что значит решить неравенство с одной переменной
Решение линейных неравенств
Основные понятия
Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.
Линейные неравенства — это неравенства вида:
где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит сделать так, чтобы в левой части осталось только неизвестное в первой степени с коэффициентом равном единице.
Типы неравенств
Линейные неравенства: свойства и правила
Вспомним свойства числовых неравенств:
Если же а b и c > d, то а + c > b + d.
Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.
Если а d, то а – c b, m — положительное число, то mа > mb и
Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).
Если же а > b, n — отрицательное число, то nа
Обе части можно умножить или разделить на одно отрицательное число, при этом знак поменять на противоположный.
Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>
Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.
Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.
Свойства выше помогут нам использовать следующие правила.
Правила линейных неравенств
Решение линейных неравенств
Со школьных уроков мы помним, что у неравенств нет ярко выраженных различий, поэтому рассмотрим несколько определений.
Неравенства ax + b > 0 и ax > c равносильные, так как получены переносом слагаемого из одной части в другую.
Определение 3. Линейные неравенства с одной переменной x выглядят так:
где a и b — действительные числа. А на месте x может быть обычное число.
Равносильные преобразования
Рассмотрим пример: 0 * x + 5 > 0.
Как решаем:
Метод интервалов
Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.
Метод интервалов это:
Если a ≠ 0, тогда решением будет единственный корень — х₀;
Для этого найдем значения функции в точках на промежутке;
Как решаем:
Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.
Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.
По чертежу делаем вывод, что решение имеет вид (−∞, 4) или x
Графический способ
Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.
Алгоритм решения y = ax + b графическим способом
Рассмотрим пример: −5 * x − √3 > 0.
Как решаем
Ответ: (−∞, −√3 : 5) или x
Алгебра
А Вы уже инвестируете?
Слышали про акцию в подарок?
Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб
План урока:
Целые неравенства
Неравенства по своей сути очень похожи на уравнения. Аналогично понятию целого уравнения существует понятие целого неравенства. Так называют то нер-во, в котором используются сложение и умножение, вычитание и деление, возведение в степень, но в котором нет деления на выражения с переменной. Другими словами, ни в одном знаменателе в целом нер-ве не должно быть переменных величин.
Приведем примеры целых нер-в:
14х 4 + 13х 2 ⩽ 91х 3 + 2
Если бы переменная могла быть в знаменателе, то знаменатель мог бы обращаться в ноль при некоторых ее значениях, что недопустимо в математике.Но так как в целых нер-вах переменная не находиться в знаменателе, то она может принимать любое значение.
Любое целое нер-во можно преобразовать так, чтобы в одной его части (обычно правой) стоял ноль, а в другой части – некоторый многочлен Р(х).
Пример. Преобразуйте нер-во
(х 3 + 7)(2х – 3) >4х(х 2 – 5х + 9)
к виду Р(х) > 0, где Р(х) – это многочлен.
Решение. Раскроем скобки в каждой части нер-ва:
(х 3 + 7)(2х – 3) >4х(х 2 – 5х + 9)
2х 4 – 3х 3 + 14х – 21 > 4x 3 – 20х 2 + 36х
Перенесем слагаемые влево и приведем подобные слагаемые:
2х 4 – 3х 3 + 14х – 21 – 4x 3 + 20х 2 – 36х > 0
2х 4 – 7х 3 + 20х 2 – 22х – 21 > 0
Ответ:2х 4 – 7х 3 + 20х 2 – 22х – 21 > 0
Как и в случае с уравнениями, у нер-в есть степени. Она равна степени многочлена, стоящего в одной из его частей. Так, степень неравенства в рассмотренном только что примере равна 4, ведь степень полинома 2х 4 – 7х 3 + 20х 2 – 22х – 21 равна 4.
Неравенства первой степени
В общем виде неравенства первой степени выглядит так:
где а и b– некоторые числа, а х – переменная.
Естественно, вместо знака «>»могут стоять знаки « 0
Напомним, что решения нер-в традиционно записывают в виде числовых промежутков. Запись х > 3 аналогична записи х∈(3; + ∞). На числовой прямой этот промежуток выглядит так (отмечен штриховкой):
Для наглядности построим график функции у = 5х – 15 и отметим промежуток, на котором она больше нуля:
Заметим, что неравенство строгое, а потому само число 3 в его решение не входит. Из-за этого в записи (3; + ∞) первая скобка – круглая.
