что значит утечка тока

Как найти утечку тока в квартире и в частном доме

При превышении нагрузки в замкнутой электросети иногда возникает утечка тока. Нагрузкой становятся различные проводящие объекты – человеческое тело, батареи, ванна, электрические приборы. Чрезмерно большой ток утечки представляет опасность для жизни, имеет риски повреждения бытовой техники. По этой причине стоит разобраться, как обнаружить и защититься от явления.

Что такое утечка тока

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Схема поражения человека электричеством

В ГОСТах 61140-2012 и 30331.1-2013 дано определение понятия. Токовая утечка – это протекание электротока в грунт, к открытым, проводящим, сторонним предметам или защитным проводникам в нормальных рабочих условиях.

Ток направляется от фазы к земле по непредназначенному для этого маршруту:

Направленность тока при утечке

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Ток утечки в землю

Направление токов зависит от типа заземления:

Направление и путь тока в схемах IT и ТТ одинаковы.

Причины возникновения утечки тока

Утечка возникает даже при функционировании оборудования в штатном режиме, но опасность появляется, когда превышен предел дифференциального тока. Допустимая норма может увеличиваться в нескольких случаях.

С электроприбора в квартире или доме

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Пробой на корпус в системах: А) TN-C-S, В) TN-C

Напряжение возникает на корпусе бытовой техники (чаще всего водонагревателя или машинки-автомат). Причина заключается в повреждениях ТЭНа или разрывах изоляции. В трехпроводной или двухпроводной схеме подключения оборудования явление проявляется по-разному:

Наибольшую опасность для жизни представляет двухпроводной тип подключения.

В скрытой проводке в доме или квартире

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Повреждение изоляции кабеля скрытой проводки

При скрытой организации проводки существуют риски повреждения изолированных жил кабеля. Они происходят в таких случаях:

Изоляция имеет постоянную величину сопротивления, но при подозрениях на утечку ее необходимо проверить.

Чем опасна утечка

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Поражение человека током

Если изоляционный слой теряет сопротивление, человек, прикоснувшись к корпусу бытовой техники, оболочке провода, вилке штепсельного типа, розетке, трубе водопровода или отопления, стен жилого здания, выступит в роли проводника. Через его тело ток утечки поступит в землю. При этом существуют риски частичного поражения или летального исхода.

Токовая утечка повлияет на качество энергопотребления. В доме могут не работать некоторые потребители, но даже при выключенном состоянии техники на электросчетчике отразиться затрата электричества.

Заземление электроприборов предотвратит удары тока при касании к корпусу. В этом случае точка фиксации проводящего кабеля начнет интенсивно выделять тепло, что станет причиной возгорания проводки.

Характерные признаки

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Путь тока утечки через поврежденный выпрямительный диод

Узнать токовую утечку можно по следующим признакам:

Для устранения явления нужно выявить его причину.

Как проверить и найти ток утечки своими руками

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

В домашних условиях можно применить простой метод – проверку утечки измерительными приборами.

Индикаторная отвертка

Инструментом можно найти фазу на предметах-проводниках. Кончиком отвертки необходимо прикоснуться к различным участкам. Загорание лампочки свидетельствует о нарушении изоляционного слоя.

Работа с мультиметром

Прибор используется в режиме омметра для уточнения показателей сопротивления. Понадобится включить мультиметр, перевести его на омметр, щупами посмотреть показатели между корпусами техники и каждым из штырей. Об утечке свидетельствует величина больше 20 мОм.

Показатель меньше 5 мА не является опасным при надежном заземлении электроприборов.

Прозвонка мегаомметром

Бытовую технику понадобится отключить от сети. Поскольку прибор умеет находить повреждения на нечувствительном к напряжению оборудовании, понадобится прикоснуться к нему щупами. Вращая рукоятку, генерируют напряжение. Утечка выявляется если сопротивление более 20 мОм.

При резком скачке напряжения от 500 до 1000 В слаботочная электроника выходит из строя.

Как определить, поврежден ли электроприбор

Приборы с металлическим корпусом при попадании на них фазного напряжения становятся опасными для жизни. Определить утечку можно так:

Не касайтесь руками бытовой техники.

