что значит пуш пул
Отсечка через Push-Pull
Из прошлых статей о звукоснимателях, мы узнали что хамбакер представляет собой две катушки с обмотками, направленными в разные стороны. Благодаря этому, звук у датчиков такого типа, получается более плотным и громким. Но как же быть, если хочется получить тот самый стеклянный звук сингла, например, на партиях мелодичных соло? Гитара-то с хамбакерами. Задался я как-то вопросом: может быть есть способ как-то отключить одну из катушек, чтобы получился обычный сингл. И мои догадки были верны. Такое «обрезание» хамбакера возможно и называется оно отсечка.
Принцип работы Push-Pull потенциометра
Положение Down считается основным. В нем звукосниматель будет работать в режиме обычного хамбакера. К одной из ножек припаиваем землю и соединяем ее с основным контактом потенциометра. Средний, как обычно, пойдет на выход, а на другой крайний контакт будет приходить сигнал с начала северной обмотки (North Start). Помните 2 проводка из датчика, которые мы соединяли вместе? Теперь их нужно будет припаять на одну из центральных ножек. Таким образом, в нижнем положении потенциометра, концы обмоток не будут соединены ни с чем. А в верхнем положении будут замыкаться на землю, то есть исключаться из схемы. В общем для наглядности, смотрите рисунок:
В положении 1 схема не будет отличаться от стандартной. North Start подается на потенциометр, North и South Finish просто соединены вместе, а South Start соединена с землей. Сигнал проходит через обе катушки
В положении 2 North и South Finish соединяются с землей, а так как South Start тоже соединена с землей, то получается, что южная катушка совсем исключается их схемы, и сигнал проходит только через северную.
Как видите, схема до безобразия проста. Но эффект от такого мода очень интересный получается. Успехов!
На чьей стороне вы: Push и Pull в Desired State Configuration
Мы уже рассказали, как описывать конфигурацию в Desired State Configuration (DSC) и разобрали встроенный агент Local Configuration Manager (LCM) для применения конфигурации на сервере. В первой части статьи пошагово прошлись по основным особенностям инструмента вместе с Евгением Парфеновым из DataLine.
Здесь же погрузимся в настройку и особенности работы в режимах Push и Pull.
О чём расскажем:
Различия режимов Push и Pull
В режиме Push мы вручную или скриптом запускаем процесс применения изменений на сервере (локально или удаленно). Local Configuration Manager (LCM) применяет конфигурацию интерактивно.
В режиме Pull сам агент LCM на сервере по расписанию сравнивает свою конфигурацию с конфигурацией, опубликованной в общем хранилище конфигураций. Если имеются изменения, то конфигурация копируется локально и применяется.
Плюсы и минусы обоих режимов работы вполне очевидны.
Установка ресурсов также немного отличается для разных режимов. Как мы помним, для использования ресурса нужно установить его локально и на сервер.
В случае использования режима Push администратор должен предварительно установить все необходимые ресурсы на управляемый сервер и на ПК, откуда конфигурация будет подана.
В режиме Pull — агент DSC на управляемом сервере может самостоятельно установить все необходимые ресурсы с Pull-сервера, задача администратора – разместить их на Pull-сервере. Однако держим в уме, что невозможно спрогнозировать применение конфигурации в режиме Pull, так как GPO не является гарантированной доставкой настроек.
Push-режим в деталях
Верхнеуровнево процесс написания и применения конфигураций DSC можно представить в следующем виде:
На первой стадии (Authoring) мы описываем конфигурацию используя любой удобный нам IDE (Notepad, PowerShell ISE, Visual Studio Code и другие). По завершении мы компилируем mof-файлы конфигурации (процесс компилляции описан в нашей предыдущей статье).
На второй стадии (Staging/Compilation) мы запускаем применение конфигурации из скомпилированного mof-файла с помощью командлета Start-DSCConfiguration. В процессе сервер управления передаёт mof-файл LCM сервера, который должен применить конфигурацию.
В данном случае лучше использовать ключ -Verbose для полного контроля процесса конфигурации:
Видно, что движок проверил наличие переменной, не нашёл её и создал новую, согласно указанной конфигурации:
Для управления разными файлами конфигурации имеется командлет Remove-DSCConfigurationDocument, который позволяет удалять конкретные документы, если это по какой-то причине необходимо сделать. Впрочем, ничто не мешает нам их удалить вручную.
Pull-режим в деталях
Pull-режим сложнее в развёртывании и настройке, но он сильно упрощает процесс управления серверами, которые подключены к нему.
