что значит сократить дробь 7 класс алгебра
Алгебраические дроби. Сокращение алгебраических дробей
Прежде чем перейти к изучению алгебраических дробей рекомендуем вспомнить, как работать с обыкновенными дробями.
Любая дробь, в которой есть буквенный множитель, называется алгебраической дробью.
Примеры алгебраических дробей.
Как и у обыкновенной дроби, в алгебраической дроби есть числитель (наверху) и знаменатель (внизу).
Сокращение алгебраической дроби
Алгебраическую дробь можно сокращать. При сокращении пользуются правилами сокращения обыкновенных дробей.
Напоминаем, что при сокращении обыкновенной дроби мы делили и числитель, и знаменатель на одно и тоже число.
Алгебраическую дробь сокращают таким же образом, но только числитель и знаменатель делят на один и тот же многочлен.
Рассмотрим пример сокращения алгебраической дроби.
Разделим, и числитель, и знаменатель на « a 2 ». При делении одночленов используем свойство степени частного.
Напоминаем, что любая буква или число в нулевой степени — это единица.
Нет необходимости каждый раз подробно записывать, на что сокращали алгебраическую дробь. Достаточно держать в уме степень, на которую сокращали, и записывать только результат.
Краткая запись сокращения алгебраической дроби выглядит следующим образом.
Сокращать можно только одинаковые буквенные множители.
Нельзя сокращать
Можно сокращать
Другие примеры сокращения алгебраических дробей.
Как сократить дробь с многочленами
Рассмотрим другой пример алгебраической дроби. Требуется сократить алгебраическую дробь, у которой в числителе стоит многочлен.
Сокращать многочлен в скобках можно только с точно таким же многочленом в скобках!
Ни в коем случае нельзя сокращать часть многочлена внутри скобок!
Неправильно
Правильно
Определить, где заканчивается многочлен, очень просто. Между многочленами может быть только знак умножения. Весь многочлен находится внутри скобок.
После того, как мы определили многочлены алгебраической дроби, сократим многочлен « (m − n) » в числителе с многочленом « (m − n) » в знаменателе.
Примеры сокращения алгебраических дробей с многочленами.
Вынесение общего множителя при сокращении дробей
Чтобы в алгебраических дробях появились одинаковые многочлены иногда нужно вынести общий множитель за скобки.
В таком виде сократить алгебраическую дробь нельзя, так как многочлен
« (3f + k) » можно сократить только со многочленом « (3f + k) ».
Поэтому, чтобы в числителе получить « (3f + k) », вынесем общий множитель « 5 ».
Сокращение дробей с помощью формул сокращенного умножения
В других примерах для сокращения алгебраических дробей требуется
применение формул сокращенного умножения.
В первоначальном виде сократить алгебраическую дробь нельзя, так как нет одинаковых многочленов.
Но если применить формулу разности квадратов для многочлена « (a 2 − b 2 ) », то одинаковые многочлены появятся.
Другие примеры сокращения алгебраических дробей с помощью формул сокращенного умножения.
Сокращение дробей. Что значит сократить дробь?
Сокращение дробей нужно для того, чтобы привести дробь к более простому виду, например, в ответе полученном в результате решения выражения.
Сокращение дробей, определение и формула.
Что такое сокращение дробей? Что значит сократить дробь?
Определение:
Сокращение дробей – это разделение у дроби числитель и знаменатель на одно и то же положительное число не равное нулю и единице. В итоге сокращения получается дробь с меньшим числителем и знаменателем, равная предыдущей дроби согласно основному свойству рациональных чисел.
Формула сокращения дробей основного свойства рациональных чисел.
Рассмотрим пример:
Сократите дробь \(\frac<9><15>\)
Решение:
Мы можем разложить дробь на простые множители и сократить общие множители.
Ответ: после сокращения получили дробь \(\frac<3><5>\). По основному свойству рациональных чисел первоначальная и получившееся дробь равны.
Как сокращать дроби? Сокращение дроби до несократимого вида.
Чтобы нам получить в результате несократимую дробь, нужно найти наибольший общий делитель (НОД) для числителя и знаменателя дроби.
Есть несколько способов найти НОД мы воспользуемся в примере разложением чисел на простые множители.
Получите несократимую дробь \(\frac<48><136>\).
Решение:
Найдем НОД(48, 136). Распишем числа 48 и 136 на простые множители.