Пример. Решите нер-во
х ⩽ 9/(– 3) (обратите внимание, из-за деления на отрицательное число изменился знак нер-ва!)
Также построим график у = – 3х – 9 и убедимся, что мы не ошиблись:
Неравенство нестрогое, и число – 3 входит в ответ, поэтому поле него в промежутке стоит квадратная скобка.
Неравенства второй степени
Неравенства второй степени в общем виде записываются так:
Примерами таких нер-в являются
– 12у 2 + 1,23у + 64 ⩾ 0
462z 2 + 3z– 54 2 + bx + c смотрят вверх, если коэффициент а > 0, и смотрят вниз, если а 2 + bx + c, надо решить квадратное ур-ние ах 2 + bx + c = 0. Если его дискриминант (D) больше нуля, то есть два нуля. Если D = 0, то есть только один ноль. Если D 2 + bx + c> 0
надо решить ур-ние ах 2 + bx + c = 0 и проанализировать положение графика квадратичной функции относительно оси Ох.
Пример. Найдите промежуток, на котором справедливо нер-во
2х 2 – 5х + 2 2 – 5х + 2 = 0.
D = b 2 – 4ас = (– 5) 2 – 4•2•2 = 25 – 16 = 9
Коэффициент а параболы положителен, поэтому ее ветви смотрят вверх. Сам график будет выглядеть так:
Однако нам достаточно и схематичного изображения параболы и ее нулей на координатной прямой:
Нули функции разбивают прямую на три промежутка. На каждом из них знак квадратичной функции неизменен. Отметим эти знаки:
В нер-ве стоит знак « 2 + 9х – 9 ≤ 0
Решение. Сначала находим нули параболы, решая ур-ние
D = b 2 – 4ас = 9 2 – 4•(– 2)•(– 9) = 81 – 72 = 9
Коэффициент а параболы отрицательный, поэтому ее ветви смотрят вниз. Отметим на координатной прямой нули ф-ции и схематично график параболы, а также промежуток, на котором она неположительна:
Так как нер-во нестрогое, то сами нули ф-ции входят в ответ, а потому скобки рядом с нулями – квадратные. В итоге х∊(– ∞; 1,5]∪[3; + ∞).
Пример Решите нер-во
х 2 – 2х + 1 > 0
Решение. Решим квадратное ур-ние
D = b 2 – 4ас = (– 2) 2 – 4•1•1 = 4 – 4 = 0
Дискриминант равен нулю, поэтому у ур-ния лишь 1 корень.
Парабола будет касаться прямой Ох в единственной точке, при этом ветви параболы должны смотреть вверх:
Получается, что ф-ция положительна на всей координатной прямой, кроме точки х = 1, где она обращается в ноль. Соответственно, в ответе надо указать объединение промежутков: х∊(– ∞; 1)∪(1; + ∞).
Пример. Найдите решение нер-ва
– 5х 2 + х – 100 2 + х – 100 = 0
D = b 2 – 4ас = 1 2 – 4•(– 5)•(– 100) = 1 – 2000 = – 2001
Дискриминант меньше нуля, поэтому корней не будет. Вся парабола будет находиться ниже оси Ох, так как ее ветви должны смотреть вниз из-за отрицательного коэффициента а = – 5.
Видно, что при любых значениях х левая часть нер-ва меньше нуля, то есть нер-во справедливо при х∊(– ∞; + ∞).
Метод интервалов
Ясно, что знак произведения зависит от знаков множителей. Так, если мы перемножаем три отрицательных числа и два положительных, то мы получим отрицательное произведение:
Если же отрицательных множителей два или четыре, то итоговое произведение получится положительным:
Вообще можно заметить, что если в произведении находится нечетное количество множителей (1, 3, 5, 7…), то и всё произведение отрицательно. Если же количество отрицательных множителей четно (0, 2, 4, 6, 8…), то произведение положительно. Дело в том, что при умножении отрицательных чисел действует правило «минус на минус дает плюс», то есть два минуса как бы «самоуничтожаются». Поэтому при перемножении четного количества отрицательных чисел все минусы попарно сократятся. Из этого правила есть одно исключение – если хотя бы один множитель равен нулю, то и всё произведение равно нулю, независимо от количества отрицательных сомножителей.