Поиск проблем в электропроводке

Поврежденная цепь скрытой проводки часто становится причиной поражения током при ремонтно-отделочных работах. Наличие утечки легко проверить транзисторным радиоприемником.

Устройство настраивают на улавливание средней и длинной волны, прослушку станции в режиме молчания. Радиоприемник включают на полную громкость и начинают поиск, проводя им практически по стене. Шумы динамика и фоновые помехи говорят о повреждении коммуникаций.

Средства защиты

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Устройство защитного отключения (УЗО)

Чтобы обезопасить себя от поражения током, а бытовую технику от поломок, используются следующие методы защиты:

Организация защиты требует соблюдения норм безопасности и профессиональных навыков, поэтому понадобится помощь специалистов.

Обнаружение утечки тока позволит защитить человека от травм или смерти, предотвратит поломки техники. Самостоятельные изменения стоит проводить с соблюдением техники безопасности, а линию защиты организовывать с задействованием квалифицированных электриков.

Источник

От какого тока всё-таки срабатывает УЗО? Разбираемся в терминологии

Ток утечки, ток замыкания на землю, дифференциальный ток — от чего же срабатывает УЗО?

Пусть это будет шпаргалкой и методичкой для тех, кто имеет дело со всякими УЗО (ВДТ) и дифавтоматами (АВДТ). В том числе (в первую очередь) для меня. Пора разложить по полочкам все эти утечки и дифференциалы, иначе бардак с терминологией постоянно подбешивает. Каюсь, бардак этот встречается на просторах рунета в том числе и в моих прошлых статьях. В будущем постараюсь придерживаться официальной версии в плане терминологий.

Кстати, о терминологии. В статье я вместо «УЗО» (устройство защитного отключения) пишу по новомодному — «ВДТ» (выключатель дифференциального тока). Но по факту это абсолютно одно и то же устройство, просто первое — более маркетинговое и простонародное, второе — более ГОСТовское и бумажное.

Итак, об чём речь в статье? Ток утечки, ток замыкания на землю и дифференциальный ток — все они из одной оперы, и все они часто бывают свалены в кучу. Разбираемся подробно, что к чему, что на что влияет и от чего зависит.

Что такое ток утечки?

Главное, что надо знать — ток утечки есть всегда, и если он присутствует- это нормально. Более того, я не могу представить ситуации, когда этого тока не будет. Может быть, только в идеальном мире, где сопротивление изоляции и всех предметов, не предназначенных для проведения тока, равно бесконечности.

Официальное определение — в ГОСТ IEC 61008-1-2020 (главный ГОСТ по ВДТ, если кто не знает) (п.3.1.2): ток утечки — это «ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи».

Ток утечки «утекает» вопреки первому закону Кирхгофа от фазного проводника на землю. Землёй в данном случае считается всё, что электрически соединено с заземлённой нейтралью трансформатора на ТП, а на вводе в дом — с ГЗШ и контуром заземления.

Напишите в комментариях, нарушается ли в данном случае 1-й закон дедушки Кирхгофа?

На картинке ниже я изобразил, насколько мне позволяют мои дизайнерские способности, типичную ситуацию — система TN-C-S, повторное заземление, УЗО как символ порогового устройства, реагирующего на ток утечки, и сам ток утечки (точечной линией):

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Ток утечки на землю

Есть таблицы, которые по которым проектировщики определяют (плюс-минус трамвайная остановка)) ток утечки различных бытовых приборов. Кому интересно — информация есть в ГОСТ IEC 60335-1-2015:

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Допустимые токи утечки бытовых приборов

Большинство бытовых электроприборов имеют класс I по уровню токов утечки.

Что касается электропроводки, ток утечки примерно с такой же точностью оценивается по ПУЭ, п.7.1.83: «(…) ток утечки электроприемников следует принимать из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки сети — из расчета 10 мкА на 1 м длины фазного проводника.

То есть, если на данной группе подключен только нагреватель с рабочим током 10 А на расстоянии 100 м, ток утечки такой инсталляции будет считаться так: 0,4 мА х 10 А = 4 мА (утечка электроприемника), плюс 0,01 мА х 100 м = 1 мА. Итого — ток утечки при работе такого нагревателя 5 мА будет нормой. И согласно тому же п.7.1.83 ВДТ с IΔn = 10 мА ставить на такую группу нельзя — фоновый (нормальный, или рабочий) ток утечки должен быть в 3 раза меньше, чем IΔn. Иначе запаритесь бегать стометровку!