Общая схема будет выглядеть примерно так:
Pull-режим требует развёртывания Pull-сервера. Фактически он является обычным веб-сервером, который может отдавать клиентам mof-файлы и ресурсы, которые могут потребоваться при применении конфигураций из mof-файлов. Последнее сильно упрощает процесс управления и конфигурации серверов, так как задача по доставке необходимых ресурсов ложится на клиента. Pull-сервер при этом выступает в качестве хранилища\репозитория ресурсов.
Pull-сервер умеет предоставлять доступ к ресурсам и файлам конфигурации через два протокола:
Воркфлоу дальнейшей работы с pull-сервером следующий:
Настройка клиентов (LCM) на работу с pull-сервером
Загрузка на Pull-сервер файлов ресурсов
После применения новых настроек на LCM, которые научат его использовать Pull-сервер, можно загружать на сервер файлы ресурсов. Ресурсы загружаются на сервер в виде zip-файлов (папка с ресурсом упаковывается в zip). Правило именования такого файла:
Размещение на Pull-сервере файлов конфигураций клиентов
Здесь важно отметить, что мы можем использовать два режима работы клиентов в данном случае (на самом деле два с половиной): клиент с сервера будет получать конфигурацию, используя ConfigurationID, или клиент будет использовать имя конфигурации – ConfigurationName. Если необходимо применить несколько конфигураций, то все их можно указать в ConfigurationName, но при этом придётся LCM настроить на работу с частичными конфигурациями (partial configuration).
При использовании ConfigurationID нужно подчеркнуть, что mof-файл конфигурации, который будет применён на клиента, будет содержать GUID (он содержится в ConfigurationID). В случае использования ConfigurationName – mof-файл будет содержать имя конфигурации, которое мы укажем в ConfigurationName. В обоих случаях помимо mof-файла там же будет размещаться файл контрольной суммы конфигурации:
Статьи
Как работает усилитель класса АВ (Push Pull) 19.02.2021 19:52
Как работает усилитель класса АВ (Push Pull)
Класс АВ — это тот тип усилителей, который до недавнего времени применялся в Hi-Fi-аппаратуре в разы чаще, чем любой другой. Сейчас над ним уже нависла угрожающая тень усилителей класса D, занимающих все большую долю рынка Hi-Fi, но пока модели класса АВ по-прежнему в большинстве и сдаваться так легко они не собираются. В классе АВ могут работать как ламповые, так и транзисторные схемы, но если говорить об абсолютном большинстве класс АВ ассоциируется скорее с эпохой транзисторного Hi-Fi.
Принцип работы
Из самого обозначения класса АВ нетрудно сделать вывод, что данный режим является гибридом класса А и класса В. Как работают усилители класса А, мы уже разобрались, а с классом В ознакомиться не успели, поэтому начнем с него. И для начала вспомним логику, которой руководствовался создатель усилителя класса А. Для того, чтобы получить возможность воспроизводить и положительную, и отрицательную полуволну с помощью одного активного элемента, он применил смещение средней точки (тока покоя) в середину рабочей зоны лампы.
Создатели усилителей класса В рассуждали по-другому: «Если одна лампа или один транзистор с нулевым смещением способен воспроизвести только одну полуволну сигнала, почему бы не добавить в схему еще один активный элемент, разместив его зеркально, чтобы воспроизводить другую полуволну?».
Это вполне логично, ведь при таком раскладе оба транзистора работают с нулевым смещением. Пока на входе усилителя присутствует положительная полуволна — работает один транзистор, а когда приходит время воспроизводить отрицательную полуволну, первый транзистор полностью закрывается и вместо него в работу включается второй. В английском варианте этот принцип действия получил название push-pull или, говоря по-русски, «тяни-толкай», что в общем-то очень хорошо описывает происходящее.
Если сравнивать класс В с классом А, наиболее очевидным преимуществом является то, что в классе В на каждую волну приходится полный рабочий диапазон транзистора (или лампы), в то время как в классе А обе полуволны воспроизводятся одним активным элементом. Это значит, что усилитель класса В будет вдвое мощнее усилителя класса А, собранного на таких же транзисторах.
Второй, чуть менее очевидный, но очень важный плюс класса В — нулевые токи смещения. Когда сигнал на входе равен нулю, ток, протекающий через транзисторы, тоже равен нулю, а это значит, что напрасного расхода энергии не происходит, и энергоэффективность схемы получается в разы выше, чем в классе А.
