критерий на 1 балл) результатов. | 3 |
Верно получены два из перечисленных (см. критерий на 1 балл) результатов. | 2 |
Верно получен один из следующих результатов: — обоснованное решение п. б; — обоснование в п. в того, что S может принимать все целые значения (отличные от −1 и 1);
|