Что такое ток замыкания на землю?

Это любой ток, который протекает от фазного (линейного) проводника на любые предметы, так или иначе соединенные (имеющие электрическую связь) с глухозаземленной нейтралью трансформатора на подстанции (ТП). В чём же отличие от тока утечки? Принципиальная разница — ток замыкания на землю возникает при аварийном случае.

Это моё вольное изложение.

А вот что говорит ГОСТ IEC 61008-1-2020 (п.3.1.1), ток замыкания на землю – это «ток, проходящий в землю через место замыкания при повреждении изоляции».

При пробое изоляции, к примеру, на металлический корпус электроприбора, появляется некоторая величина тока замыкания на землю. Величина этого тока может «гулять» в очень больших пределах — от единиц миллиампер (например, при повышении влажности) до сотен и тысяч ампер (при КЗ).

Странно и непонятно, почему в этом же ГОСТ есть слова: «ВДТ могут применяться для защиты от возникновения пожара, вызванного утечкой тока через изношенную изоляцию проводов и некачественные соединения». Или «утечка тока» отличается от «тока утечки»? Ответ прост — «ток утечки» это параметр электроустановки, а «утечка тока» — физическое явление.

На картинке я изобразил ток замыкания на землю в виде молнии:

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Ток замыкания на землю

Теоретически ток замыкания на землю может достигать значения тока короткого замыкания. Читайте мою статью — Что такое ток КЗ и от чего он зависит.

Но замыкание на землю — это не только про изоляцию. Если произойдет прямое прикосновение человека к открытым токопроводящим частям (к фазному проводу либо любой другой металлической части электроустановки, по какой-то причине находящейся под напряжением), и при этом человек находится на проводящей поверхности, то через его тело будет проходить ток замыкания на землю. Какое значение тока будет при этом и к чему это приведёт — зависит от человеческого фактора (черный юмор). В лучшем случае человек даже ничего не почувствует и не поймёт, что случаи бывают разные.

Ещё раз, в чем разница между током утечки и током замыкания? Утечка — это нормально, замыкание это авария. Грань в данном случае определяется при измерении сопротивления изоляции — как только оно опустится до недопустимого уровня, утечка чудесным образом станет замыканием.

Примерно так, как если посмотреть на шпиона с другой стороны, он станет разведчиком.

Что такое дифференциальный ток?

Дифференциальный ток — это сумма тока утечки и тока замыкания на землю. Если установлено ВДТ, то дифференциальный ток — это разница токов по фазному и нейтральному току ВДТ.

Официально (ГОСТ тот же, п.3.2.3): дифференциальный ток — это «действующее значение векторной суммы токов, протекающих в первичной цепи ВДТ».

Таким образом дифференциальный ток IΔ, который может вызвать срабатывание ВДТ, будет складываться из двух составляющих: тока утечки и тока замыкания на землю. Он никогда не равен нулю, поскольку «фоновый» ток утечки присутствует всегда. И он может резко увеличиться, если появится ток замыкания на землю.

На что срабатывает ВДТ (УЗО)?

ВДТ абсолютно по барабану, как так получилось, что токи по его фазному и нейтральному проводу стали критично отличаться. Настолько критично, что он принимает решение о выключении нагрузки, которая не выполняет 1-й закон старины Кирхгофа.

Дифференциальный ток — это зло. Он говорит либо о слабой изоляции (это в какой-то степени допустимо), либо о каком-то аварийном инциденте, который может привести к пожару и человеческим жертвам. И против него те же немцы придумали ВДТ, которое торгаши и нормальные электрики называют УЗО.

И если говорить правильно, ВДТ срабатывает именно на дифференциальный ток.

Получается, что если человек говорит с умным видом «УЗО сработало от утечки», то:

Когда сработает ВДТ (УЗО)?

ВДТ срабатывает при превышении определенного уровня дифференциального тока. Получается, ВДТ плевать, какова причина происхождения дифференциального тока, на который он реагирует — ему главное значение (про вид и форму тока мы пока не говорим).