Однако из этого же факта вытекает и главный недостаток усилителя класса В. Момент включения транзистора в работу после полностью закрытого состояния сопровождается небольшой задержкой, поэтому при прохождении звуковым сигналом нулевой точки, когда один транзистор уже закрылся, второй транзистор не успевает мгновенно подхватить эстафету, и в этой самой переходной точке возникают небольшие временные задержки.
На практике это выражается в особенной нелюбви усилителя к тихой музыке, а также в плохой передаче микродинамики. И хотя история знает успешные реализации класса В, например — легендарный Quad 405, проблемы данного режима работы никуда не делись. Тот же 405-й не только радовал энергичным и мускулистым звучанием, но также имел явную склонность рисовать звуковую картину крупными мазками, масштабно, не размениваясь на мелочи.
Для того, чтобы сохранить все плюсы класса В и решить проблему переходных процессов, инженеры пошли на хитрость. Они включили оба транзистора со смещением, как это делается в классе А, но величина смещения при этом была выбрана существенно меньшая: так, чтобы покрыть лишь те моменты, когда транзистор близок к закрытию, выводя тем самым переходные процессы из рабочей зоны.
Это позволило усилителю класса АВ незаметно преодолевать нулевую точку, а также дало еще один крайне полезный эффект. При малой амплитуде сигнала, укладывающейся в пределы смещения тока покоя, подобный усилитель работает в классе А и, только когда амплитуда выходит за пределы выбранной производителем величины смещения, он переходит в режим АВ.
Плюсы
Рассматривать достоинства и недостатки класса АВ имеет смысл на фоне двух исходных технологий. Класс АВ однозначно и существенно выигрывает у класса А по энергоэффективности. Его реальный КПД достигает 70–80%, если конечно производитель не сильно увлекся поднятием тока покоя. С точки зрения звучания класс АВ превосходит класс А в те моменты, когда сигнал достигает высокой амплитуды или требуется высокая мощность. В то же время на малых уровнях громкости класс АВ обычному классу А не уступает, по крайней мере в теории. В сравнении с классом В, класс АВ куда лучше ведет себя на малых громкостях и способен отрабатывать самые тихие и деликатные моменты в музыке, но при этом сохраняет практически ту же мощь и силу на больших динамических всплесках.
Имея большую мощность и лучшую энергоэффективность, усилители класса АВ куда менее капризны при выборе акустики. Они не нуждаются в высокой чувствительности и легче уживаются со сложными кроссоверами, используемыми в многополосных колонках. Вполне справедливо будет заявить, что подавляющее большинство пассивных акустических систем выпускаемых сегодня на рынок рассчитаны на работу со среднестатистическим транзисторным усилителем класса АВ.
Минусы
Объективные минусы у класса АВ можно разглядеть только на фоне еще более совершенных с технической точки зрения классов G, H или D, о которых мы расскажем чуть позже. В список претензий можно отнести разве что субъективные отзывы от ценителей класса А, которые, в целом, сводятся к тому, что класс АВ звучит не столь чисто, детально и изысканно. Чтобы оценить обоснованность данных претензий, рассмотрим схемотехнику усилителей класса АВ более детально, с точки зрения качества звучания.
Особенности
Одной из практических проблем усилителей класса В и АВ является подбор пар транзисторов, работающих в одном канале усиления. Располагаясь в схеме зеркально, два транзистора должны быть полностью идентичны друг другу. В противном случае, сигналы положительной и отрицательной полуволн будут воспроизводиться не симметрично, и это существенно повысит общий уровень искажений.
В реальной жизни абсолютная идентичность — понятие абстрактное, скорее имеет смысл рассуждать о степени похожести или, говоря техническим языком, о пределах допустимых отклонений транзисторов от заданных характеристик. Чем более похожи два транзистора друг на друга, тем меньше уровень искажений, и тем больше их совместная работа приближается к тому, что мы имеем в классе А, когда обе полуволны воспроизводит один транзистор.
Понимая, что даже при самом строгом отборе по параметрам отличия между двумя транзисторами в паре все же будут иметь место (пусть и в предельно малых значениях), мы вынуждены признать, что при прочих равных условиях один такой же транзистор работающий в классе А будет звучать чуть чище и чуть лучше, чем пара в классе АВ.