Пример. Справедливо ли нер-во
(– 12)•453•62,36•725•(– 975)•(– 812,99) 0
Перенеся единицу вправо, получим, что
Графически это можно показать так:
Аналогично, рассматривая нер-ва
можно показать, какие значения принимает каждая из скобок при различных х:
Видно, что скобки (х – 1), (х – 2), (х – 3) и (х – 4) изменяют знаки с «–» на «+» при «перескоке» через точки 1, 2, 3 и 4. Отметим их все вместе на одной прямой и укажем знаки скобок на каждом из образовавшихся промежутков:
Получили 5 промежутков. Если выражение выделено красным, то оно отрицательно на промежутке, а если синим – то положительно. Напомним, что произведение отрицательно, если в его состав входит нечетное количество (1, 3, 5…) отрицательных множителей. На рисунке видно, что на промежутке (1; 2) отрицательны 3 множителя, а на промежутке (3; 4) – один множитель. Следовательно, именно на них всё произведение
оказывается отрицательным. Соответственно на других промежутках произведение положительно. Это можно отметить так:
Штриховкой отмечены промежутки, где произведение отрицательно. Получается, что решением нер-ва является объединение промежутков (1; 2)∪(3; 4). Сами точки 1, 2, 3 и 4 исключены из решения, так как нер-во строгое. Если бы нер-во было нестрогим, то на рисунке точки были бы закрашены, а скобки в промежутке были бы квадратными.
Убедимся в верности этого решения, выбрав произвольное число из каждого промежутка и подставив его в произведение.
Из промежутка (– ∞; 1) возьмем значение х = 0:
(0 – 1)(0 – 2)(0 – 3)(0 – 4) = (– 1)•(– 2)(– 3)•(– 4) = 24 > 0
Из следующего промежутка возьмем х = 1,5:
(1,5 – 1)(1,5 – 2)(1,5 – 3)(1,5 – 4) = 0,5•(– 0,5)•(– 1,5)•(– 2,5) 0
Из промежутка (3; 4) выберем х = 3,5:
(3,5 – 1)(3,5 – 2)(3,5 – 3)(3,5 – 4) = 3,5•1,5•0,5•(– 0,5) 0
Для решения нер-ва мы просто нашли, при каких значениях выражение слева принимает нулевые значения, а потом расставили знаки в полученных интервалах. Данный способ называется методом интервалов.
Пример. Решите неравенство методом интервалов:
(у – 5)(– 2у + 6)(у + 4) ≥0
Решение. Вынесем из второй скобки множитель (– 2):
Поделим нер-во на число (– 2). Напомним, что при делении нер-ва на отрицательную величину его знак меняется на противоположный:
Используем метод интервалов. Отметим на координатной прямой точки, при которых каждая скобка обращается в ноль (это 5, 3 и (– 4)), и расставим знаки над получившимися промежутками:
Определить эти знаки можно, просто выбрав произвольное число из промежутка и подставив его в левую часть. Так, выберем из промежутка (– ∞; – 4) число (– 5) и получим:
(– 5 – 5)(– 5 – 3)(– 5 + 4) = (– 10)•(– 8)•(– 1) 0
Из промежутка (3; 5) возьмем число 4:
(4 – 5)(4 – 3)(4 + 4) = (– 1)•1•8 0
Итак, выражение слева меньше или равно нулю при у∊(– ∞; – 4]∪[3; 5].
Обратим внимание, что в рассмотренных примерах знаки на промежутках чередовались. Это значит, что достаточно было определить знак на одном промежутке, а дальше просто менять их при переходе через отмеченные точки. Есть один частный случай, когда такое чередование НЕ происходит. Такое возможно, если в двух скобках находится одинаковые выражения.
Пример. Решите нер-во
Решение. Вынесем из второй скобки множитель 3, а из третьей – (– 1):
(z – 5)•3•(z – 5)•(– 1)•(z – 7) ≤ 0
Обратите внимание – мы получили две одинаковые скобки (z – 5). Отметим на прямой нули левого выражения (это числа 5 и 7), а также знаки промежутков:
Для расстановки знаков подставим в выражение слева числа:
при z = 4 (4 – 5)(4 – 5)(4 – 7) = (– 1)•(– 1)•(– 3) 0
Получилось, что на соседних интервалах (– ∞; 5) и (5; 7) знаки совпадают, а не чередуются. Так произошло из-за того, что при переходе через точку z = 5 знак поменяла не одна, а сразу 2 скобки (х – 5).
