что значит значащая цифра
Значащие цифры
Смотреть что такое «Значащие цифры» в других словарях:
ЗНАЧАЩИЕ ЦИФРЫ — (значащие разряды), цифры числа, которые выражают его с требуемой точностью; последние цифры могут быть округлены. Так, число 2,871828, округленное до шести цифр, будет представлено как 2,87183; округленное до трех цифр как 2,87 … Научно-технический энциклопедический словарь
ЗНАЧАЩИЕ ЦИФРЫ — в приближенных вычислениях все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность которой можно ручаться. Напр., в записи результата взвешивания 0,03020 кг значащими цифрами будут 3, 0, 2 и 0 … Большой Энциклопедический словарь
значащие цифры — в приближённых вычислениях, все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность которой можно ручаться. Например, в записи результата взвешивания 0,03020 кг значащими цифрами будут 3, 0, 2 и 0. * * * ЗНАЧАЩИЕ… … Энциклопедический словарь
ЗНАЧАЩИЕ ЦИФРЫ — в приближённых вычислениях все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность к рой можно ручаться. Напр., в записи результатов взвешивания 0,320 кг 3. ц. будут 3, 2 и 0 … Большой энциклопедический политехнический словарь
ЗНАЧАЩИЕ ЦИФРЫ — в приближённых вычислениях, все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность к рой можно ручаться. Напр., в записи результата взвешивания 0,03020 кг значащими цифрами будут 3, 0, 2 и 0 … Естествознание. Энциклопедический словарь
Закон Бенфорда — Закон Бенфорда, или закон первой цифры, описывает вероятность появления определённой первой значащей цифры в распределениях величин, взятых из реальной жизни. Закон верен для многих таких распределений, но не для всех. Ра … Википедия
АРИФМЕТИКА — искусство вычислений, производимых с положительными действительными числами. Краткая история арифметики. С глубокой древности работа с числами подразделялась на две различные области: одна касалась непосредственно свойств чисел, другая была… … Энциклопедия Кольера
Логарифм — График двоичного логарифма Логарифм числа … Википедия
Метод одной касательной — Метод Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643 1727), под именем… … Википедия
Метод Ньютона — Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном… … Википедия
Подгонка приближения | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Концепции | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Порядок аппроксимации Масштабный анализ · Обозначение Big O Подгонка кривой · Ложная точность Значимые числа | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Прочие основы | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Аппроксимация · Ошибка обобщения Полином Тейлора Научное моделирование | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Точность | Округлено до значащих цифр | Округлено до десятичных знаков |
---|---|---|
6 | 12,3450 | 12,345000 |
5 | 12,345 | 12,34500 |
4 | 12,34 или 12,35 | 12,3450 |
3 | 12,3 | 12,345 |
2 | 12 | 12,34 или 12,35 |
1 | 10 | 12,3 |
0 | N / A | 12 |
Точность | Округлено до значащих цифр | Округлено до десятичных знаков |
---|---|---|
7 | 0,01234500 | 0,0123450 |
6 | 0,0123450 | 0,012345 |
5 | 0,012345 | 0,01234 или 0,01235 |
4 | 0,01234 или 0,01235 | 0,0123 |
3 | 0,0123 | 0,012 |
2 | 0,012 | 0,01 |
1 | 0,01 | 0,0 |
0 | N / A | 0 |
Представление ненулевого числа x с точностью до p значащих цифр имеет числовое значение, которое задается формулой:
который может потребоваться написать с особой маркировкой, как описано выше, чтобы указать количество значащих нулей в конце.
Написание неопределенности и подразумеваемой неопределенности
Значимые цифры в письменной неопределенности
Подразумеваемая неопределенность
Арифметика
Поскольку существуют правила для определения значащих цифр в непосредственно измеряемых величинах, существуют также руководящие принципы (не правила) для определения значащих цифр в количествах, рассчитываемых на основе этих измеренных величин.
Приведенные ниже рекомендации предназначены для того, чтобы избежать получения более точного результата расчета, чем измеренные величины, но они не гарантируют, что полученная подразумеваемая погрешность достаточно близка к измеренным погрешностям. Эту проблему можно увидеть при преобразовании единиц измерения. Если в руководящих принципах подразумеваемая неопределенность слишком далека от измеренных, тогда может потребоваться определение значащих цифр, которые дают сопоставимую неопределенность.
