что значит решить уравнение 5 класс
Урок 17 Бесплатно Уравнение
Часто приходится описывать реальную ситуацию, процесс, явление с помощью математического языка.
Математический язык- универсальный язык, с помощью него можно однозначно и кратко описать многие закономерности, процессы, задачи и т.д.
Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.
Описывая реальность с помощью математического языка, люди создают математические модели, превращающие слова в формулы, неравенства, равенства, уравнения и т.п.
Математическая модель дает возможность решать огромное количество практических (природных, технических, научных, экономических, социальных и других) задач.
Математические модели делят на:
На данном уроке подробно рассмотрим одну из аналитических математических моделей- уравнение.
Выясним, что такое уравнение и что называют корнем уравнения.
Рассмотрим простейшие виды уравнений.
Разберем способы и приемы решения уравнений с одним неизвестным.
Рассмотрим алгоритм и примеры решения задач с помощью уравнений.
Уравнения
Часто при решении задач приходится составлять равенства.
Два выражения (числовые или буквенные), соединенные знаком равно «=», образуют равенство.
В математике различают два вида равенств: тождества и уравнения.
Тождества- это числовые равенства, а также равенства, которые выполняются при всех допустимых значениях переменных, входящих в него.
Уравнение- это равенство, содержащее неизвестные числа, обозначенные буквами, значение которых можно определить.
Неизвестное число, входящее в уравнение, называют неизвестным членом уравнения (или просто «неизвестным»).
Чаще всего в математике неизвестные величины обозначают маленькими буквами латинского алфавита x, y, z.
У меня есть дополнительная информация к этой части урока!
Долгое время в математических выкладках не использовали буквенные обозначения и записывали выражения и уравнения словами.
В 1591 году французский ученый философ Франсуа Виет ввел буквенные обозначения. Он предложил использовать гласные буквы латинского алфавита для названия величин, а согласные для неизвестных.
Позже другой французский ученый, философ Рене Декарт предложил иную систему обозначений, связанную с латинскими буквами (которую используют по сегодняшний день).
Для неизвестных было предложено использовать последние буквы латинского алфавита (х, у, z), а для известных величин первые буквы латинского алфавита (а, b, c)
Пример 1:
4 + х = 18 является уравнением с неизвестной х.
Все три записи являются равенствами, в каждом из них есть неизвестное число, обозначенное буквой.
Пример 2:
у + 2 > 12 не является уравнением, так как не является равенством.
Решить уравнение- это значит найти неизвестное число, при котором из уравнения получается верное равенство.
Уравнение считается решенным, если все его решения найдены или доказано, что уравнение решения не имеет.
Значение неизвестного, обращающее уравнение в верное равенство, называют корнем уравнения.
Следовательно, если в уравнение вместо неизвестной подставить ее численное значение и получится верное числовое равенство, то это значение неизвестной будет решением этого уравнения.
1) Пусть х равно 6, получаем
9 ≠ 10 (девять не равно десяти)
При подстановке вместо неизвестного число 6, получаем неверное числовое равенство 9 ≠ 10, т.е. число 6 не является корнем уравнения.
2) Пусть х равно 5, получаем
10 = 10
При подстановке вместо неизвестного число 5, получаем верное числовое равенство 10 = 10, т.е. число 5 является корнем уравнения.
Уравнение может иметь разное количество корней: существуют уравнения, имеющие один единственный корень, уравнения, имеющие два, три корня.
Встречаются уравнения, вообще не имеющие верного решения, и даже такие уравнения, решением которых являются бесконечное множество решений.
0 ⋅ y = 0 уравнение имеет бесконечное множество верных решений, так как при умножении любого числа на 0, получается 0.
Уравнение, содержащее одну неизвестную, называют уравнением с одной неизвестной.
Уравнения с большим количеством неизвестным называют соответственно уравнением с двумя, тремя и т.д. неизвестными.
Такие уравнения и их решение будете рассматривать в старших классах.
Любое уравнение имеет левую и правую часть.
Выражение, стоящее слева от знака равно, называют левой частью уравнения, а выражение, которое стоит справа, правой частью уравнения.