Совсем иная ситуация вырисовывается, когда речь заходит о работе на большой амплитуде сигнала и на нагрузке требующей высокой мощности. Имея высокий КПД класс АВ нуждается в менее мощном и громоздком блоке питания, нежели усилитель класса А, и тут уже поклонники однотактников вынуждены признать абсолютное и безоговорочное превосходство класса АВ.
Более того, разработчики имеют возможность гораздо свободнее экспериментировать с блоками питания, управляя характером и динамикой звучания путем подбора рабочих характеристик трансформатора и конденсаторов. Например, можно установить трансформатор с многократным запасом мощности, чтобы на пиках сигнала он не выходил из оптимального режима работы, или использовать улучшенные конденсаторы, способные мгновенно отдавать высокий ток.
Еще одна тонкость: работая в классе А, транзисторы выделяют большое количество тепла, что может негативно сказываться на качестве их работы, особенно при увеличении нагрузки. В классе АВ транзисторы греются в меньшей степени, вследствие чего они быстро приходят в рабочий режим и менее подвержены риску перегрева, снижающего качество звучания при работе усилителя на высокой громкости.
Практика
Защищать честь усилителей класса АВ в сравнительном прослушивании было уготовано мощному двухблочному усилителю Atoll серии Signature, состоящему из усилителя мощности AM200 и предварительного усилителя PR300. Интересующий нас усилитель мощности выстроен в полном соответствии с изложенными выше теоретическими выкладками.
Реализуя потенциал, заложенный в схемотехнике класса АВ, разработчики обеспечили по 120 Вт выходной мощности на канал, чего достаточно для большинства акустических систем за исключением самых низкочувствительных и просто монструозных моделей. Говоря об особенностях своего усилителя, производитель акцентирует внимание на применении подобранных пар транзисторов с последующей подстройкой схемы вручную для минимизации общего уровня искажений.
С целью лучшего разделения каналов и исключения перекрестных помех усилитель выстроен по схеме полного двойного моно, поэтому каждый канал усиления получил собственный блок питания. Суммарная мощность блока питания составляет 670 ВА, что покрывает потребности усилителя мощностью 120 Вт с большим запасом. Солидную дополнительную подпитку на пиках сигнала обеспечат конденсаторы емкостью 62 000 мкФ.
Внушительная мощность и отличная энергооснащенность усилителя дали в звучании вполне ожидаемое ощущение легкости и непринужденности при работе с любой акустикой и практически на любых уровнях громкости. Если выкрутить ручку громкости посильнее, можно услышать небольшую компрессию, а бас словно отодвигался на задний план, но это были очевидные признаки того, что НЧ-динамики приблизились к пределу своих возможностей, в то время как усилитель только начал разогреваться и был очень далек от состояния перегрузки.
В то же время на малых и средних уровнях громкости Atoll AM200 Signature показывал себя наилучшим образом. Середина была выразительна, детальность превосходна, а сцена — четко очерчена, с хорошо ощутимой глубиной и шириной. При прямом сравнении с усилителями класса А последние давали чуть более свободную и безграничную сцену и чуть тоньше отрабатывали мелкие детали в тихой камерной музыке.
Характер, свойственный классу АВ, наиболее ярко проявлялся у Atoll AM200 Signature на динамичной рок-музыке. Он выдавал очень собранный, быстрый и четкий бас, хорошо справляясь с резкими перепадами громкости и крупными штрихами. На джазе и классической музыке, требующих сочетать динамичность и мощь со способностью воспроизводить тонкие оттенки и нюансы, усилитель вел себя чуть менее уверенно. Казалось, что он слегка упрощает звучание, укрупняя музыкальные образы и уводя внимание от тонких оттенков к основной мелодической линии.
Однако все это можно заметить лишь в прямом сравнении с гораздо более дорогими представителями других классов. По общему впечатлению Atoll AM200 Signature был скорее всеяден и универсален. Являясь примером грамотной реализации класса АВ, когда разработчики приложили массу усилий чтобы минимизировать слабые места и максимально раскрыть потенциал данной схемотехники, он вполне конкурентен на фоне лучших представителей других классов.
Выводы
Высокая мощность, высокий КПД с умеренным тепловыделением, способность справляться со сложной нагрузкой и хорошая динамика — вот что такое усилитель класса АВ. Это делает его, в первую очередь, идеальным решением для массового производства усилителей, что подтверждает сама история развития индустрии Hi-Fi.