Умножение и деление
Исключение
Сложение и вычитание
Правило вычисления значащих цифр для умножения и деления не то же самое, что правило для сложения и вычитания. Для умножения и деления имеет значение только общее количество значащих цифр в каждом из факторов при расчете; позиция последней значащей цифры в каждом множителе не имеет значения. Для сложения и вычитания имеет значение только позиция последней значащей цифры в каждом из членов вычисления; общее количество значащих цифр в каждом термине не имеет значения. Однако более высокая точность часто достигается, если в промежуточных результатах, которые используются в последующих вычислениях, сохраняются некоторые незначительные цифры.
Логарифм и антилогарифм
Основание 10 логарифм из нормализованного числа (то есть, × 10 б с 1 ≤ в б в виде целого числа), округляется таким образом, что его дробная часть ( так называемые мантиссы ) имеет столько же значащие цифры как значащие цифры в нормализованное число.
При вычислении антилогарифма нормализованного числа результат округляется, чтобы иметь столько значащих цифр, сколько значащих цифр в десятичной части числа, которое нужно антилогаринговать.
Трансцендентные функции
f (x))>> \ приблизительно <\ rm <(
Округлить только по окончательному результату расчета
При выполнении многоэтапных расчетов не округляйте результаты промежуточных расчетов; сохраняйте столько цифр, сколько возможно (по крайней мере, на одну цифру больше, чем позволяет правило округления для каждого этапа) до конца всех вычислений, чтобы избежать кумулятивных ошибок округления при отслеживании или записи значащих цифр в каждом промежуточном результате. Затем округлите окончательный результат, например, до наименьшего числа значащих цифр (для умножения или деления) или до самой левой позиции последней значащей цифры (для сложения или вычитания) среди входных данных в окончательном вычислении.
Оценка дополнительной цифры
При использовании линейки сначала используйте наименьшую отметку в качестве первой оценочной цифры. Например, если наименьшая отметка линейки составляет 0,1 см, а считывается 4,5 см, то это будет 4,5 (± 0,1 см) или 4,4–4,6 см относительно наименьшего интервала между отметками. Однако на практике размер обычно можно оценить на глаз ближе, чем интервал между наименьшей отметкой линейки, например, в приведенном выше случае его можно оценить как от 4,51 см до 4,53 см.
Также возможно, что общая длина линейки может быть неточной до степени наименьшей отметки, и отметки могут быть несовершенно разнесены в пределах каждой единицы. Однако, если принять нормальную линейку хорошего качества, должна быть возможность оценить десятые доли между ближайшими двумя отметками, чтобы получить дополнительный десятичный разряд точности. В противном случае ошибка чтения линейки добавляется к любой ошибке калибровки линейки.
Оценка в статистике
При оценке доли лиц, несущих определенную характеристику в популяции, из случайной выборки этой совокупности, количество значащих цифр не должно превышать максимальную точность, допускаемую этим размером выборки.
Отношение к точности и прецизионности измерения
В вычислениях
ЗНАЧАЩИЕ ЦИФРЫ
Смотреть что такое «ЗНАЧАЩИЕ ЦИФРЫ» в других словарях:
ЗНАЧАЩИЕ ЦИФРЫ — (значащие разряды), цифры числа, которые выражают его с требуемой точностью; последние цифры могут быть округлены. Так, число 2,871828, округленное до шести цифр, будет представлено как 2,87183; округленное до трех цифр как 2,87 … Научно-технический энциклопедический словарь
значащие цифры — в приближённых вычислениях, все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность которой можно ручаться. Например, в записи результата взвешивания 0,03020 кг значащими цифрами будут 3, 0, 2 и 0. * * * ЗНАЧАЩИЕ… … Энциклопедический словарь
Значащие цифры — в приближённых вычислениях, все цифры числа, начиная с 1 й слева, отличной от нуля, до последней, за правильность которой можно ручаться. Например, если измерение произведено с точностью до 0,0001 и дало результат 0,0320, то З. ц. будут 3 … Большая советская энциклопедия
ЗНАЧАЩИЕ ЦИФРЫ — в приближённых вычислениях все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность к рой можно ручаться. Напр., в записи результатов взвешивания 0,320 кг 3. ц. будут 3, 2 и 0 … Большой энциклопедический политехнический словарь
ЗНАЧАЩИЕ ЦИФРЫ — в приближённых вычислениях, все цифры числа, начиная с первой слева, отличной от нуля, до последней, за правильность к рой можно ручаться. Напр., в записи результата взвешивания 0,03020 кг значащими цифрами будут 3, 0, 2 и 0 … Естествознание. Энциклопедический словарь
Закон Бенфорда — Закон Бенфорда, или закон первой цифры, описывает вероятность появления определённой первой значащей цифры в распределениях величин, взятых из реальной жизни. Закон верен для многих таких распределений, но не для всех. Ра … Википедия
АРИФМЕТИКА — искусство вычислений, производимых с положительными действительными числами. Краткая история арифметики. С глубокой древности работа с числами подразделялась на две различные области: одна касалась непосредственно свойств чисел, другая была… … Энциклопедия Кольера
Логарифм — График двоичного логарифма Логарифм числа … Википедия
Метод одной касательной — Метод Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643 1727), под именем… … Википедия
Метод Ньютона — Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном… … Википедия
Правила округления. Обработка и представление результатов измерений. Процедура
Обработка и представление результатов измерений. Процедура
1. Назначение и область применения
1.1. Процедура устанавливает единые требования к обработке и представлению результатов измерений, полученных в лаборатории (центре).