Каждый компонент, из которых состоит уравнение, называют членами этого уравнения.
Чаще всего уравнение записывают в левой части страницы, справа делают письменные вычисления (вычислительные операции).
При решении уравнения каждое новое равенство записывается с новой строки (т.е. решение оформляется в виде столбика равенств).
Таким образом, знак равенства при решении уравнения используют только один раз в каждой строке.
Пройти тест и получить оценку можно после входа или регистрации
Решение простых уравнений. 5 класс
Уравнение — это равенство, содержащее букву, значение которой надо найти.
В уравнениях неизвестное обычно обозначается строчной латинской буквой. Чаще всего используют буквы « x » [икс] и « y » [игрек].
Решив уравнение, всегда после ответа записываем проверку.
Информация для родителей
Уважаемые родители, обращаем ваше внимание на то, что в начальной школе и в 5 классе дети НЕ знают тему «Отрицательные числа».
Поэтому они должны решать уравнения, используя только свойства сложения, вычитания, умножения и деления. Методы решения уравнений для 5 класса приведены ниже.
Не пытайтесь объяснить решение уравнений через перенос чисел и букв из одной части уравнения в другую с изменением знака.
Освежить знания по понятиям, связанным со сложением, вычитанием, умножением и делением вы можете в уроке «Законы арифметики».
Решение уравнений на сложение и вычитание
Как найти неизвестное слагаемое |
x + 9 = 15
уменьшаемое
x − 14 = 2
вычитаемое
Чтобы найти неизвестное слагаемое, надо от суммы отнять известное слагаемое.
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.
Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.
x = 15 − 9
x = 6
Проверка
6 + 9 = 15
15 = 15
x = 14 + 2
x = 16
Проверка
16 − 2 = 14
14 = 14
x = 5 − 3
x = 2
Проверка
Решение уравнений на умножение и деление
Как найти неизвестный множитель |
y · 4 = 12
делимое
y : 7 = 2
делитель
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Чтобы найти неизвестное делимое, надо частное умножить на делитель.
Чтобы найти неизвестный делитель, надо делимое разделить на частное.
Мерзляк 5 класс — § 10. Уравнение
Вопросы к параграфу
1. Какое число называют корнем (решением) уравнения? — Корнем (решением) уравнения называют число, которое при подстановке вместо буквы обращает уравнение в верное числовое равенство.
2. Что значит решить уравнение? — Это значит найти все его корни или убедиться, что их вообще нет.
3. Как найти неизвестное слагаемое? — Надо из суммы вычесть известное слагаемое.
4. Как найти неизвестное уменьшаемое? — Надо к разности прибавить вычитаемое.
5. Как найти неизвестное вычитаемое? — Надо из вычитаемого вычесть разность.
Решаем устно
1. Найдите значение выражения 53 + х:
1. если х = 29, то 53 + х = 53 + 29 = 82
2. если х = 61, то 53 + х = 53 + 61 = 114
2. Найдите значение выражения 12y:
1. если: у = 7, то 12y = 12 • 7 = 84
2. если: у = 20, то 12y = 12 • 20 = 240
3. Найдите по формуле пути s = 50t расстояние (в метрах), которое проходит Петя:
1) за 4 мин: s = 50t = 50 • 4 = 200 метров
2) за 10 мин: s = 50t = 50 • 10 = 500 метров
Что означает числовой множитель в этой формуле? Числовой множитель 50 обозначает скорость движения Пети (м/мин).
4. Число а на 10 больше, чем число b. В виде каких из следующих равенств это можно записать:
Ответ: можно записать в виде равенств: а — b = 10; а — 10 = b; b + 10 = а.
5. Найдите все натуральные значения а, при которых выражение 20 : а принимает натуральные значения.
6. На одну чашу весов поставили несколько гирь по 2 кг, а на другую — по 3 кг, после чего весы пришли в равновесие. Сколько поставили гирь каждого вида, если всего их поставили 10?
На одну чашу весов надо поставить 6 гирь по 2 кг, а на другую — 4 гири по 3 кг.
Для решения использовано 10 гирь.