Уровень срабатывания (отключения) можно назвать уставкой дифференциального тока, но правильно — номинальный отключающий дифференциальный ток IΔn (п.5.2.3 тоже же ГОСТ).

Начиная со значения дифференциального тока IΔn и выше, вплоть до номинальной наибольшей включающей и отключающей способности IΔm, ВДТ должен отключаться.

Но ВДТ может отключаться, если дифференциальной ток выше чем номинальный неотключающий дифференциальный ток IΔn0, который равен половине отключающего. Может, хотя не обязан.

Вот эти ребята могут отключиться, если дифференциальный ток больше 15 мА:

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

УЗО ВДТ и АВДТ на 30 мА.

И никто их за это не осудит, поскольку этот поступок будет строго в рамках ГОСТ IEC 61008-1-2020.

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Номинальный неотключающий дифференциальный ток

Может ли выключиться ВДТ (УЗО), если нет дифференциального тока?

Странный вопрос. Некоторое время назад я бы утвердительно сказал «Нет!». Но нет предела совершенству и изучению ГОСТов.

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка тока

Дифференциального тока нет, а УЗО выбивает. Почему?

Кто знает, при каких условиях и почему ВДТ вполне легально может отключить цепь, если при этом IΔ = 0, т.е. дифференциальный ток через ВДТ равен нулю?

Ответы и наводящие вопросы пишите в комментариях!

На сегодня всё, всем желаю знать официальные термины и уметь правильно ими оперировать.

Источник

Ток утечки: что это такое, особенности, путь протекания, измерение

Ток утечки (leakage current) — это электрический ток, протекающий в землю, открытые, сторонние проводящие части и защитные проводники при нормальных условиях (определение согласно ГОСТ 30331.1-2013 [1]).

Проведя очень большой анализ существующей нормативной документации Харечко Ю.В. в своей книге [2] заключает следующее:

« Из представленного выше определения следует, что ток утечки имеет место в нормальных условиях оперирования, когда изоляция токоведущих частей низковольтной электроустановки, находящихся под напряжением, не имеет повреждений. Такие условия называют нормальными условиями. Ток утечки протекает из токоведущих частей в землю или сторонние проводящие части. При этом следует учитывать, что ток утечки электрооборудования класса I обычно протекает по следующему проводящему пути: из токоведущих частей в его открытые проводящие части и далее – в присоединенные к ним защитные проводники. »

Харечко Ю.В. также поясняет причину возникновения тока утечки [2]:

« Активное сопротивление изоляции токоведущих частей электрооборудования не может быть бесконечно большим, а их емкость относительно земли или связанных с землей проводящих частей не может быть равной нулю. Поэтому с любой токоведущей части, находящейся под напряжением, в землю, а также в проводящие части, электрически соединенные защитными проводниками с заземляющим устройством электроустановки здания и с заземленной токоведущей частью источника питания, постоянно протекает небольшой электрический ток, который в нормативной документации называют током утечки. То есть в нормальных условиях из токоведущих частей функционирующего электрооборудования всегда имеется утечка электрического тока в землю, открытые и сторонние проводящие части и защитные проводники. »

Устранить токи утечки можно лишь одним способом – отключив электроустановку здания.

Особенности

Харечко Ю.В. конкретизирует некоторые особенности, которые касаются понятия «ток утечки» [2]:

« Любое качественное электрооборудование имеет какие-то токи утечки, которые начинают протекать в проводниках электрических цепей при его включении. Если выполнять защиту от токов утечки, электрооборудование невозможно будет использовать, поскольку любое его включение будет инициировать срабатывание защитных устройств, которые будут отключать электрические цепи. В условиях повреждений, когда происходят замыкания на землю, протекают токи замыкания на землю. Защитные устройства обнаруживают токи замыкания на землю и отключают защищаемые ими электрические цепи или сигнализируют о появлении замыканий на землю. »

Харечко Ю.В. продолжает [2]:

« При прикосновении человека к находящейся под напряжением токоведущей части через его тело будет протекать ток замыкания на землю, а не ток утечки. Ток замыкания на землю возникает также при повреждении «изоляции относительно корпуса или земли». Дифференциальный ток представляет собой векторную сумму токов в проводниках главной цепи УДТ, т. е. он является расчетной величиной. В нормальных условиях его величина примерно равна значению тока утечки, а в условиях повреждения – сумме тока утечки и тока замыкания на землю. Причем при типах заземления системы TN-C, TN-S, TN-C-S и даже TT значение тока утечки ничтожно по сравнению с величиной тока замыкания на землю. »