48=2⋅2⋅2⋅2⋅3
136=2⋅2⋅2⋅17
НОД(48, 136)= 2⋅2⋅2=6
Правило сокращения дроби до несократимого вида.
Пример:
Сократите дробь \(\frac<152><168>\).
Решение:
Найдем НОД(152, 168). Распишем числа 152 и 168 на простые множители.
152=2⋅2⋅2⋅19
168=2⋅2⋅2⋅3⋅7
НОД(152, 168)= 2⋅2⋅2=6
Ответ: \(\frac<19><21>\) несократимая дробь.
Сокращение неправильной дроби.
Как сократить неправильную дробь?
Правила сокращения дробей для правильных и неправильных дробей одинаковы.
Рассмотрим пример:
Сократите неправильную дробь \(\frac<44><32>\).
Решение:
Распишем на простые множители числитель и знаменатель. А потом общие множители сократим.
Сокращение смешанных дробей.
Смешанные дроби по тем же правилам что и обыкновенные дроби. Разница лишь в том, что мы можем целую часть не трогать, а дробную часть сократить или смешанную дробь перевести в неправильную дробь, сократить и перевести обратно в правильную дробь.
Рассмотрим пример:
Сократите смешанную дробь \(2\frac<30><45>\).
Решение:
Решим двумя способами:
Первый способ:
Распишем дробную часть на простые множители, а целую часть не будем трогать.
Второй способ:
Переведем сначала в неправильную дробь, а потом распишем на простые множители и сократим. Полученную неправильную дробь переведем в правильную.
Вопросы по теме:
Можно ли сокращать дроби при сложении или вычитании?
Ответ: нет, нужно сначала сложить или вычесть дроби по правилам, а только потом сокращать. Рассмотрим пример:
Решение:
Часто допускают ошибку сокращая одинаковые числа в числителе и знаменателе в нашем случаем число 20, но их сокращать нельзя пока не выполните сложение и вычитание.
На какие числа можно сокращать дробь?
Ответ: можно сокращать дробь на наибольший общий делитель или обычный делитель числителя и знаменателя. Например, дробь \(\frac<100><150>\).
Распишем на простые множители числа 100 и 150.
100=2⋅2⋅5⋅5
150=2⋅5⋅5⋅3
Наибольшим общим делителем будет число НОД(100, 150)= 2⋅5⋅5=50
Получили несократимую дробь \(\frac<2><3>\).
Но необязательно всегда делить на НОД не всегда нужна несократимая дробь, можно сократить дробь на простой делитель числителя и знаменателя. Например, у числа 100 и 150 общий делитель 2. Сократим дробь \(\frac<100><150>\) на 2.
Получили сократимую дробь \(\frac<50><75>\).
Какие дроби можно сокращать?
Ответ: сокращать можно дроби у которых числитель и знаменатель имеют общий делитель. Например, дробь \(\frac<4><8>\). У числа 4 и 8 есть число, на которое они оба делятся это число 2. Поэтому такую дробь можно сократить на число 2.
Пример:
Сравните две дроби \(\frac<2><3>\) и \(\frac<8><12>\).
Эти две дроби равны. Рассмотрим подробно дробь \(\frac<8><12>\):
Две дроби равны тогда и только тогда, когда одна из них получена путем сокращения другой дроби на общий множитель числителя и знаменателя.
Пример:
Сократите если возможно следующие дроби: а) \(\frac<90><65>\) б) \(\frac<27><63>\) в) \(\frac<17><100>\) г) \(\frac<100><250>\)
Сокращение дробей: правила и примеры
Разберемся в том, что такое сокращение дробей, зачем и как сокращать дроби, приведем правило сокращения дробей и примеры его использования.
Что такое «сокращение дробей»
В результате такого действия получится дробь с новым числителем и знаменателем, равная исходной дроби.
Приведение дробей к несократимому виду
Это можно сделать, если сократить числитель и знаменатель на их наибольший общий делитель (НОД). Тогда, по свойству наибольшего общего делителя, в числителе и в знаменателе будут взаимно простые числа, и дробь окажется несократимой.
Приведение дроби к несократимому виду
Чтобы привести дробь к несократимому виду нужно ее числитель и знаменатель разделить на их НОД.
6 24 = 6 ÷ 6 24 ÷ 6 = 1 4
Сокращение дробей удобно применять, чтобы не работать с большими цифрами. Вообще, в математике существует негласное правило: если можно упростить какое-либо выражение, то нужно это делать. Под сокращением дроби чаще всего подразумевают ее приведение к несократимому виду, а не просто сокращение на общий делитель числителя и знаменателя.
Правило сокращения дробей
Чтобы сокращать дроби достаточно запомнить правило, которое состоит из двух шагов.
Правило сокращения дробей
Чтобы сократить дробь нужно:
Рассмотрим практические примеры.
Пример 1. Сократим дробь.
Найдем НОД числителя и знаменателя. Для этого в данном случае удобнее всего воспользоваться алгоритмом Евклида.
182 195 = 182 ÷ 13 195 ÷ 13 = 14 15
Готово. Мы получили несократимую дробь, которая равна исходной дроби.
Как еще можно сокращать дроби? В некоторых случаях удобно разложить числитель и знаменатель на простые множители, а потом из верхней и нижней частей дроби убрать все общие множители.
Пример 2. Сократим дробь
Для этого представим исходную дробь в виде:
360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7
Избавимся от общих множителей в числителе и знаменателе, в результате чего получим:
360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7 = 2 · 3 7 · 7 = 6 49
Наконец, рассмотрим еще один способ сокращения дробей. Это так называемое последовательное сокращение. С использованием этого способа сокращение производится в несколько этапов, на каждом из которых дробь сокращается на какой-то очевидный общий делитель.
Пример 3. Сократим дробь
2000 4400 = 2000 ÷ 100 4400 ÷ 100 = 20 44
20 44 = 20 ÷ 2 44 ÷ 2 = 10 22
Получившийся результат снова сокращаем на 2 и получаем уже несократимую дробь:
Сокращение алгебраических дробей: правило, примеры.
Данная статья продолжает тему преобразования алгебраических дробей: рассмотрим такое действие как сокращение алгебраических дробей. Дадим определение самому термину, сформулируем правило сокращения и разберем практические примеры.
Смысл сокращения алгебраической дроби
В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.
Сокращение алгебраической дроби представляет собой аналогичное действие.
Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.
Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.
Все ли алгебраические дроби подлежат сокращению?
С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.
Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.
Правило сокращения алгебраических дробей
Правило сокращения алгебраических дробей состоит из двух последовательных действий:
Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.
Характерные примеры
Несмотря на некоторую очевидность, уточним про частный случай, когда числитель и знаменатель алгебраической дроби равны. Подобные дроби тождественно равны 1 на всей ОДЗ переменных этой дроби:
Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).
К примеру, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105
Произведение простых одинаковых множителей возможно записать как степени, и в процессе сокращения дроби использовать свойство деления степеней с одинаковыми основаниями. Тогда вышеуказанное решение было бы таким:
(числитель и знаменатель разделены на общий множитель 2 2 · 3 ). Или для наглядности, опираясь на свойства умножения и деления, решению дадим такой вид:
24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105
По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.
Решение
Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:
Однако, более рациональным способом будет запись решения в виде выражения со степенями:
Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число. Последнее преобразование проводится в силу основного свойства алгебраической дроби (про него можно почитать в статье «Приведение алгебраической дроби к новому знаменателю»).
Решение
Возможно сократить дробь таким образом:
Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.
Решение
Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:
Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:
Краткое решение без пояснений запишем как цепочку равенств:
Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.
Решение
На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:
Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x 2 · y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:
Теперь становится виден общий множитель, осуществляем сокращение:
Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.
Сокращение алгебраических дробей (7-й класс)
Разделы: Математика
Класс: 7
I. Организационный момент.
(Урок начинается со стихотворения, которое зачитывает ученик у доски).
Сегодня в дроби я попал
Загрустил, затосковал.
Ох, и сложное же положение
Научиться выполнять деление.
Мысли путаются все
В моей умной голове.
Как же дроби сократить?
Что на что мне разделить?
Есть числитель, знаменатель
Разлагать умею я
Помогите мне, друзья.
(Учитель прикрепляет портрет грустного человека)
— О какой помощи вас просит Антон? (Научить сокращать дроби)
— А что значит сократить дробь?
— В виде чего должны быть представлены числитель и знаменатель дроби?
— Какие способы разложения на множители вы знаете? (В ходе беседы с учащимися на доске появляется схема)
— Расскажите алгоритм сокращения дробей.
II. Обобщение и закрепление ранее изученного материала.
Итак, тема нашего урока “Сокращение алгебраических дробей” (записывают в тетрадях).
Цель: закрепить навыки сокращения дробей.
Так как единственный путь, ведущий к знанию – это деятельность. Предлагаю выполнить следующие задания:
1. № 690(а) из домашнего задания.
2. Решить уравнение х (х – 1) – (х – 5) 2 = 2.
4. На местах несколько человек выполняют на листочках тест.
Тест “Сокращение дробей”
1.
А.
Б.
В.
2. A.
Б.
В.
3. А.
Б. –
В.
4. А. – 1 Б.
В.
5. А.
Б.
В.
С остальными учащимися проводится фронтальная работа:
(Презентация, слайд № 2, 3, 4, 5)
1. При каком значении переменной дробь не имеет смысла ,
?
2. Можно ли сократить дробь ?
3. При каком значении n верно равенство ? Что выражает это равенство?
4. Сократите дробь:,
,
,
.
Проверка отвечающих у доски.
— Одним из основных умений при сокращении дробей является разложение многочлена на множители. Проверим, готовы ли мы к сокращению дробей.
(Учащимся выдаются листочки с заданиями. Необходимо найти для многочлена, который записан в левом столбце, его разложение в правом столбце. Выполняют задание по вариантам.)
1 вариант
1. 49 + 14у + у 2 ; А) (7 – у)(7 + у)
2. 2у 2 – 20у + 50; Б) (у – 5)(у 2 + 5у + 25)
3. х 3 – х 2 у; В) 2(у – 5) 2
4. 49 – у 2 ; Г) (7 + у) 2
5. у 3 – 125; Д) (у – 3) 3
6. у 3 – 9у 2 + 27у – 27; Е) х 2 (х – у)
2 вариант
1. 25 – х 2 ; А) (х + 5) 2
2. 3х 2 – 30х + 75; Б) (х – 2) 3
3. 125 – х 3 ; В) 3(х – 5) 2
4. х 2 + 10х + 25; Г) (5 – х)(5 + х)
5. х 3 – 6х 2 + 12х – 8; Д) х 3 (х – у)
6. х 4 – х 3 у; Е) (5 – х)(25 + 5х + х 2 )
Дополнительное задание для тех учащихся, кто работает быстро:
Составьте из двух многочленов левого или правого столбца дробь так, чтобы можно было выполнить сокращение дроби и сократите дробь. (Проверка-презентация, слайд № 6, 7)
(Вопросы на закрепление материала)
1) Чему равен квадрат суммы двух выражений?
2) Чему равна разность кубов двух выражений?
“Изучать материал не размышляя, все равно, что есть не переваривая”.
Поразмышляем в парах:
Ученикам предлагается карточка лото на выбор. На красной карточке задание более сложное, на синей – более простое.
Работают в тетрадях, помогая друг другу.
Каждому человеку свойственно ошибаться. Не ошибается только тот, кто ничего не делает.
(Презентация, слайд № 10, 11)
1)
2) =
3)
4)
5)
6)
Возьмем минутку отдыха.
Решите анаграммы и исключите лишнее слово:
БОДЬР, ОФСИЗМ, ЛЕНОМГОЧН. (Определение слова “софизм”)
4. Самостоятельная работа.
Учитель: “Математику нельзя изучать, наблюдая, как это делает сосед”.
Выполним самостоятельную работу.
(Презентация, слайд № 12, 13, 14, 15, 16)
1 вариант
1.
2.
3.
4.
5.
6.
7. Зная, что 5а – 10в = 18 найдите значение выражения
2 вариант
1.
2.
3.
4.
5.
6.
7. Зная, что 3х – 9у = 1, найдите значение выражения .
Учащиеся за выполненные задания группы А самостоятельной работы, обменявшись тетрадями выставляют друг другу оценки. (Сколько плюсов, такая и оценка). Задания группы В оцениваются учителем после урока.
Итак, мы на уроке закрепили навыки сокращения алгебраических дробей. Сформулируйте алгоритм сокращения алгебраических дробей.
IV. Домашнее задание.
Учитель:
(Учитель переворачивает портрет грустного человека).
(Учащимся раздаю маленькие портреты этого человека, где на обратной стороне записаны дроби для д/з)
Ребята! В домашнем задании вам необходимо исключить лишнюю дробь: ,
,
,
. Найти значение любой из оставшихся дробей при значении х, которое вы получите, выполнив задание 706 (в) при х = 1, у = 1379. Полученное значение дроби укажет номер следующего задания.