Упражнения
267. Какое из чисел 3, 12, 14 является корнем уравнения:
1) х + 16 = 28
Ответ: корнем уравнения является число 12.
2) 4х — 5 = 7
Ответ: корнем уравнения является число 3.
268. Какое из чисел 3, 12, 14 является корнем уравнения:
1) 234 — y = 220
Ответ: корнем уравнения является число 14.
2) 72 : b + 13 = 19
Ответ: корнем уравнения является число 12.
269. Решите уравнение:
270. Решите уравнение:
271. Решите уравнение:
272. Решите уравнение:
273. Решите с помощью уравнения задачу.
1) Оксана задумала число. Если к этому числу прибавить 43 и полученную сумму вычесть из числа 96, то получим число 25. Какое число задумала Оксана?
Пусть задуманное Оксаной число равно x. Тогда можно составить уравнение:
96 — (х + 43) = 25
х + 43 = 96 — 25
х + 43 = 71
х = 71 — 43
х = 28
Ответ: Оксана задумала число 28.
2) У Буратино было 74 сольдо. После того как он купил себе учебники для школы, папа Карло дал ему 25 сольдо. Тогда у Буратино стало 68 сольдо. Сколько сольдо потратил Буратино на учебники?
Пусть Буратино потратил на учебники х сольдо. Тогда можно составить уравнение:
(74 — х) + 25 = 68
74 — х = 68 — 25
74 — х = 43
х = 74 — 43
х = 31
Ответ: Буратино потратил на учебники х сольдо.
274. Решите с помощью уравнения задачу.
Ваня задумал число. Если к этому числу прибавить 27 и из полученной суммы вычесть 14, то получим число 36. Какое число задумал Ваня?
Пусть задуманное Ваней число равно х. Тогда можно составить уравнение:
(х + 27) — 14 = 36
х + 27 = 36 + 14
х + 27 = 50
х = 50 — 27
х = 23
Ответ: Ваня задумал число 23.
275. Какое число надо подставить вместо а, чтобы корнем уравнения:
1) (x + а) — 7 = 42 было число 22
Подставим вместо х число 22 — корень уравнения, затем найдём неизвестное а:
(22 + а) — 7 = 42
22 + а = 42 + 7
22 + а = 49
а = 49 — 22
а = 27
Ответ: вместо а надо подставить число 27.
2) (а — x) + 4 = 15 было число 3
Подставим вместо х число 3 — корень уравнения, затем найдём неизвестное а:
(а — 3) + 4 = 15
а — 3 = 15 — 4
а — 3 = 11
а = 11 + 3
а = 14
Ответ: вместо а надо подставить число 14.
276. Какое число надо подставить вместо а, чтобы корнем уравнения:
1) (х — 7) + а = 23 было число 9
Подставим вместо х число 9 — корень уравнения, затем найдём неизвестное а:
(9 — 7) + а = 23
2 + а = 23
а = 23 — 2
а = 21
Ответ: вместо а надо подставить число 21.
2) (11 + х) + 101 = а было число 5
Подставим вместо х число 5 — корень уравнения, затем найдём неизвестное а:
(11 + 5) + 101 = а
16 + 101 = а
117 = а
а = 117
Ответ: вместо а надо подставить число 117.
Упражнения для повторения
277. Лиза была в школе с 8 ч 15 мин до 15 ч 20 мин. Вечером она пошла на тренировку. Там она провела на 5 ч 40 мин меньше времени, чем в школе. Сколько времени Лиза была на тренировке?
1) 15 ч 20 мин — 8 ч 15 мин = 7 ч 5 мин — Лиза провела в школе.
2) 7 ч 5 мин — 5 ч 40 мин = 6 ч 65 мин — 5 ч 40 мин = 1ч 25 мин — Лиа провела на тренировке.
278. Начертите отрезок длиной 12 см. Над одним концом отрезка напишите число 0, а над другим — 480. Поделите отрезок на шесть равных частей. Отметьте на полученной шкале числа 40, 100, 280, 360, 420.
279. Можно ли, имея 900 р., купить 3 кг бананов по 65 р. за 1 кг, 2 кг мандаринов по 130 р. за 1 кг и 4 кг апельсинов по 95 р. за 1 кг?
Посчитаем общую стоимость предполагаемой покупки:
1) 65 • 3 = 195 (рублей) — потребуется на покупку бананов.
2) 130 • 2 = 260 (рублей) — потребуется на покупку мандаринов.
3) 95 • 4 = 380 (рублей) — потребуется на покупку апельсинов.
4) 195 + 260 + 380 = 835 (рублей) — будет стоить весь набор продуктов.
Сравним предполагаемую стоимость покупки с имеющейся суммой денег:
Значит купить все эти продукты на 900 рублей можно.
Задача от мудрой совы
280. В трёх ящичках лежат шары: в первом ящичке — два белых, во втором — два чёрных, в третьем — белый и чёрный. На ящички наклеены этикетки ББ, ЧЧ и БЧ так, что содержимое каждого из них не соответствует этикетке. Как, вынув один шар, узнать, что в каком ящичке лежит?
Этикетки на ящиках не соответствуют их содержимому. Значит в ящике БЧ не может лежать два разноцветных шарика. Там будет либо 2 белых шарика, либо два чёрных шарика. Вытащим один шар из ящика с этикеткой БЧ:
Ответ: надо вытащить шар из ящика с надписью БЧ.
Что такое уравнение и корни уравнения? Как решить уравнение?
Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.
Что такое уравнение? Смысл и понятия.
Узнаем сначала все понятия, связанные с уравнением.
Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.
Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.
Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.
Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.
Рассмотрим теперь, все термины на простом примере:
x+1=3
В данном случае x – переменная или неизвестное значение уравнения.
Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.
Получили верное равенство. Значит, правильно нашли корни уравнения.
Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.
Правила уменьшения или увеличения уравнения на определенное число.
Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7
Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.
Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.
Проверка:
Вместо переменной x подставим 5.
x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.
Разберем следующий пример:
Решите уравнение x-4=12.
Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:
Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16
Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.
Рассмотрим пример:
Решите уравнение 4+3x=2x-5
Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9
Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.
Правила уменьшения или увеличения уравнения в несколько раз.
Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.
Рассмотрим пример:
Решите уравнение 5x=20.
Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.
5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4
Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.
Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.
Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.
7=7 получено верное равенство.
Ответ: корень уравнения равен x=21.
Следующий пример:
Найдите корни уравнения
Далее делим все уравнение на 3.
Сделаем проверку. Подставим в уравнение найденный корень.
Как решать уравнения? Алгоритм действий.
Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:
Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.
Памятка : «Решение уравнений», 5 класс
(Х – 87) – 27 = 36; Х-87 в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
Х – 87 = 63; х в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
Проверка: (150 – 87) – 27 = 36;
87- ( 41 + У ) = 22; 41 + У в уравнении является вычитаемым . Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность
41 + У = 65; У в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое
Проверка: 87- ( 41 + 24 ) = 22;
(у – 35) + 12 = 32; у – 35 в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое
у – 35 = 20; у в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
468 – ( 259 – х) = 382; 468 – 259 + х = 382;
Решение уравнений, приведение подобных слагаемых
Пример 1: 8х-х=49 ; сначала запишем знаки умножения,
8*х-1*х=49 ; затем воспользуемся распределительным свойством (вынесем общую переменную за скобки)
Пример 2: 2х+5х+350=700 ; воспользуемся распределительным свойством (вынесем общую переменную за скобки)
Х*(2+5)+350=700 ; приведем подобные слагаемые (т.е. сложим числа в скобках)
2*50 + 5*50 + 350 = 700;
100 + 250 + 350 = 700;
Пример: 270: х + 2 = 47;
Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое
Пример: а : 5 – 12 = 23;
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-858839
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
В России зарегистрировали вакцину от коронавируса для подростков
Время чтения: 1 минута
В России создадут единый центр по работе с трудными подростками
Время чтения: 1 минута
Российские школьники установили рекорд на олимпиаде по астрономии
Время чтения: 2 минуты
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
ОНФ выявил за 2021 год более 600 опасных маршрутов к школам в регионах
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
- что значит без перфорации
- что значит коэффициент финансовой устойчивости