« В трехфазных трехпроводных электрических цепях и сетях три тока утечки протекают по трем фазным проводникам. По трем фазным проводникам могут протекать три тока утечки, значения которых либо примерно равны между собой, либо существенно отличаются друг от друга. Более того, в защитном проводнике этих электрических цепей и сетей протекает ток утечки, который представляет собой векторную сумму трех токов утечки фазных проводников. »

В национальной нормативной документации термин «ток утечки» часто ошибочно используют вместо термина «ток замыкания на землю», который характеризует электрический ток, появляющийся в условиях единичного или множественных повреждений, и термина «номинальный отключающий дифференциальный ток», который определяет одну из характеристик устройства дифференциального тока. Имеются и другие неправильные варианты использования рассматриваемого термина.

Нижеследующий пример анализа ПУЭ 7, который касается ошибочного употребления понятия «ток утечки» провел Харечко Ю.В. Привожу цитаты данного анализа [2]:

« Например, в п. 6.1.16 ПУЭ указано: «Для питания светильников местного стационарного освещения с лампами накаливания должны применяться напряжения: в помещениях без повышенной опасности – не выше 220 В1 и в помещениях с повышенной опасностью и особо опасных – не выше 50 В. В помещениях с повышенной опасностью и особо опасных допускается напряжение до 220 В для светильников, в этом случае должно быть предусмотрено или защитное отключение линии при токе утечки до 30 мА …». Последнее из процитированных требований содержит серьезную ошибку. Буквальное его выполнение может привести к смертельному поражению электрическим током, поскольку оно предписывает выполнять защитное отключение только для светильников, имеющих ток утечки до 0,03 А. Если светильник имеет ток утечки более 0,03 А, который представляет реальную опасность для человека, то защитное отключение можно не выполнять!

В рассматриваемых требованиях термин «ток утечки» неправомерно использован вместо характеристики устройства дифференциального тока «номинальный отключающий дифференциальный ток». То есть требования п. 6.1.16 ПУЭ должны предусматривать защиту электрической цепи светильников посредством УДТ, имеющего номинальный отключающий дифференциальный ток до 0,03 А включительно, для обеспечения дополнительной защиты при прямом прикосновении, как было предусмотрено ранее действовавшим ГОСТ Р 50571.3–94, или для обеспечения дополнительной защиты, как предписано действующим ГОСТ Р 50571.3-2009. »

Путь протекания тока утечки

Харечко Ю.В. в своей книге [2] описывает пути протекания тока утечки следующим образом:

« Путь, по которому протекает ток утечки, зависит от типа заземления системы. В электроустановках зданий, соответствующих типам заземления системы TT и IT, токи утечки электрооборудования класса I через неповрежденную основную изоляцию протекают из токоведущих частей в их открытые проводящие части. Из открытых проводящих частей по защитным проводникам, главным заземляющим шинам, заземляющим проводникам и заземлителям токи утечки протекают в землю. »

« Если электроустановки зданий соответствуют типам заземления системы TN-S, TN-C и TN-C-S, то бόльшие части токов утечки протекают не в землю, а по защитному проводнику в системе TN-S и PEN-проводникам в системах TN-C и TN-C-S низковольтных распределительных электрических сетей протекают к заземленным токоведущим частям источников питания. Иными словами, токи утечки электрооборудования класса I протекают по тем же проводящим путям, по которым протекают токи защитного проводника (см. рис. 1 и 2 статьи «Ток защитного проводника»). »

« Токи утечки электрооборудования классов 0, II и III протекают по менее определенным проводящим путям, например, через оболочку электрооборудования в землю или сторонние проводящие части. Причем частью проводящего пути может быть тело человека, который держит в руках переносное электрооборудование или находится в электрическом контакте с доступными частями передвижного или стационарного электрооборудования. Токи утечки могут протекать через полы, стены и другие элементы здания, если по каким-то причинам (например, из-за повышенной влажности) их сопротивление резко уменьшилось, а также по иным нежелательным проводящим путям. »