При записи ответа надо учесть, что в задании дано нестрогое нер-во. Поэтому в ответ надо включить как промежуток [7; + ∞), так и число 5, которое обращает в ноль произведение в левой части.
Неравенства высоких степеней
Напомним, что если некоторое число а – корень многочлена Р(х) (то есть оно является корнем ур-ния Р(х) = 0), то этот многочлен можно представить как произведение двучлена (х – а) и какого-то другого многочлена Р1(х). Другими словами, зная корни многочлена, можно разложить его на множители. За счет этого можно решать нер-ва высоких степеней.
Пример. Решите нер-во
х 3 – 3х 2 – х + 3 3 – 3х 2 – х + 3 = 0
Попробуем подобрать корни, начав с целых чисел. Напомним, что все целые корни должны быть делителем свободного члена, то есть в данном случае числа 3. Поэтому «кандидатами» являются числа 1, (– 1), 3 и (– 3). Подставляя их в ур-ние, находим, что оно имеет три корня: 1, (– 1) и 3:
1 3 – 3•1 2 – 1 + 3 = 1 – 3 – 1 + 3 = 0
(– 1) 3 – 3•(– 1) 2 – (– 1) + 3 = – 1 – 3 + 1 + 3 = 0
3 3 – 3•3 2 – 3 + 3 = 27 – 27 – 3 + 3 = 0
Число (– 3) не подходит, ведь при его подстановке в левую часть ноль не получается:
(– 3) 3 – 3•(– 3) 2 – (– 3) + (– 3) = – 27 +27 + 3 + 3 = 6
Напомним, что у ур-ния 3-ей степени не может быть более 3 корней, поэтому других корней у ур-ния нет.
Зная корни, мы можем разложить многочлен на множители:
х 3 – 3х 2 – х + 3 = (х – 1)(х + 1)(х – 3).
В справедливости такого разложения можно убедиться, раскрыв скобки в правой части этого равенства. Теперь можно переписать исходное нер-во
при х = 2 имеем (2 – 1)(2 + 1)(2 – 3) = 1•3•(– 1) 0
Получаем, что левая часть отрицательна при х∊(– ∞; – 1)∪(1; 3).
Пример. Решите нер-во
Решение. Рассмотрим ур-ние
Подбором можно определить лишь один его корень – единицу:
Поделим исходный многочлен на (х – 1):
Получили, что х 3 + 2х – 3 = (х – 1)(х 2 + 2х + 3)
Можно ли разложить на множители квадратный трехчлен х 2 + 2х + 3? Попытаемся решить ур-ние
D = b 2 – 4ас = 4 2 – 4•2•3 = 16 – 24 = – 8
Получили, что корней нет. Это значит, что функция у = х 2 + 2х + 3 не пересекает ось Ох, и, так как коэффициент а этого трехчлена положителен, то выражение х 2 + 2х + 3 больше нулю при любом х.
Это можно показать и иначе, если выделить полный квадрат из трехчлена:
х 2 + 2х + 3 = х 2 + 2х + 1 + 2 = (х + 1) 2 + 2
Перепишем исходное нер-во с учетом разложения многочлена на множители:
Так как выражение х 2 + 2х + 3 положительно при любом значении х, то мы можем поделить неравенство на него:
Отсюда получаем, что х∊(1; + ∞).
Пример. Укажите наименьшее целое решение неравенства
4х 3 + 4х 2 – 7х + 2 > 0
Решение. Попытаемся найти корень многочлена 4х 3 + 4х 2 – 7х + 2. Целый корень должен быть делителем двойки (свободного члена), то есть возможны варианты 1 и (–1), 2 и (– 2). Из них подходит только – 2:
4•(– 2) 3 + 4•(– 2) 2 – 7•(– 2) + 2 = – 32 + 16 + 14 + 2 = 0
Значит, можно поделить исходный многочлен на х + 2:
Можно записать, что 4х 3 + 4х 2 – 7х + 2 = (х + 2)(4х 2 – 4х + 1).
Далее разложим получившийся при делении квадратный трехчлен на множители, для чего приравняем его к нулю:
D = b 2 – 4ас = (– 4) 2 – 4•4•1 = 16 – 16 = 0
Получается, что есть лишь один корень.
х = – b/(2a) = – (– 4)/(2•4) = 0,5
Если у квадратного трехчлена дискриминант равен нулю, то это значит, что он является полным квадратом какого-то выражения. Действительно:
4х 2 – 4х + 1 = (2х) 2 – 2•2х•1 + 1 2 = (2х – 1) 2
Тогда можно записать:
4х 3 + 4х 2 – 7х + 2 = (х + 2)(4х 2 – 4х + 1) = (х + 2)(2х – 1) 2 =
Перепишем с учетом этого исходное нер-во:
4х 3 + 4х 2 – 7х + 2 > 0
Вынесем множитель 2 из двух последних скобок и поделим нер-во на них:
(х + 2)•2•(х – 0,5)•2•(х – 0,5) > 0
Решим его методом интервалов:
Снова из-за двух одинаковых скобок (х – 0,5) на соседних промежутках (– 2; 0,5) и (0,5; 2) получили один и тот же знак. Функция положительна на них, однако она равна нулю при х = 0,5, поэтому это число из решения неравенства исключается. Получаем, что х∈(– 2; 0,5)∪(0,5; + ∞).
Нам надо указать наименьшее целое решение. Самым малым целым числом из множества (– 2; 0,5)∪(0,5; + ∞) является (– 1).
Дробно-рациональные неравенства
До сих пор мы рассматривали целые нер-ва. Однако, по аналогии с уравнениями, существуют ещё и дробно-рациональные нер-ва. В них выражение с переменной может стоять в знаменателе. Приведем примеры дробно-рациональных нер-в:
Любое такое нер-во можно представить в виде
где Р(х) и Q(х) – некоторые многочлены. Естественно, вместо знака «>» может стоять и другой знак. Для примера преобразуем к такому виду нер-во
Перенесем все слагаемые влево:
Далее приведем левую часть к общему знаменателю:
Осталось раскрыть скобки:
В итоге и в числителе, и в знаменателе стоят многочлены.
Докажем, что они равносильны друг другу. Возможны 5 случаев:
(– 10)•5 = – 50 0 и ab> 0 снова одновременно неверны.
Получили, что при любых значениях а и b нер-ва а/b> 0 и ab> 0 либо одновременно справедливы, либо одновременно несправедливы. Это значит, что они равносильны.
Это значит, что от дробно-рационального нер-ва можно перейти к равносильному ему целому нер-ву.
Пример. Решите нер-во
Исходному нер-ву равносильно иное нер-во:
(х – 1)(х – 2)(х – 3)(х – 4)> 0
Решим его методом интервалов:
Получаем, что х∊(1; 2)∪(3; 4).
Пример. Решите нер-во
Решение. В числителе и знаменателе находятся квадратные трехчлены. Их можно разложить на корни, если знать их корни. Найдем их.
D = b 2 – 4ас = (– 9) 2 – 4•1•14 = 84 – 56 = 25
Так как корни равны 2 и 7, то можно записать, что
х 2 – 9х + 14 = (х – 2)(х – 7)
Аналогично разложим знаменатель
D = b 2 – 4ас = (– 14) 2 – 4•1•45 = 196 – 180 = 16
х 2 – 14х + 45 = (х – 5)(х – 9)
Перепишем исходное нер-во:
Ему равносильно другое нер-во:
(х – 2)(х – 7)(х – 5)(х – 9) > 0
Его можно решить методом интервалов:
Получаем, что х∊(– ∞; 2)∪(5; 7)∪(9; + ∞).
Обратим внимание на одну особенность метода интервала в случаях, когда решается дробно-рациональное нер-во. Она касается нестрогих нер-в (со знаками «≤» и «≥»). В целых нестрогих нер-вах сами точки, при которых выражение слева обращается в ноль, включаются в решение. Но при рассмотрении дроби важно понимать, что ее знаменатель не может быть равным нулю. Поэтому при нестрогом нер-ве в ответ надо включить точки, обращающие в ноль числитель, но при этом исключить точки, обращающие в ноль знаменатель.
Пример. Решите нер-во
Числитель обращается в ноль в точках (– 2) и 4, а знаменатель – в точках (– 7) и 8. Так как нер-во нестрогое, то числа 4 и (– 2) будут входить в решение (на координатной прямой мы отметим их закрашенным кружочком), а числа (– 7) и 8 – нет (их отметим как «выколотые точки»):
В итоге получаем, что дробь неотрицательна при х∊(– ∞; – 7)∪[– 2; 4]∪(8; – ∞).
Математика
Урок 3: Неравенства с одной переменной. Числовые промежутки. Решение систем неравенств с одной переменной
Неравенство
Неравенство, содержащее одну переменную, называется неравенством с одной переменной (неизвестной).
Решением неравенства называется такое значение переменной, при котором это неравенство обращается в верное числовое неравенство.
Решить неравенство – это значит найти все его решения или доказать, что их нет.
Два неравенства называются равносильными, если они имеют одни и те же решения, или они оба не имеют решений.
При решении неравенств используют основные их свойства:
Решение неравенств обозначают на координатной прямой.
Пусть a – некоторое число. Все числа, не превосходящие а – это часть координатной прямой левее точки a вместе с точкой a (черный закрашенный кружок):
Все числа, меньшие а – это часть координатной прямой левее точки a, но не включая точку.
Аналогично для чисел, не меньших а, и больших а:
Обозначения числовых множеств на координатной прямой носят название числовые промежутки.
Пример 1. Записать, используя обозначения числовых промежутков, множество точек заштрихованной части координатной прямой.
Ответ: (-∞;-6) U [-3;0) U [2;5) U (5; ∞)
Читается так: промежуток от минус бесконечности до минус 6 (шесть не входит) объединить с промежутком от минус 3 до нуля (минус три входит, ноль не входит) объединить с промежутком от двух до пяти (два входит, пять не входит) объединить с промежутком от 5 до бесконечности (5 не входит).
Умножим обе части неравенства на наименьший общий знаменатель дробей, входящих в неравенство, т.е. на 6. Получим
В рассмотренном примере мы заменили заданное неравенство равносильным ему неравенством вида ax b, где a и b – некоторые числа, называют линейными неравенствами с одной переменной.
Заменив каждое неравенство системы равносильным ему неравенством, получим
Как решить линейное неравенство с одной переменной
Решить неравенство – это значит найти все его решения.
Решением неравенства с одной переменной называют множество таких значений переменной, при которых данное неравенство верно.
Раскрыть скобки, если они имеются. Слагаемые с переменной записать в левой части неравенства, а свободные члены – в правой. При переносе слагаемого из одной части неравенства в другую меняем его знак на противоположный. Привести подобные слагаемые в левой и правой частях неравенства. Разделить обе части неравенства на коэффициент при переменной. При делении на отрицательное число знак неравенства меняется на противоположный. Изобразить полученные решения неравенства на координатной прямой. Записать решения в виде числового промежутка.
При задании найти наименьшее целое решение неравенства выписываем крайнее левое целое число из полученного промежутка.
При задании найти наибольшее целое решение неравенства выписываем крайнее правое целое число из полученного промежутка.
Пример 1.
а) Решить неравенство 3x-15 1,4. Изобразим на числовой прямой все значения переменной х, которые удовлетворяют последнему неравенству.
Записываем решение в виде числового промежутка. (1,4; +∞).
б) Наименьшее целое решение — это число 2.
Пример 5.
б) Указать наименьшее целое решение.
Умножим обе части данного неравенства на 20 (наименьший общий знаменатель дробей) и получим:
5(6х-5) ≥ 4(3х+2,75). Раскроем скобки.
30х-25 ≥ 12х+11. Соберём слагаемые, содержащие переменную в левой части неравенства, а свободные члены – в правой.
30х-12х ≥ 11+25. Приведём подобные слагаемые.
18х ≥ 36. Делим обе части неравенства на 18.
Получаем х ≥ 2. Изобразим на числовой прямой значения переменной х, удовлетворяющие последнему неравенству.
Записываем решение в виде числового промежутка. [2; +∞).
б) Наименьшее целое решение — это число 2.
Выполните интерактивное задание.