что значит поршень без охлаждающего канала
Напоминалка для тех, кто самолично перебирает двигатель ВАЗ 2108-2112
После разборки двигателя тщательно очистите, промойте и просушите все детали.
1. Очистите головку поршня от нагара. Если на поршне есть задиры, следы прогара, глубокие царапины, трещины, замените поршень. Прочистите канавки под поршневые кольца. Это удобно делать обломком старого поршневого кольца.
2. Прочистите отверстия для стока масла подходящим куском проволоки.
3. Проверьте зазоры между кольцами и канавками на поршне.
Номинальный зазор поршневых колец, мм:
верхнее компрессионное кольцо 1 — 0,04-0,075;
нижнее компрессионное кольцо 2 — 0,03-0,065;
маслосъемное кольцо 3 — 0,02-0,055.
Предельно допустимый зазор для всех поршневых колец — 0,15 мм.
4. Наиболее точно зазоры поршневых колец можно определить промером колец и канавок на поршне. Для этого замерьте микрометром толщину поршневого кольца в нескольких местах по окружности, затем…
5. …с помощью набора щупов измерьте ширину канавок также в нескольких местах по окружности. Вычислите средние значения зазоров (разница между толщиной поршневого кольца и шириной канавки). Если хотя бы один из зазоров превышает предельно допустимый, замените поршень с кольцами.
8. Если зазор меньше 0,25 мм, аккуратно сточите надфилем торцы поршневого кольца.
9. Проверьте зазоры между поршнями и цилиндрами. Зазор между поршнями и цилиндрами определяется как разность между замеренными диаметрами поршня и цилиндра. Номинальный зазор между поршнями и цилиндрами равен 0,025-0,045 мм, предельно допустимый — 0,15 мм. Если зазор между поршнями и цилиндрами не превышает 0,15 мм, можно подобрать поршни из последующих классов, чтобы зазор между поршнями и цилиндрами был как можно ближе к номинальному. Если зазор между поршнями и цилиндрами превышает 0,15 мм, расточите цилиндры под следующий ремонтный размер и установите поршни соответствующего ремонтного размера. Измерьте диаметр поршня на расстоянии 55 мм от его днища в плоскости, перпендикулярной поршневому пальцу.
Рис. 4.9. Места измерения зазоров цилиндра
10. Затем измерьте диаметры цилиндра в двух перпендикулярных плоскостях (см. рис. 4.9.) (вдоль В и поперек А блока цилиндров) и в четырех поясах (1, 2, 3 и 4). Для этого необходим специальный прибор — нутромер.
11. При замене деталей шатунно-поршневой группы необходимо подобрать поршни к цилиндрам по классу и одной группы по массе, а также поршневые пальцы к поршням по классу и шатуны по массе. Для подбора поршней к цилиндрам вычислите зазор между ними.
Для удобства подбора поршней к цилиндрам цилиндры и поршни в зависимости от диаметров делят на пять классов: А, В, С, D, Е (табл. 4.1).
В запасные части поставляются поршни номинального размера трех классов А, С, Е и двух ремонтных размеров. Первый ремонтный — увеличенный на 0,4 мм, второй — на 0,8 мм.
По массе поршни разбиты на три группы: нормальную, увеличенную на 5 г и уменьшенную на 5 г. На двигателе автомобилей ваз 2108, ваз 2109, ваз 21099 должны устанавливаться поршни одной группы. Для поршней ремонтных размеров в запчасти поставляются кольца ремонтных размеров, увеличенных на 0,4 мм и на 0,8 мм. На кольцах первого ремонтного размера выбито число «40», на кольцах второго ремонтного размера — «80».
Таблица 4.1 Номинальные размеры цилиндров и поршней
Класс Диаметр, мм
цилиндра поршня
А 82,00-82,01 82,00-82,01
В 82,01-82,02 82,01-82,02
С 82,02-82,03 82,02-82,03
D 82,03-82,04 82,03-82,04
Е 82,04-82,05 82,04-82,05
12. На блоке цилиндров группа цилиндров выбивается на нижней плоскости блока (привалочная плоскость под масляный картер) напротив каждого цилиндра. 13. На днище поршня выбиваются следующие данные:
1 — класс поршня по отверстию под поршневой палец;
2 — класс поршня по диаметру;
3 — стрелка, показывающая направление установки поршня;
4 — ремонтный размер (1-й ремонтный — треугольник, 2-й ремонтный — квадрат);
5 — группа по массе (нормальная «Г», увеличенная на 5 г «+», уменьшенная на 5 г «-»).