Однако крайне ошибочно руководствоваться стереотипным мнением о том, что массовый универсальный продукт и продукт элитный должны быть непременно вылеплены из разного теста. При должном внимании к деталям и глубоком понимании принципов работы данная схемотехника может быть реализована на самом высоком уровне качества. Так что сегодня High End-усилитель, работающий в классе AB — такая же обыденность, как и хайэндный усилитель, работающий в любой другой схемотехнике.
Электроника для всех
Блог о электронике
Основы на пальцах. Часть 4
Но диоды, резисторы, транзисторы и конденсаторы это так, лишь обвязка. Особо на них не развернешься (нет, маньяки, конечно могут, но габариты устройств там будут феерические). Самое вкусное нас поджидает в микросхемах 🙂
Делятся они на цифровые и аналоговые. Для начала кратко пробегусь по цифровым микросхемам.
Миром правит цифра!
Во избежания путаницы смыслов, в терминологии ключей и транзисторов принято следующее соглашение. Ключ считается открытым или закрытым для протекания тока, как кран на трубе. С точки зрения же механического исполнения он может быть замкнут или разомкнут. Так что открыт = замкнут, закрыт = разомкнут. И не следует путать с англоязычной нотацией, где Open = открыт если речь идет о транзисторе или электронном ключе и Open = разомкнут если речь идет о механическом рубильнике. Там Open-Close следует рассматривать в общем контексте текущего случая. Велик и могуч русский язык! =) |
О микросхемах дискретной логики И, ИЛИ, НЕ я рассказывать не буду, каждую описать, так это справочник не на одну сотню страниц будет. Да и постепенно они уходят в прошлое, вытесняемые контроллерами и программируемыми матрицами. Скажу лишь главное – работают они по жесткой таблице истинности, которую можно найти в соответствующем datasheet.
Испльзование операционных усилителей |
Если от операционного усилителя надо получить усиление, то нужно как то обуздать его бешеный коэффициент. Для этого ему добавляют отрицательную обратную связь. Т.е. берут и с выхода подают сигнал на отрицательный вход, подмешивая его к основному входному сигналу. В итоге, выходной сигнал вычитается из входного. А коэффициент усиления становится равным отношению резисторов на входе и выходе (смотри схему).
Но это далеко не все фишки которые умеет делать операционный усилитель. Если в обратную связь сунуть конденсатор, то получим интегратор, выдающий на выходе интеграл от функции входного сигнала. А если скомбинировать конденсатор с резистором, да индуктивность на вход… В общем, тут можно книгу писать, а занимается этими занятными процессами отдельная наука – автоматическое управление. Кстати, именно на операционных усилителях сделаны аналоговые компьютеры, считающие дифференциальные уравнения с такой скоростью, что все цифровые компы нервно курят в уголке.
Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!
А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.
Что значит пуш пул
Войти
Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal
Push/Pull процесс на пальцах
Push-Pull: Зри в корень, или Тяни-толкай по русски. Часть 1.
Именно этот широко известный афоризм нашего соотечественника К. Пруткова имеет прямое отношение к … расчету времени при пуш/пулл обработке. Напомню, что под пуш/пулл процессом мы подразумеваем увеличение (пуш/push) или уменьшение (пулл/pull) чувствительности пленки путем изменение времени проявки.
Показать полностью..
Для начала введем простое правило, которое легко запомнить – изменение времени проявки в два раза приводит к изменению чувствительности пленки на 2 стопа (т.е. в четыре раза). Например, пленка чувствительностью 100ед и временем проявки до номинала в D-76 равном 7мин может быть экспонирована как 400ед. При этом время проявки необходимо увеличить вдвое, т.е. до 14мин.
А во сколько раз надо изменить время для пуша на 1 стоп? Ответ прост – в корень квадратный из 2 раз. Предположим, что наша пленка требует для проявки до номинала K минут. Нет, К мало, пусть будет N минут )) Запишем T0=N. Пуш на 1 ступень потребует увеличения времени до T1=N*√2=N*1.41. Пуш еще на одну ступень потребует увеличения времени до T2=T1*√2=N*√2*√2=N*2, что полностью согласуется с правилом двухкратного увеличения времени при пуше на 2 ступени.
Пуш на три ступени считается просто T3=T2*√2=N*2*√2=N*2*1.41=N*2.82.
Напомню, что √2=1,41. Но на практике обычно упрощают и используют коэффициент 1,5 при пуш/пулл на одну ступень. Или при пуше увеличить время на 50%, при пуле – уменьшить на 30%, что в принципе то же самое, но в более запутанной форме ))
Push-Pull: Зри в корень, или Тяни-толкай по русски. Часть 2.