1.2. Представление результатов измерений в лабораторных журналах и в документах, выдаваемых лабораторией, осуществляется согласно методикам измерений и данной процедуре.
1.3. Требования настоящей процедуры распространяются на всех специалистов лаборатории (центра).
2. Нормативные ссылки
2.1. СТ СЭВ 543-77 «Числа. Правила записи и округления» (настоящий стандарт является обязательным в рамках Конвенции о применении стандартов СЭВ);
2.2. ГОСТ 8.736-2011 «Государственная система обеспечения единства измерений (ГСИ). Измерения прямые многократные. Методы обработки результатов измерений. Основные положения»;
2.3. МР 18.1.04-2005 «Система контроля качества результатов анализа проб объектов окружающей среды»;
2.4. ПМГ 96-2009 «Государственная система обеспечения единства измерений (ГСИ). Результаты и характеристики качества измерений. Формы представления» (правила по межгосударственной стандартизации введены в действие для добровольного применения в РФ в качестве рекомендаций по метрологии РФ).
Примеры
1) Число 12,0 – имеет три значащие цифры;
2) Число 30 – имеет две значащие цифры;
3) Число 120 × 10 3 – имеет три значащие цифры;
4) Число 0,514 × 10 – имеет три значащие цифры;
5) Число 0,0056 × 10 – имеет две значащие цифры;
6) Число 0,704 – имеет три значащие цифры;
7) Число 68 – имеет две значащие цифры.
Таким образом, нули вначале числа всегда незначимы; нули в середине числа между ненулевыми цифрами значимы; нули в конце числа могут быть значимыми и незначимыми.
По количеству значащих цифр осуществляется запись приближенных чисел (согласно СТ СЭВ 543-77).
Пример
Следует различать числа 2,4 и 2,40.
Запись 2,4 означает, что верны только цифры целых и десятых; истинное значение числа может быть, например, 2,43 и 2,38.
Запись 2,40 означает, что верны и сотые доли числа; истинное число может быть, например, 2,403 и 2,398, но не 2,421 и не 2,382.
3.2. Округление числа – это отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда (согласно СТ СЭВ 543-77).
В случае, если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.
В случае, если первая из отбрасываемых цифр (считая слева направо) равна или больше 5, то последняя сохраняемая цифра увеличивается на единицу.
Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление может привести к ошибкам.
Примеры
1) Если число 12,364 требуется округлить до сотых долей, после округления получаем число 12,36; если число 12,364 требуется округлить до десятых долей, после округления получаем число 12,4.
2) Если число 0,703 требуется округлить до сотых долей, получаем число 0,70; если число 0,703 требуется округлить до десятых долей, после округления получаем число 0,7.
3) Если число 0,703 требуется округлить до двух значащих цифр, после округления получаем число 0,70; если число 0,703 требуется округлить до одной значащей цифры, после округления получаем число 0,7.
4) Если число 0,429 требуется округлить до двух значащих цифр, после округления получаем число 0,43; если число 0,429 требуется округлить до одной значащей цифры, после округления получаем число 0,4.
5) Если число 8,574 требуется округлить до двух значащих цифр, после округления получаем число 8,6; если число 8,574 требуется округлить до одной значащей цифры, после округления получаем число 9.
6) Поэтапное округление результата измерения 227,46 дает на первом этапе 227,5 и на втором этапе 228, в то время как правильный результат округления 227.
3.3. Окончательный результат – это результат измерения с погрешностью, который вносится испытателями в лабораторные журналы. Окончательный результат выдается лабораторией в протоколе испытаний.
3.4. Промежуточные результаты – это вся информация по анализу от показания приборов до окончательного результата (в том числе расчеты результатов единичных определений; расчет результата измерения как среднеарифметическое значение результатов единичных определений, полученных в условиях повторяемости; контроль повторяемости; расчет погрешности). Промежуточные результаты заносятся испытателями в лабораторные журналы, но в протоколах испытаний не выдаются.
4.1. Требования к промежуточному результату
4.1.1. Число значащих цифр в промежуточных вычислениях при обработке результатов измерений должно быть больше, чем в окончательном результате.
4.1.2. Если значение погрешности (неопределенности) результата измерений представлено числом, содержащим две значащие цифры, то для промежуточных результатов расчета сохраняем не менее трех значащих цифр.
4.1.3. Если значение погрешности (неопределенности) результата измерений представлено числом, содержащим одну значащую цифру, то для промежуточных результатов расчета сохраняем не менее двух значащих цифр.
4.1.4. При проведении промежуточных расчетов в рукописных лабораторных журналах в числовых значениях измеряемой величины и погрешности следует оставлять столько значащих цифр, чтобы в окончательном результате не появлялась ошибка, связанная с поэтапным округлением.
Примеры
Промежуточные результаты | Окончательные результаты |
0,178 ± 0,053 | 0,18 ± 0,05 |
0,1784 ± 0,0533 | 0,178 ± 0,053 |
1,22 ± 0,18 | 1,2 ± 0,2 |
1,224 ± 0,183 | 1,22 ± 0,18 |
3,74 ± 0,748 | 3,7 ± 0,7 |
3,742 ± 0,748 | 3,74 ± 0,75 |
12,83 ± 1,28 | 12,8 ± 1,3 |
54,2 ± 5,4 | 54 ± 5 |
54,23 ± 5,42 | 54,2 ± 5,4 |
177,6 ± 33,7 | 178 ± 34 |
2357,4 ± 212,2 | 2357 ± 212 |
11624,8 ± 5812,4 | 11624 ± 5812 |
4.2. Требования к окончательному результату
4.2.1. Числовые значения результата измерений и его погрешности (неопределенности) записываются с указанием одной и той же единицы измерения.
Примеры
(5,4 ± 0,5) мг/дм³;
(6,1 ± 0,7) ммоль/ дм³.
4.2.2. Числовое значение результата измерений должно оканчиваться цифрой того же разряда, что и значение его погрешности (неопределенности).
Примеры
Правильно | Неправильно |
0,043 ± 0,004 | 0,043 ± 0,0043 |
0,0428 ± 0,0043 | 0,0428 ± 0,004 |
17,0 ± 0,2 | 17,00 ± 0,2 или 17 ± 0,2 |
12,13 ± 0,17 или 12,1 ± 0,2 | 12,1 ± 0,17 или 12,13 ± 0,2 |
46,40 ± 4,64 или 46,4 ± 4,6 | 46,402 ± 4,64 или 46,4 ± 4,64 |
4.2.3. Значение погрешности (неопределенности) результата измерений представляют числом, содержащим одну или две значащих цифры. Если числовое значение погрешности (неопределенности) в целой части числа содержит три и более цифр, то результат и погрешность округляются до целых чисел без подсчета количества значащих цифр.
Примеры
Результаты измерения |
0,14 ± 0,05 |
0,164 ± 0,051 |
1,1 ± 0,1 |
1,18 ± 0,11 |
3,6 ± 0,6 |
3,28 ± 0,54 |
12,4 ± 1,2 |
44 ± 4 |
44,2 ± 4,4 |
168 ± 34 |
2357 ± 212 |
23684 ± 1184 |
4.2.4. Если заказчик требует другие формы представления результатов измерений, лаборатория оставляет за собой право учитывать эти требования.
Ответственность за правильность обработки и представления результатов измерений несут специалисты лаборатории.
Представление результатов измерений на примере определения обобщенных и химических показателей в воде с учетом требований методик измерений
1. Железо общее (ГОСТ 4011-72)
Округлять результат до двух значащих цифр.
Примеры
Окончательные результаты, мг/дм³ | Промежуточные результаты, мг/дм³ |
0,12 ± 0,03 | 0,116 ± 0,029 |
0,18 ± 0,04 | 0,178 ± 0,0445* |
0,18 ± 0,05 | 0,183 ± 0,046 |
0,31 ± 0,08 | 0,308 ± 0,077 |
1,3 ± 0,3 | 1,26 ± 0,32 |
1,8 ± 0,3 | 1,77 ± 0,32 |
12 ± 2 | 12,4 ± 2,2 |
25 ± 5 | 25,3 ± 4,6 |
2. Хлориды (ПНД Ф 14.1:2:3.96-97)
Численные значения результата измерений должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.
3. Фосфорсодержащие вещества (ГОСТ 18309-2014)
Числовое значение результата измерений должно оканчиваться цифрой того же разряда, что и значение характеристики погрешности, выраженное в мг/дм³ и содержащее не более двух значащих цифр.
4. Взвешенные вещества (ПНД Ф 14.1:2:3.110-97)
Численные значения результата измерений должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.
5. Цветность (ГОСТ 31868-2012)
В протоколе указывают метод определения цветности по настоящему стандарту, результат с указанием единиц измерения (например, градусов цветности по хром-кобальтовой шкале Cr-Co) и температуру пробы анализируемой воды.
При определении цветности при постоянной комнатной температуре (20 ± 5) °С в конкретной лаборатории допускается по согласованию с заказчиком не указывать в протоколе значение температуры.
6. Металлы (ПНД Ф 14.1:2:4.139-98)
Примеры записи числовых значений:
Диапазон, мг/дм³ | Точность округления, мг/дм³ |
от 0,004 до 0,01 вкл. | 0,0001 |
от 0,01 до 0,1 вкл. | 0,001 |
от 0,1 до 1 вкл. | 0,01 |
от 1 до 10 вкл. | 0,1 |
свыше 10 | 1 |
7. Алюминий (ГОСТ 18165-2014)
Числовое значение результата измерений должно оканчиваться цифрой того же разряда, что и абсолютное значение характеристики погрешности измерений, выраженное в мг/дм³. Абсолютное значение характеристики погрешности измерений представляют двумя значащими цифрами, если первая цифра не превышает 3. В остальных случаях оставляют одну значащую цифру.
Примеры
Окончательные результаты, мг/дм³ | Промежуточные результаты, мг/дм³ |
0,287 ± 0,057 | 0,2872 ± 0,0574 |
0,262 ± 0,052 | 0,2623 ± 0,05246* |
2,38 ± 0,48 | 2,381 ± 0,476 |
13,5 ± 2,7 | 13,47 ± 2,69 |
16,6 ± 3,3 | 16,62 ± 3,32 |
22 ± 4 | 21,8 ± 4,4 |
27 ± 5 | 27,4 ± 5,48* |
38 ± 7 | 38,47* ± 7,7 |
51 ± 10 | 51,46* ± 10,3 |
8. Нефтепродукты (ПНД Ф 14.1:2:4.128-98)
Примеры записи числовых значений, мг/дм³:
0,009 ± 0,005 | 0,08 ± 0,03 |
0,65 ± 0,16 | 3,5 ± 0,9 |
3,5 ± 0,9 | 25 ± 6 |
9. Анионные поверхностно-активные вещества (ПНД Ф 14.1:2:4.158-2000)
Примеры записи для питьевой воды, мг/дм³ | Примеры записи для природной и сточной воды, мг/дм³ |
0,028 ± 0,010 | 0,080 ± 0,032 |
0,44 ± 0,12 | 0,35 ± 0,11 |
4,8 ± 1,0 | 71 ± 17 |
10. Щелочность (МП УВК 1.19-2013)
Численные значения результата количественного химического анализа должны оканчиваться цифрой того же разряда, что и численное значение характеристики погрешности. Характеристику погрешности измерения следует выражать числом, содержащим не более двух значащих цифр.
11. Температура, прозрачность, запах (РД 52.24.496-2018)
Численное значение результата измерений должно оканчиваться цифрой того же разряда, что и значение характеристики погрешности.
12. Кальций (РД 52.24.403-2018)
Численные значения результата измерений должны оканчиваться цифрой того же разряда, что и значения погрешности; последние не должны содержать более двух значащих цифр.
13. Перманганатная окисляемость (ПНД Ф 14.1:2:4.154-99)
Результаты измерений округляют с точностью:
Диапазон, мг/дм³ | Точность округления, мг/дм³ |
от 0,25 до 1,0 вкл. | 0,01 |
от 1,0 до 10 вкл. | 0,1 |
свыше 10 | 1 |
14. Фториды (ПНД Ф 14.1:2:4.270-2012)
Результаты измерений концентрации фторид-ионов при занесении в протокол округляют с точностью:
Диапазон, мг/дм³ | Точность округления, мг/дм³ |
от 0,15 до 10 вкл. | 0,01 |
свыше 10 | 0,1 |
15. Растворенный кислород (ПНД Ф 14.1:2:3.101-97)
Численные значения результата измерений должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.
- что такое forts игра
- что делать если собаки склеились при вязке