14. Поршневые пальцы с трещинами замените. Поршневой палец должен легко входить в поршень от усилия большого пальца руки. Вставьте поршневой палец в поршень. Если при покачивании поршневого пальца ощущается люфт, замените поршень. При замене поршня подберите к нему поршневой палец по классу
Таблица 4.2 Классы поршневых пальцев, поршней и шатунов
Размерная группа Модель двигателя ВАЗ 2108
Диаметр цилиндра, мм Диаметр поршня, мм
А 76,00-76,01 75,965-75,975
В 76,01-76,02 75,975-75,985
С 76,02-76,03 75,985-75,995
D 76,03-76,04 75,995-75,005
Е 76,04-76,05 75,005-75,015
Размерная группа Модель двигателя ВАЗ 21083
Диаметр цилиндра, мм Диаметр поршня, мм
А 82,00-82,01 81,965-81,975
В 82,01-82,02 81,975-81,985
С 82,02-82,03 81,985-81,995
D 82,03-82,04 81,995-82,005
Е 82,04-82,05 82,005-82,015
(табл. 4.2). Поршневые пальцы разбиты по диаметру на три класса (1-, 2-, 3-й) через 0,004 мм. Класс поршневого пальца маркируется на его торце краской. Класс поршня по пальцу выбивается на днище поршня, класс шатуна по пальцу — на крышке шатуна.
15. Замените сломанные поршневые кольца и расширитель маслосъемного кольца.
16. Замените сломанные или треснувшие стопорные кольца, удерживающие поршневой палец. Концы стопорных колец должны находиться в одной плоскости. Погнутые кольца замените.
17. Замените погнутые шатуны. Замените шатун, если во втулке 1 верхней головки есть задиры и глубокие царапины. Замените шатун, если при разборке двигателя было обнаружено, что шатунные вкладыши провернулись в шатуне.
ПРЕДУПРЕЖДЕНИЕ
Шатуны обрабатывают совместно с крышками, поэтому их нельзя разукомплектовывать.
18. Вставьте поршневой палец в верхнюю головку шатуна. Если при покачивании поршенвого пальца ощущается люфт, замените шатун. Шатуны в сборе с крышками по массе верхней и нижней головки разделены на классы (табл. 4.3).
Таблица 4.3 Класс шатуна по массе верхней и нижней головки
Масса головок шатуна, г Маркировка
верхний нижний буквой краской
184+2 489±3 Ф Красный
495+3 Л Зеленый
501±3 Б
188+2 489+3 X
495±3 М
501+3 В
192+2 489±3 Ц
495±3 Н
501+3 Г Голубой
19. В двигателе автомобилей ваз 2108, ваз 2109, ваз 21099 должны устанавливаться шатуны одного класса. Маркировка шатуна наносится на крышке шатуна: 1 — класс шатуна по массе (буква или краска), 2 — класс шатуна по поршневому пальцу.
20. Если на поверхностях, по которым работают сальники, есть глубокие риски, царапины, забоины, коленвал необходимо заменить.
22. Если на коренных и шатунных шейках коленвала 1 есть незначительные задиры, риски, царапины, нужно прошлифовать шейки коленвала до ближайшего ремонтного размера. Работу по шлифовке шеек коленвала рекомендуется выполнять в специализированной мастерской. После отполируйте шейки коленвала и притупите острые кромки фасок масляных каналов 2 абразивным конусом. Промойте коленвал и продуйте сжатым воздухом масляные каналы. Овальность и конусность всех шеек коленвала после шлифовки не должна превышать 0,005 мм. После шлифовки шеек коленвала установите вкладыши ремонтных размеров. 23. Если на рабочих поверхностях упорных полуколец есть задиры, риски и отслоения, замените полукольца. На полукольцах запрещается проводить любые подгоночные работы.
24. Измерьте осевой зазор коленвала. Для этого установите коленвал и упорные полукольца в блок цилиндров и затяните болты крепления крышек коренных подшипников (см. «Сборка двигателя»).
29. Тщательно прочистите и промойте масляные каналы коленвала.
30. Не рекомендуется выпрессовывать заглушки самостоятельно, для этого обратитесь в специализированную мастерскую.
31. Тщательно очистите поверхности блока цилиндров от остатков старых уплотнительных прокладок. Внимательно осмотрите блок. Если обнаружите трещины, блок надо заменить в сборе с крышками коренных подшипников.
32. Проверьте герметичность рубашки охлаждения блока цилиндров. Для этого заглушите отверстие под водяной насос (установив водяной насос с прокладкой) и залейте Тосол-А40 в рубашку охлаждения. Если в каком-нибудь месте заметна течь, значит, блок цилиндров негерметичен и блок цилиндров надо заменить.
33. Осмотрите цилиндры. Если на зеркале цилиндров есть царапины, задиры, раковины и пр., расточите цилиндры под ремонтный размер (эту работу рекомендуется выполнять в специализированной мастерской) или замените блок цилиндров. При различных дефектах глубиной более 0,8 мм блок цилиндров ремонту не подлежит и блок цилиндров надо заменить.
34. Очистите нагар в верхней части цилиндров. Если там образовался поясок вследствие износа цилиндров, снимите его шабером. Проверьте износ цилиндров, замерив диаметры цилиндров.
Стальной поршень против алюминиевого. Кто победит?
Современные дизельные двигатели должны обладать не только более высокими мощностными показателями при минимальной массе и малом удельном расходе топлива, а и значительно сокращать вредные выбросы. Важным фактором при решении этой проблемы является выбор материала поршня, который может быть изготовлен из алюминиевого сплава или из стали.
Удельная мощность современных дизельных двигателей составляет 100 кВт / л. и будет продолжать возрастать, а значит будет расти и максимальное давление в цилиндрах, что также увеличивает нагрузку на поршни.
Поршни работают в «адских» условиях, поскольку во время работы подвергаются высоким термическим и механическим нагрузкам. Обычно срок службы поршня дизеля определяется краем камеры сгорания, на который приходится особенно высокое пиковое давление и температура. В зависимости от материала эта область может разогреваться до температуры от 400 °C до 500 °C.
Алюминий хорошо обрабатывается, замечательно отводит тепло, но имеет ограничения по теплостойкости. Уже при температуре 300 °C его свойства значительно ухудшаются.
Благодаря новым каналам охлаждения температура поршня может быть снижена примерно на 35 °C. Другие меры, как, например, армирование волокнами алюминиевого поршня, повышают его прочность при хорошей теплопроводности без снижения прочности. Но имеется предел, который сложно преодолеть.
Поскольку стальной поршень значительно прочнее, чем в алюминиевый, то и расстояние между кольцами, а также общая высота уплотняющей части у него меньше. А поскольку стальные поршни имеют меньшую высоту, то и вес двигателя может быть уменьшен на десятки килограммов.
Первоначально стальные поршни были разработаны для того, чтобы можно было поднять предельное пиковое давление в цилиндрах выше 200 бар для высоконагруженных дизельных двигателей без ущерба для ресурса поршневой группы. У современных коммерческих автомобилей пиковое давление в цилиндрах двигателя достигает 240 бар и тенденция к его повышению сохраняется
Испытания на стенде для определения силы трения показали, что стальной поршень может обеспечить экономию топлива от трех до пяти процентов и сокращение выбросов CO2 на три процента. Кроме того, стальные поршни имеют тенденцию расширяться и сжиматься при нагреве со скоростью, очень близкой к скорости чугунного блока, в котором они работают, поэтому характеристики кольцевого уплотнения и выбросов также улучшаются.
Благодаря прочности стали поршень может обеспечить более высокую выходную мощность при повышенных пиковых давлениях в цилиндрах, а выбросы могут быть уменьшены. Все эти преимущества реализованы для двигателей с малой и средней удельной мощностью.
Ситуация несколько иная для двигателей с большей удельной мощностью. В этих случаях стальные поршни не являются идеальным решением.
Кроме того, более низкая теплопроводность стали может привести к проблемам с охлаждением поршня. В отличие от алюминия, у стального поршня тепло хуже отводится от днища. Это может привести к высокой температуре поверхности в охлаждающем канале. Если эти температуры превышают пороговое значение около 350 °C, охлаждающее масло будет быстро стареть и сгорать, в результате чего образуется изолирующий масляный нагар.
Частично проблемы по улучшению охлаждения можно решить изменением формы камеры сгорания в поршне либо применив две форсунки для охлаждающего масла.
Но все-таки для высоких удельных мощностей необходимо будет найти совершенно новые решения, которые не допустят крекинга смазывающих жидкостей.
Поршень двигателя – конструкция, условия работы, нагрузки
Условия работы, нагрузки
Поршень служит для:
Головка поршня воспринимает давление газов и осуществляет газораспределение (в двухтактных дизелях), тронк выполняет роль ползуна, скользящего по стенке цилиндра, передает на нее нормальную силу и перекрывает выпускные и продувочные окна при положении поршня в ВМТ для предотвращения прорыва газов и продувочного воздуха в картер (в двухтактных дизелях). Юбка поршня в крейцкопфных дизелях обеспечивает его центровку в цилиндре и перекрывает окна при положении поршня в ВМТ (в двухтактных дизелях с неуправляемым выпуском).
Во время работы дизеля поршень нагревается и расширяется больше, чем цилиндровая втулка. Для предотвращения заедания поршня предусматривают между ним и втулкой цилиндра тепловой зазор. Наиболее интенсивно нагревается головка поршня. Поэтому радиальный зазор 5 между головкой и втулкой устанавливают больше, чем между тронком (или юбкой) и втулкой. Для этого головку поршня изготавливают меньшего диаметра, чем тронк, или обрабатывают ее на конус (рис, 6.1 б). Зазор зависит от диаметра цилиндра, конструкции, материала и условий охлаждения поршня, его устанавливают опытным путем, так как при увеличении зазора возрастает температура газа и поршня над верхним поршневым кольцом (рис. 6.1 в), ухудшая условия его работы. Зазор между тронком и втулкой должен обеспечивать только свободное перемещение поршня. Большой зазор вызывает стуки при переходе поршня через мертвые точки, так как нормальная сила изменяет свое направление и перекладывает поршень в цилиндре с одной стороны на другую. Кстати, появление глухих стуков свидетельствует об износе цилиндро-поршневой группы.
Поршень подвергается воздействию больших механических и термических нагрузок.
Механические нагрузки возникают под действием силы давлений газов и силы инерции. Сила давления газов Рг вызывает циклически повторяющуюся деформацию днища и стенки поршня (см. рис. 6.1а), а сила инерции Рj стремится разорвать шпильки крепления головки или днища (в составных поршнях).
Термические нагрузки обусловлены непосредственным соприкосновением головки поршня с горячими газами (через поршень отводится 8-10% теплоты, выделяющейся при сгорании топлива в цилиндре), тепловая нагрузка поршня резко возрастает при увеличении диаметра цилиндра D (квадратичная зависимость) и при переходе от четырехтактного (т = 2) к двухтактному (т = 1) циклу.
У тронковых дизелей при прочих равных условиях тепловая нагрузка поршня выше, чем у крейцкопфных, вследствие дополнительного нагрева тройка поршня от трения о стенку цилиндра. У двухтактных дизелей с контурной схемой газообмена неравномерный нагрев поршня приводит к значительной асимметрии температурного поля относительно его оси и возникновению дополнительных термических напряжений.
У 2-тактных дизелей с прямоточно-щелевой схемой газообмена большая тепловая нагрузка выпускного поршня обусловлена омыванием горячими газами не только днища поршня, но и всей боковой поверхности его головки. В лучших условиях работают поршни дизелей с прямоточно-клапанной продувкой, у которых поток продувочного воздуха хорошо и равномерно охлаждает головку поршня.
Сильный нагрев головки снижает ее прочность, а значительные перепады температур (осевой и радиальный) вызывают в днище поршня высокие термические напряжения, и головка деформируется (рис. 6.1 г).
Термические напряжения и характер деформации существенно зависят от формы днища поршня. Если днище условно отделить от стенок головки поршня, то при линейном изменении температуры по толщине термические напряжения в днище не возникнут, а его свободная тепловая деформация выразится в увеличении наружного диаметра и изгибе в сторону газов. В реальных условиях свободной тепловой деформации днища препятствуют более холодные стенки головки поршня, и в местах соединения возникают изгибающие моменты М и сжимающие усилия Q (рис. 6.1d.). В результате плоское днище и вогнутое будут изгибаться в сторону холодных поверхностей, и на горячих поверхностях днищ (со стороны газов) возникнут термические напряжения сжатия, усиливающиеся за счет циклически действующих механических нагрузок; холодные поверхности днищ под действием тепловых и механических нагрузок будут испытывать напряжения растяжения. Если во время работы дизеля температура днища достигнет значения, при котором возникает явление «криппа» (ползучести материала), то напряжения сжатия на горячей поверхности снимаются.
После уменьшения нагрузки или остановки дизеля поршень охлаждается, и в нем возникают остаточные напряжения растяжения, которые могут вызвать трещины, прогрессирующие при дальнейшей работе дизеля с попеременными нагревами и охлаждениями поршня. В выпуклом днище поршня сила Q на плече Ɩ создает изгибающий момент, противоположный по знаку моменту М и обычно более значительный по значению. В результате на горячей поверхности выпуклого поршня возникнут напряжения растяжения. С учетом противоположного направления действия механических нагрузок от газовых сил выпуклая форма днища является наиболее целесообразной.
У тронковых дизелей в результате действия силы давления газов на днище поршня (рис. 6.1а), нормальной силы N на боковую поверхность (рис. 6.1 е), нагрева от головки поршня и теплоты трения (рис. 6. 1.е) деформируется также тронк поршня. Вследствие неравномерного распределения металла по сечению тронка он принимает овальную форму с большей осью по оси поршневого пальца, который является как бы направляющей при деформации. В результате между цилиндровой втулкой и тронком может возникнуть натяг, что приведет к заеданию поршня. Поэтому в большинстве конструкций в районе бобышек с поверхности поршня снимается металл.
У неохлаждаемых поршней теплота от головки отводится охлаждающей цилиндр водой (рис. 6.1 з) через поршневые кольца (60-80%) и тронк (20-40%). Некоторое количество теплоты отводится через поршневой палец к шатуну, а также передается картерным газам и масляному «туману».
Высокий коэффициент теплопроводности алюминиевых сплавов (в три-четыре раза выше, чем у чугуна и стали) и небольшой коэффициент трения дают возможность снизить температуру днища поршня, его массу и силы инерции, а также потери на трение. Кроме того, поршни из алюминиевых сплавов более технологичны при изготовлении и на их поверхностях меньше образуется нагара. Передача теплоты от газов к алюминиевому поршню на 30-40% меньше, чем к чугунному или стальному.
Вследствие более низкой температуры (и, следовательно, лучшего наполнения цилиндров воздухом) и меньших потерь на трение при замене чугунных поршней поршнями из алюминиевых сплавов мощность дизеля может быть повышена на 10-15%, а расход топлива снижен.
Недостатки поршней из алюминиевых сплавов: малая прочность при высоких температурах, быстрая разработка канавок поршневых колец и бобышек поршневого пальца, относительно высокая стоимость. Из-за большого коэффициента линейного расширения алюминиевых сплавов (в 2-2,5 раза выше, чем у чугуна и стали) необходимо увеличивать радиальный зазор между тронком поршня и цилиндром почти в два раза по сравнению с чугунными поршнями, что затрудняет пуск дизеля, вызывает стуки в цилиндрах при работе на малых нагрузках и увеличивает тепловую нагрузку верхних поршневых колец.
Высота головки поршня зависит от размеров и расположения поршневых колец, а также расстояния канавки верхнего кольца от кромки днища. Для обеспечения лучшего отвода теплоты и более совершенных условий работы верхнего поршневого кольца его канавку до недавнего времени размещали по возможности дальше от днища так, чтобы при положении поршня в ВМТ кольцо было не выше уровня охлаждающей воды в зарубашечном пространстве; у двухтактных дизелей с контурной продувкой положение верхнего кольца согласуют с расположением верхних кромок окон. Для предотвращения быстрого изнашивания канавок их нижние поверхности хромируют или закаливают, в канавках устанавливают кольца из легированного чугуна с высокой механической прочностью, в головку поршня из алюминиевого сплава заливают обойму 1 из аустенитного чугуна с большим содержанием никеля для одного или двух верхних колец (рис. 6.2d). Для уменьшения тепловой нагрузки верхних поршневых колец у неохлаждаемых поршней в ряде случаев предусматривают наружные, а у охлаждаемых поршней внутренние «тепловые дамбы».
Длину тронка поршня определяют в зависимости от допустимого удельного давления на стенку цилиндра и системы газообмена (в двухтактных дизелях). Толщину стенок тронка под уплотнительными кольцами в цельных неохлаждаемых поршнях часто резко уменьшают (см. рис. 6.2а, б) для снижения теплопотока к тронку, предотвращения его перегрева, деформации и заедания поршня. Необходимую жесткость тронку обеспечивают его оребрением.
Для снижения сил трения и износа тронка на его поверхности иногда выполняют клинообразные углубления. При перетекании масла из одного углубления в другое создается гидродинамическое давление, способствующее уменьшению трения и износа.
Утолщение в нижней части тронка служит для его ужесточения и предотвращения возможных деформаций при сборке и разборке (иногда для этого к торцу юбки крепят стальное кольцо), подгонки поршней по массе и использования в качестве технологической базы при обработке поршня.
Канавки для маслосъемных колец располагают на тронке выше или ниже поршневого пальца. В первом случае тронк будет обильно смазываться маслом, что способствует снижению его износа. Под канавками для колец или в самих канавках для отвода масла высверливают отверстия 2 и 5 (рис. 6.2а), 3 и 4 (рис. 6.2б).
В направляющей части поршней МОД и мощных СОД (среднеоборотные) делают круговые канавки в виде «ласточкина хвоста», в которые закатывают противозадирные кольца из свинцовистой или оловянистой бронзы; после проточки диаметр колец на 0,1-0,4 мм больше диаметра поршня. Указанные кольца одновременно служат для амортизации ударов юбки о стенку цилиндра, привалки поршня по цилиндру и контроля его положения в эксплуатации.
Для предотвращения заедания поршня вследствие неравномерной деформации тронка выполняют следующие мероприятия:
Для улучшения отвода теплоты от днища у неохлаждаемых поршней увеличивают толщину днища от центра к кромкам и сечение головки в зоне колец (см. рис. 6.2а, б), и поршни изготавливают из алюминиевых сплавов, имеющих высокий коэффициент теплопроводности.
У форсированных ВОД применяют тепловую изоляцию днища поршня. Для этого на днище закрепляют стальную жаростойкую накладку или наносят керамическое жаростойкое покрытие (карбид вольфрама с присадкой кобальта, карбид хрома с присадкой никеля и др.). К сожалению, керамические покрытия, имея разные с материалом поршня коэффициенты теплового расширения, со временем отслаиваются и поэтому до сих пор распространения не получили.
В обоих случаях происходит перераспределение статей теплового баланса дизеля: уменьшается теплопоток в поршень и увеличивается температура выпускных газов.
Снижение теплонапряженности охлаждаемых поршней достигается тщательной отработкой их конструкции (выбор материала, оптимальных толщин стенок и т.д.) и системой охлаждения. В качестве охладителя применяют масло или воду.
Преимущества водяного охлаждения: высокая теплоемкость воды (почти в 2,5 раза выше, чем у масла) и больший коэффициент теплоотдачи от стенок поршня к воде. Основные недостатки: возможность применения только в крейцкопфных дизелях, необходимость тщательного изготовления и изоляции системы подвода и отвода воды во избежание ее попадания в масло.
В судовых тронковых дизелях используют следующие способы охлаждения поршней.
Струйное (фонтанное) охлаждение (рис. 6.3а) применяют при умеренной теплонапряженности поршня. Масло по сверлению 1 в шатуне поступает в кольцевую канавку 2 поршневого подшипника 3, через сопло 4 струей омывает днище поршня 5 и стекает в картер дизеля.
Проточное охлаждение с помощью змеевика 1 (рис. 6.3в), залитого в тело головки при изготовлении поршня, или организованной в теле головки кольцевой полости 1 (рис. 6.36).
В змеевик масло обычно поступает по сверлениям в шатуне и поршневом пальце, а затем из поршня или через сверления в пальце и шатуне (см. рис. б.Зв) сливается в картер. В кольцевую полость масло попадает по сверлениям в шатуне и поршневом пальце или через сопло, установленное в картере дизеля соосно с вертикальным сверлением в теле поршня.
Охлаждение взбалтыванием масла (за счет «коктейль-эффекта») является наиболее эффективным, его широко применяют в современных судовых дизелях (рис. 6.4а, б). Сечения подводящих и отводящих масло каналов или высоту сливных отверстий подбирают таким образом, чтобы полость охлаждения была заполнена маслом только частично. Под действием сил инерции объем масла попеременно отбрасывается то к верхней, то к нижней части полости охлаждения, интенсивно омывая нагретые зоны поршня. Нагретое масло заменяется поступающим в поршень холодным маслом. Высокий коэффициент теплоотдачи в масло (почти в два раза больше, чем при циркуляционном охлаждении) обеспечивается за счет высокой средней скорости поршня и участия в теплообмене всей массы масла, а не только пограничного слоя.
Вероятность коксования масла на охлаждаемых поверхностях поршня при охлаждении взбалтыванием значительно уменьшается.
В крейцкопфных дизелях применяют циркуляционное охлаждение поршней (рис. 6.6а, д) или охлаждение взбалтыванием (рис. 6.6е, ж). Охладитель подводят к поршню с помощью телескопических (масло или вода) или шарнирных качающихся труб (масло).
Конструкция поршня со сферическим подшипником имеет следующие преимущества:
На рис. 6.5 приведена конструкция поршня быстроходного двигателя, у которого стальная головка выполнена отдельно от алюминиевой юбки. Оригинальность решения состоит в том, что юбка и боковая поверхность головки полностью разгружены от механических нагрузок, передаваемых с донышка непосредственно на головное соединение, отлитое за одно целое с головкой. Таким образом, юбка, свободно висящая на пальце поршня, выполняет лишь функцию направляющей, а деформация канавок поршневых колец, расположенных в боковой стенке головки, полностью исключается.
У дизеля «Бурмейстер и Вайн» 84VT2BF180 головка 1 поршня (рис. 6.6а) из жароупорной стали, чугунная юбка 5 и фланец штока 6 скреплены шпильками. В канавки уплотнительных колец 2 зачеканены противоизносные чугунные кольца 3. Поршень охлаждается маслом. Масло поступает по подвижной телескопической трубе, закрепленной на поперечине крейцкопфа, трубке 7 в осевом сверлении штока и далее в сварную вставку 4. Вставка имеет направляющие патрубки, обеспечивающие подачу масла с большой скоростью в полость охлаждения поршня. Масло из головки отводится через воронку вставки 4 и далее по кольцевому каналу между трубкой 7 и сверлением штока (такое решение неудачно, так как выходящее из головки масло имеет температуру около 60°С, что ухудшает охлаждение штока).
У дизеля типа K90GF (рис. 6.6ж) сила давления газов передается от днища поршня через стальное силовое кольцо 2 непосредственно фланцу штока поршня. Кольцо выполняет роль дополнительной опоры, уменьшающей механические напряжения изгиба в днище и разгружающей боковые стенки головки поршня. Это дает возможность уменьшить толщину днища и снизить в нем термические напряжения. Для уменьшения напряжений, возникающих из-за разных тепловых расширений, головка поршня и шток не имеют жесткого соединения. Фланец штока опирается на упругое кольцо 3, которое лежит на кольцевом бурте короткой юбки 4, прикрепленной шпильками к головке поршня. Охлаждающее масло подается по кольцевому каналу между трубкой и сверлением в штоке (попутно охлаждая шток), через сопла 1, расположенные по касательной к окружности силового кольца 2, с большой скоростью поступает в периферийную полость поршня, затем омывает днище и отводится по трубке в штоке.
Поршень дизеля MAH KZ70/120 (рис. 6.6в) состоит из головки 1 из жароупорной молибденовой стали с уплотнительными кольцами 5, проставки 6 и длинной юбки 7, отлитых из чугуна. К кольцевому приливу 5 длинными шпильками (для увеличения их податливости) крепится шток поршня 9. Днище поршня подкреплено кольцевым ребром с каналами для прохода охлаждающей воды. Тонкостенная оребренная юбка крепится к нижнему фланцу 8 штока. Для обеспечения свободного теплового расширения головки поршня между юбкой и проставкой предусмотрен зазор. В канавки на юбке и проставке закатаны противозадирные кольца 4 из свинцовистой бронзы. Охлаждающая вода подводится и отводится по подвижным телескопическим трубам, прикрепленным к нижней части штока. По кольцевому каналу между центральной трубкой и штоком вода поступает в головку, а через воронку 2 по трубке 10 уходит из поршня. Для защиты штока от коррозии внутри осевого сверления устанавливают защитную трубку из нержавеющей стали.
Поршень дизеля «Зульцер» RD76 (рис. 6.60) состоит из головки 1 с уплотнительными кольцами 7, отлитой из хромомолибденовой стали, и короткой чугунной юбки 3 с противозадирными кольцами 2 из свинцовистой бронзы. Головка и юбка крепятся к фланцу 6 поршневого штока с помощью длинных шпилек 4 с дистанционными трубками (для увеличения их податливости). Для уменьшения толщины и снижения термических напряжений днище подкреплено ребрами. Охлаждающая вода подводится и отводится по телескопическим трубам 5. После остановки дизеля и прекращения подачи воды она не должна уходить из головки поршня, поэтому выходное отверстие 8 трубы, по которой отводится вода, располагается ближе к днищу и выше отверстия, через которое вода поступает в поршень.
В новой модификации поршня двигателей «Зульцер» RTA охлаждение головки интенсифицировано путем введения струйного охлаждения глухих сверлений (рис. 6.7).
Фирма МАН в своих современных двигателях МСС в целях снижения тепловой нагрузки поршневых колец и в первую очередь первого кольца от проникающих в зазор между верхней боковой стенкой головки поршня горячих газов удлинило эту стенку, спустив весь пакет колец вниз (см. рис. 5.36).
Поршневой палец (в тронковых дизелях) служит для шарнирного соединения поршня с шатуном и передачи ему силы давления газов.
Условия работы пальца. Палец подвержен механическим нагрузкам от действия движущей силы и термическим нагрузкам вследствие нагрева от головки поршня и теплоты трения в поршневом подшипнике.
Под действием механической нагрузки (рис. 6.8а) палец испытывает напряжения изгиба (опасное сечение I-I) и среза (опасное сечение II-II), подвержен деформации. Его рабочая поверхность работает на истирание при высоких удельных давлениях и неблагоприятных условиях смазки (качательное движение шатуна не обеспечивает образования масляного клина).
К поршневому пальцу предъявляются следующие основные требования:
Материал пальцев: малоуглеродистая сталь или легированная сталь. Наружную поверхность пальцев цементируют или азотируют с последующей закалкой и отпуском, а после механической обработки для повышения усталостной прочности полируют.
Конструкции пальцев показаны на рис. 6.8. Пальцы могут быть сплошными и полыми, с постоянным или переменным диаметром расточки. Полые пальцы имеют меньшую массу, а переменный диаметр расточки позволяет рационально распределить материал.
Расположение поршневого пальца по длине тронка поршня определяется условием отсутствия перекоса поршня на такте расширения и минимальной работы трения поршня.
В современных дизелях применяют плавающие пальцы, которые устанавливают в бобышках с незначительным натягом или зазором. Благодаря зазору после нагрева поршня во время работы дизеля палец получает возможность проворачивания в бобышках. Преимущества плавающего пальца: меньше работа трения и нагрев вследствие снижения относительной скорости скольжения; равномерное изнашивание по окружности; возможность проворачиваться в бобышках поршня в случае заедания в поршневом подшипнике.
Для предотвращения повреждения зеркала цилиндра осевые перемещения плавающего пальца ограничивают пружинящими кольцами 1 (кольцами Зегера) прямоугольного или круглого сечения (см. рис. 6.8а), устанавливаемыми в кольцевые выточки в бобышках поршня, или заглушками 3 (рис. 6.86) из антифрикционного сплава или стальными.
Заглушки, установленные в отверстие пальца 1, повышают его радиальную жесткость и улучшают отвод теплоты; отверстия 2 предотвращают сжатие воздуха при их установке и при нагреве пальца во время работы дизеля. Заглушки, установленные в расточки бобышек поршня, фиксируют от проворачивания штифтами. У некоторых дизелей в пальце имеются радиальные и осевые сверления для принудительного подвода масла из поршневого подшипника к трущимся поверхностям бобышек. В этом случае заглушки с уплотняющими прокладками не только ограничивают осевые перемещения пальца, но и предотвращают попадание большого количества масла на стенки цилиндра.
В мощных СОД в пальце часто предусматривают радиальные отверстия для подвода масла от поршневого подшипника через отверстия в бобышках на охлаждение поршня.
Повреждения поршней в эксплуатации
В большинстве случаев выход из строя поршней связан с их перегревом.
Причины перегрева головок поршней:
При масляном охлаждении следы коксования масла (появление темно-коричневой окраски) на внутренней поверхности головки.