Токи утечки всегда имеют место в электрических цепях при нормальном оперировании электроустановки здания (при нормальных условиях). Их значения в конечных электрических цепях мало зависят от типа заземления системы и редко превышают несколько десятков миллиампер (обычно не более 10 мА). Если в электроустановке здания применяют электрооборудование, имеющее повышенные токи утечки, то должны быть выполнены дополнительные электрозащитные мероприятия в соответствии с требованиями, например, подраздела 707.4 ГОСТ Р 50571.22-2000. При этом значения повышенных токов утечки измеряют десятками миллиампер. На это обстоятельство прямо указывает название п. 707.471.3.3 национального стандарта: «Дополнительные требования для оборудования обработки информации с током утечки выше 10 мА».

Предельные значения токов утечки

Если электрооборудование имеет ток утечки, не превышающий нормативное значение, его рассматривают в качестве кондиционного электрооборудования. В противном случае его следует рассматривать в качестве некондиционного электрооборудования, которое подлежит ремонту или утилизации. Рассмотрим максимально допустимые значения токов утечки, установленные нормативными документами для некоторых видов электрооборудования.

В разделе 13 «Ток утечки и электрическая прочность при рабочей температуре» стандарта ГОСТ IEC 60335-1-2015 [3] установлены следующие максимально допустимые значения тока утечки для основных видов бытового электрооборудования:

Для комбинированных приборов общий ток утечки может быть внутри ограничений, установленных для нагревательных приборов или для электромеханических приборов в зависимости от того, что больше, но не суммируя оба предела.

В некоторых стандартах комплекса ГОСТ IEC 60335 «Бытовые и аналогичные электрические приборы. Безопасность» для отдельных видов бытового электрооборудования установлены иные значения максимально допустимых токов утечки. Например, в ГОСТ IEC 60335-2-6-2016 [4], для стационарных электроплит, духовых шкафов, конфорочных панелей и аналогичных нагревательных приборов класса I максимально допустимое значение тока утечки установлено равным 10 мА.

В разделе 13 «Ток утечки» стандарта ГОСТ Р МЭК 60745-1-2009 [5] установлены следующие максимально допустимые значения тока утечки для основных видов электрического инструмента:

Соответствие фактического тока утечки электрического инструмента максимально допустимому значению тока утечки в стандарте ГОСТ Р МЭК 60745-1-2009 проверяют с помощью специального испытания, которое выполняют при напряжении питания, равном 1,06 номинального напряжения. До выполнения испытаний отсоединяют защитное сопротивление. Испытания на ток утечки выполняют с переменным током. Испытания инструмента, предназначенного только для постоянного тока, не проводят.

Технический отчет МЭК 62350 приводит следующие типичные примеры уровней тока утечки, которые может иметь распространенное электрооборудование: компьютеры – 1–2 мА; принтеры – 0,5–1мА; небольшое портативное электрооборудование – 0,5–0,75 мА; факсимильные аппараты – 0,5–1 мА; светокопировальные аппараты – 0,5–1,5 мА; фильтры – около 1 мА.

Измерение

Согласно требованиям стандарта ГОСТ IEC 60335-1-2015 [3] измерение токов утечки электрооборудования выполняют во время нормального оперирования прибора при самых неблагоприятных условиях его использования в течение промежутка времени, который может состоять из более чем одного цикла оперирования.

Во время испытаний бытового электрооборудования нагревательные приборы приводят в действие при 1,15 номинальной потребляемой мощности. Приборы с приводом от двигателя и комбинированные приборы питают напряжением, равным 1,06 номинального напряжения. Трехфазные приборы, которые в соответствии с инструкциями по монтажу являются также пригодными для однофазного питания, испытывают как однофазные приборы с тремя цепями, соединенными параллельно. До выполнения испытаний отсоединяют защитное сопротивление и фильтры подавления радиопомех.

Ток утечки измеряют посредством измерительного многополюсника, изображенного на рис. 4 стандарта ГОСТ Р МЭК 60990-2010 [6] (см. рис. 2 статьи «Ток прикосновения»), между любым полюсом источника питания и доступными металлическими частями, присоединенными к металлической фольге, имеющей площадь не менее 20 × 10 см, которая находится в контакте с доступными поверхностями из изоляционных материалов. Поэтому ток утечки, измеренный в соответствии с требованиями стандарта ГОСТ IEC 60335-1-2015, равен току прикосновения, измеренному в соответствии с требованиями стандарта ГОСТ Р МЭК 60990-2010.

Для однофазных приборов класса II применяют измерительную цепь, показанную на рис. 1 стандарта ГОСТ IEC 60335-1-2015 [3] (рис. 1 настоящей статьи), для приборов иных, чем класса II, – на рис. 2 (рис. 2). Ток утечки измеряют с многопозиционным переключателем, находящимся в каждой из позиций «a» и «b».

Для трехфазных приборов класса II применяют измерительную цепь, показанную на рис. 3 стандарта ГОСТ IEC 60335-1-2015 [3] (рис. 3), для приборов иных, чем класса II, – на рис. 4 (рис. 4). Ток утечки измеряют с выключателями «a», «b» и «c», находящимися в замкнутом положении. Затем измерения повторяют с каждым из выключателей «a», «b» и «c» разомкнутым по очереди, когда другие два выключателя остаются замкнутыми. Для приборов, предназначенных быть соединенными только звездой, нейтраль не присоединяют.

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка токаРис. 1. Принципиальная схема для измерения тока утечки при температуре оперирования для однофазного присоединения приборов класса II (на основе рисунка 1 из ГОСТ IEC 60335-1-2015)

На рисунке показано:

Если электроприбор содержит в себе конденсаторы и обеспечен однополюсным выключателем, измерения повторяют с выключателем, находящимся в положении «Отключено». Если электроприбор содержит в себе устройство регулирования температуры, которое оперирует в течение испытания, ток утечки измеряют непосредственно до того, как устройство регулирования разомкнет цепь.

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка токаРис. 2. Принципиальная схема для измерения тока утечки при температуре оперирования для однофазного присоединения приборов иных, чем класса II (на основе рисунка 2 из ГОСТ IEC 60335-1-2015)

Примечание. Для приборов класса 0I и приборов класса I C (измерительный многополюсник) может быть заменен амперметром с низким полным сопротивлением.

что значит утечка тока. Смотреть фото что значит утечка тока. Смотреть картинку что значит утечка тока. Картинка про что значит утечка тока. Фото что значит утечка токаРис. 3. Принципиальная схема для измерения тока утечки при температуре оперирования для трехфазного присоединения приборов класса II (на основе рисунка 3 из [2])

На рисунке 3 обозначено:

Примечание. Для приборов класса 0I и приборов класса I C (измерительный многополюсник) может быть заменен амперметром с низким полным сопротивлением.

Ток утечки измеряют посредством измерительного многополюсника, схема которого приведена на рис. 10 стандарта ГОСТ Р МЭК 60745-1-2009 [5], между любым полюсом источника питания и доступными металлическими частями и металлической фольгой с площадью не менее 20 × 10 см, находящейся в контакте с доступными поверхностями из изоляционного материала, соединенными вместе. Поэтому ток утечки, измеренный в соответствии с требованиями стандарта ГОСТ Р МЭК 60745-1-2009, равен току прикосновения, измеренному в соответствии с требованиями стандарта МЭК 60990.

Трехфазные инструменты, которые пригодны для однофазного питания, испытывают как однофазные инструменты с тремя секциями, соединенными параллельно. Для однофазных инструментов и трехфазных инструментов, испытываемых как однофазные инструменты, ток утечки измеряют с многопозиционным переключателем, показанным на рис. 3 ГОСТ Р МЭК 60745-1-2009 (рис. 5), находящимся в каждой из позиций «1» и «2», и выключателем «S1», находящимся в положении «Включено».

На рисунке 5 показано:

Для трехфазных инструментов, непригодных для однофазного питания, ток утечки измеряют в соответствии с рис. 4 ГОСТ Р МЭК 60745-1-2009 (рис. 6) с выключателями «a», «b» и «c», находящимися в положении «Включено». Для инструментов, предназначенных быть соединенными только звездой, нейтраль не присоединяют.

Если инструмент содержит в себе один или более конденсаторов и обеспечен однополюсным выключателем, измерения повторяют с выключателем, находящимся в положении «Отключено».

На рисунке 6 показано:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *