Как называется содержимое регистра процессора
Регистры процессора
Регистр процессора — сверхбыстрая память внутри процессора, предназначенная прежде всего для хранения промежуточных результатов вычисления (регистр общего назначения/регистр данных) или содержащая данные, необходимые для работы процессора — смещения базовых таблиц, уровни доступа и т. д. (специальные регистры).
Регистр представляет собой цифровую электронную схему, служащую для временного хранения двоичных чисел. В процессоре имеется значительное количество регистров, большая часть которых используется самим процессором и недоступна программисту. Например, при выборке из памяти очередной команды она помещается в регистр команд. Программист обратиться к этому регистру не может. Имеются так же регистры, которые в принципе программно доступны, но обращение к ним осуществляется из программ операционной системы (например управляющие регистры и теневые регистры дескрипторов сегментов). Этими регистрами пользуются в основном разработчики операционных систем.
Основные регистры процессора, совместимого с Intel 386
IP (англ. Instruction Pointer ) — регистр, обозначающий смещение следующей команды относительно кодового сегмента.
IP — 16-битный (младшая часть EIP)
EIP — 32-битный аналог
Сегментные регистры — Регистры указывающие на сегменты.
CS — указатель на кодовый сегмент. Связка CS:IP указывает на адрес в памяти следующей команды.
Регистры данных — служат для хранения промежуточных вычислений.
RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, R8 — R15 — 64-битные
EAX, EBX, ECX, EDX, EBP, ESI, EDI, ESP — 32-битные (extended AX)
AX, BX, CX, DX — 16-битные
AH, AL, BH, BL, CH, CL, DH, DL — 8-битные (половинки 16-ти битных регистров)
RAX | RBX | RCX | RDX | ||||||||||||
—— | EAX | —— | EBX | —— | ECX | —— | EDX | ||||||||
—— | —— | AX | —— | —— | BX | —— | —— | CX | —— | —— | DX | ||||
—— | —— | AH | AL | —— | —— | BH | BL | —— | —— | CH | CL | —— | —— | DH | DL |
Регистр флагов EFLAGS — содержит текущее состояние процессора.
Регистром называется функциональный узел, осуществляющий приём, хранение и передачу информации. Регистры состоят из группы триггеров, обычно D. По типу приёма и выдачи информации различают 2 типа регистров:
Сдвиговые регистры представляют собой последовательно соединённую цепочку триггеров. Основной режим работы — сдвиг разрядов кода от одного триггера к другому на каждый импульс тактового сигнала.
По назначение регистры различаются на:
См. также
Примечания
Микроконтроллеры
8-bit | MCS-51 • MCS-48 • AVR • Z8 • H8 • COP8 • 68HC08 • 68HC11 |
---|---|
16-bit | PIC24 • MAXQ • Nios • 68HC12 • 68HC16 |
32-bit | ARM • PIC32MX • 683XX • M32R • |
Полезное
Смотреть что такое «Регистры процессора» в других словарях:
Архитектура процессора — количественная составляющая компонентов микроархитектуры вычислительной машины (процессора компьютера) (например, регистр флагов или регистры процессора), рассматриваемая IT специалистами в аспекте прикладной деятельности. С точки зрения… … Википедия
Регистр процессора — Эта статья включает описание термина «IP»; см. также другие значения. Регистр процессора блок ячеек памяти, образующий сверхбыструю оперативную память (СОЗУ) внутри процессора; используется самим процессором и большой частью недоступен… … Википедия
Кэш процессора — Кэш микропроцессора кэш (сверхоперативная память), используемый микропроцессором компьютера для уменьшения среднего времени доступа к компьютерной памяти. Является одним из верхних уровней иерархии памяти[1] … Википедия
Кэш центрального процессора — Кэш (англ. cache[1], произносится kæʃ кЭш) промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена. Доступ к данным в… … Википедия
Моделезависимые регистры — (Model Specific Registers, MSR) cпециальные регистры процессоров архитектуры x86, наличие и назначение которых варьируется от модели к модели процессора. Программно доступны при помощи команд RDMSR и WRMSR. Адресуются 32 битным индексом,… … Википедия
Регистр (цифровая техника) — У этого термина существуют и другие значения, см. Регистр. 4 х разрядный сдвиговый регистр, преобразователь последовательного кода в параллельный и обратно Регистр последовательное или параллельное … Википедия
РОН (электроника) — Регистр процессора сверхбыстрая память внутри процессора, предназначенная прежде всего для хранения промежуточных результатов вычисления (регистр общего назначения/регистр данных) или содержащая данные, необходимые для работы процессора … … Википедия
Регистр (вычислительная техника) — Регистр процессора сверхбыстрая память внутри процессора, предназначенная прежде всего для хранения промежуточных результатов вычисления (регистр общего назначения/регистр данных) или содержащая данные, необходимые для работы процессора … … Википедия
Motorola 6809 — > Центральный процессор Процессор Motorola 6809E с рабочей частотой 1 МГц, выпущен в 1983 году … Википедия
Иерархия памяти — Пирамида иерархии памяти. По левой грани обозначены размер и емкость, по центру требование постоянного электропитания и длительность хранения, справа пример памяти данного уровня, скорос … Википедия
Регистры процессора: сущность, назначение, типы.
По типу приёма и выдачи информации различают 2 типа регистров:
По назначению регистры различаются на:
· управляющие — хранят информацию, управляющую состоянием процессора, а также адреса системных таблиц.
Начиная с 80386 процессоры Intel предоставляют 16 основных регистров для пользовательских программ плюс еще 11 регистров для работы с мультимедийными приложениями (MMX(Multimedia Extension)) и числами с плавающей запятой (FPU/NPX (Float Point Unit / Numerical Processor Extension)). Все команды так или иначе изменяют значения регистров, и всегда быстрее и удобнее обращаться к регистру, чем к памяти.
Из реального (но не из виртуального) режима помимо основных регистров доступны так же регистры управления памятью (GDTR, IDTR, TR, LDTR), регистры управления (CR0, CR1 – CR4), отладочные регистры (DR0 – DR7) и машинно-специфичные регистры, но они не применяются для решения повседневных задач.
Регистры общего назначения.
32-битные регистры EAX (аккумулятор), EBX (база), ECX (счетчик), EDX (регистр данных) могут использоваться без ограничений для любых целей – временного хранения данных, аргументов или результатов различных операций. Название регистров происходят от того, что некоторые команды применяют их специальным образом: так, аккумулятор часто необходим для хранения результата действий, выполняемых над двумя операндами, регистр данных в этих случаях получает старшую часть результата, если он не умещается в аккумулятор, регистр счетчик работает как счетчик в циклах и строковых операциях, а регистр-база – при так называемой адресации по базе. Младшие 16 бит каждого их этих регистров применяются как самостоятельные регистры с именами AX, BX, CX, DX. На самом деле в процессорах 8086-80286 все регистры были 16-битными и назывались именно так, а в 32-битные EAX-EDX появились с введением 32-битной архитектуры в 80386. Кроме этого, отдельные байты в 16-юитных регистрах AX – DX тоже могут использоваться как 8-битные регистры и иметь свои имена. Старшие байты этих регистров называются AH, BH, CH, DH, а младшие – AL, BL, CL, DL.
(Регистры общего назначения)
Сегментные регистры.
При использовании сегментированных моделей памяти для формирования любого адреса нужны два числа – адрес начала сегмента и смещение искомого байта относительно этого начала (в бессегментной модели памяти flat адреса начала всех сегментов равны). Операционные системы (кроме DOS) могут размещать сегменты, с которыми работает программа пользователя, в разных местах памяти и даже временно записывать их на диск, если памяти не хватает. Так как сегменты способны оказаться где угодно, программа обращается к ним, применяя вместо настоящего адреса начала сегмента 16-битное число, называемое селектором. В процессорах Intel предусмотрены шесть 16-битных регистров – CS, DS, ES, FS, GS, SS, где хранятся селекторы. Это означает, что в любой момент можно изменить параметры, записанные в этих регистрах.
В отличие от DS, ES, GS, FS, которые называются регистрами сегментов данных, CS и SS отвечают за сегменты двух особенных типов – сегмента кода и сегмент стека. Первый содержит программу, исполняющуюся в данный момент, следовательно, запись нового селектора в этот регистр приводит к тому, что далее будет исполнена не следующая по тексту программы команда, а команда из кода, находящегося в другом сегменте, с тем же смещением. Смещение очередной выполняемой команды всегда хранится в специальном регистре EIP (указатель инструкции, 16-битная форма IP), запись в который также приведет к тому, что далее будет исполнена какая-нибудь другая команда. На самом деле все команды передачи управления – перехода, условного перехода, цикла, вызова подпрограммы и т. п. – и осуществляют эту самую запись в CS и EIP.
Стек.
Стек – организованный специальным образом участок памяти, который используется для временного хранения переменных, передачи параметров вызываемым подпрограммам и сохранения адреса возврата при вызове процедур и прерываний. Легче всего представить стек в виде стопки листов бумаги (это одно из значений слова «stack» в английском языке) – вы можете класть и забирать листы только с вершины стопки. Поэтому, если записать в стек числа 1, 2, 3, то при чтении они окажутся в обратном порядке – 3, 2, 1. Стек располагается в сегменте памяти, описываемом регистром SS, и текущее смещение вершины стека отражено в регистре ESP, причем во время записи значение этого смещения уменьшается, то есть он «растет вниз» от максимально возможного адреса. Такое расположение стека «вверх ногами» может быть необходимым, к примеру, в бессегментной модели памяти, когда все сегменты, включая сегменты стека и кода, занимают одну и туже область – память целиком. Тогда программа исполняется в нижней области памяти, в области малых адресов, и EIP растет, а стек располагается в верхней области памяти, и ESP уменьшается. При вызове подпрограммы параметры в большинстве случаев помешают в стек, а в EBP записывают текущее значение ESP. Если подпрограмма использует стек для хранения локальных переменных, ESP изменится, но EBP можно будет использовать для того, чтобы считывать значения параметров напрямую из стека (их смещения запишутся как EBP + номер параметра).
Регистр флагов.
Флаги IOPL (уровень привилегий ввода-вывода) и NT (вложенная задача) применяются в защищенном режиме.
Как называется содержимое регистра процессора
Самый основной элемент компьютера, это, конечно, процессор. Давайте подробней его рассмотрим. Упрощённая структура процессора (рис. 4):
Рис. 4. Упрощённая структура процессора
Основные элементы процессора:
· Регистры – это специальные ячейки памяти, физически расположенные внутри процессора. В отличие от ОЗУ, где для обращения к данным требуется использовать шину адреса, к регистрам процессор может обращаться напрямую. Это существенно ускорят работу с данными.
· Арифметико-логическое устройство выполняет арифметические операции, такие как сложение, вычитание, а также логические операции.
· Блок управления определяет последовательность микрокоманд, выполняемых при обработке машинных кодов (команд).
2.2. Режимы работы процессора.
Процессор архитектуры x86 может работать в одном из пяти режимов и переключаться между ними очень быстро:
1. Реальный (незащищенный) режим (real address mode) — режим, в котором работал процессор 8086. В современных процессорах этот режим поддерживается в основном для совместимости с древним программным обеспечением (DOS-программами).
2. Защищенный режим (protected mode) — режим, который впервые был реализован в 80286 процессоре. Все современные операционные системы (Windows, Linux и пр.) работают в защищенном режиме. Программы реального режима не могут функционировать в защищенном режиме.
3. Режим виртуального процессора 8086 (virtual-8086 mode, V86) — в этот режим можно перейти только из защищенного режима. Служит для обеспечения функционирования программ реального режима, причем дает возможность одновременной работы нескольких таких программ, что в реальном режиме невозможно. Режим V86 предоставляет аппаратные средства для формирования виртуальной машины, эмулирующей процессор8086. Виртуальная машина формируется программными средствами операционной системы. В Windows такая виртуальная машина называется VDM (Virtual DOS Machine — виртуальная машина DOS). VDM перехватывает и обрабатывает системные вызовы от работающих DOS-приложений.
4. Нереальный режим (unreal mode, он же big real mode) — аналогичен реальному режиму, только позволяет получать доступ ко всей физической памяти, что невозможно в реальном режиме.
5. Режим системного управления System Management Mode (SMM) используется в служебных и отладочных целях.
При загрузке компьютера процессор всегда находится в реальном режиме, в этом режиме работали первые операционные системы, например MS-DOS, однако современные операционные системы, такие как Windows и Linux переводят процессор в защищенный режим. Вам, наверное, интересно, что защищает процессор в защищенном режиме? В защищенном режиме процессор защищает выполняемые программы в памяти от взаимного влияния (умышленно или по ошибке) друг на друга, что легко может произойти в реальном режиме. Поэтому защищенный режим и назвали защищенным.
2.3. Регистры процессора (программная модель процессора).
Для понимания работы команд ассемблера необходимо четко представлять, как выполняется адресация данных, какие регистры процессора и как могут использоваться при выполнении инструкций. Рассмотрим базовую программную модель процессоров Intel 80386, в которую входят:
· 8 регистров общего назначения, служащих для хранения данных и указателей;
· регистры сегментов — они хранят 6 селекторов сегментов;
· регистр управления и контроля EFLAGS, который позволяет управлять состоянием выполнения программы и состоянием (на уровне приложения) процессора;
· регистр-указатель EIP выполняемой следующей инструкции процессора;
· система команд (инструкций) процессора;
· режимы адресации данных в командах процессора.
Начнем с описания базовых регистров процессора Intel 80386.
Базовые регистры процессора Intel 80386 являются основой для разработки программ и позволяют решать основные задачи по обработке данных. Все они показаны на рис. 5.
Рис. 5. Базовые регистры процессора Intel 80386
Среди базового набора регистров выделим отдельные группы и рассмотрим их назначение.
2.4. Регистры общего назначения.
2.5. Сегментные регистры.
В отличие от DS, ES, GS, FS, которые называются регистрами сегментов данных, CS и SS отвечают за сегменты двух особенных типов – сегмент кода и сегмент стека. Первый содержит программу, исполняющуюся в данный момент, следовательно, запись нового селектора в этот регистр приводит к тому, что далее будет исполнена не следующая по тексту программы команда, а команда из кода, находящегося в другом сегменте, с тем же смещением. Смещение очередной выполняемой команды всегда хранится в специальном регистре EIP (указатель инструкции, 16-битная форма IP), запись в который так же приведет к тому, что далее будет исполнена какая-нибудь другая команда. На самом деле все команды передачи управления – перехода, условного перехода, цикла, вызова подпрограммы и т.п. – и осуществляют эту самую запись в CS и EIP.
Рис. 6. Регистр флагов FLAGS.
CF – флаг переноса. Устанавливается в 1, если результат предыдущей операции не уместился в приемнике и произошел перенос из старшего бита или если требуется заем (при вычитании), в противном случае – в 0. Например, после сложения слова 0 FFFFh и 1, если регистр, в который надо поместить результат, – слово, в него будет записано 0000 h и флаг CF = 1.
PF – флаг четности. Устанавливается в 1, если младший байт результата предыдущей команды содержит четное число битов, равных 1, и в 0, если нечетное. Это не то же самое, что делимость на два. Число делится на два без остатка, если его самый младший бит равен нулю, и не делится, когда он равен 1.
AF – флаг полупереноса или вспомогательного переноса. Устанавливается в 1, если в результате предыдущей операции произошел перенос (или заем) из третьего бита в четвертый. Этот флаг используется автоматически командами двоично-десятичной коррекции.
ZF – флаг нуля. Устанавливается в 1, если результат предыдущей команды – ноль.
SF – флаг знака. Он всегда равен старшему биту результата.
TF – флаг ловушки. Он был предусмотрен для работы отладчиков, не использующих защищенный режим. Установка его в 1 приводит к тому, что после выполнения каждой программной команды управление временно передается отладчику.
IF – флаг прерываний. Сброс этого флага в 0 приводит к тому, что процессор перестает обрабатывать прерывания от внешних устройств. Обычно его сбрасывают на короткое время для выполнения критических участков кода.
DF – флаг направления. Он контролирует поведение команд обработки строк: когда он установлен в 1, строки обрабатываются в сторону уменьшения адресов, когда DF =0 – наоборот.
OF – флаг переполнения. Он устанавливается в 1, если результат предыдущей арифметической операции над числами со знаком выходит за допустимые для них пределы. Например, если при сложении двух положительных чисел получается число со старшим битом, равным единице, то есть отрицательное, и наоборот.
Флаги IOPL (уровень привилегий ввода-вывода) и NT (вложенная задача) применяются в защищенном режиме.
2.7. Цикл выполнения команды
Программа состоит из машинных команд. Программа загружается в оперативную память компьютера. Затем программа начинает выполняться, то есть процессор выполняет машинные команды в той последовательности, в какой они записаны в программе.
Для того чтобы процессор знал, какую команду нужно выполнять в определённый момент, существует счётчик команд – специальный регистр, в котором хранится адрес команды, которая должна быть выполнена после выполнения текущей команды. То есть при запуске программы в этом регистре хранится адрес первой команды. В процессорах Intel в качестве счётчика команд (его ещё называют указатель команды) используется регистр EIP (или IP в 16-разрядных программах).
Счётчик команд работает со сверхоперативной памятью, которая находится внутри процессора. Эта память носит название очередь команд, куда помещается одна или несколько команд непосредственно перед их выполнением. То есть в счётчике команд хранится адрес команды в очереди команд, а не адрес оперативной памяти.
Цикл выполнения команды – это последовательность действий, которая совершается процессором при выполнении одной машинной команды. При выполнении каждой машинной команды процессор должен выполнить как минимум три действия: выборку, декодирование и выполнение. Если в команде используется операнд, расположенный в оперативной памяти, то процессору придётся выполнить ещё две операции: выборку операнда из памяти и запись результата в память. Ниже описаны эти пять операций.
Суммируем полученные знания и составим цикл выполнения команды:
Это упрощённый цикл выполнения команды. К тому же действия могут отличаться в зависимости от процессора. Однако это даёт общее представление о том, как процессор выполняет одну машинную команду, а значит и программу в целом.
Регистры микропроцессоров, их виды и назначение
Общие сведения.
При составлении программ в первую очередь необходимо
знать, какие из регистров микропроцессора являются программно–доступными регистрами, в которых можно хранить подлежащие обработке данные (операнды), адреса и управляющие сигналы (команды). Совокупность программно–доступных регистров образуют регистровую модель микропроцессора. Адресация регистровой области процессора и быстрый доступ к ней обеспечивают создание эффективно исполняемых программ.
В регистровой модели современных процессоров обычно выделяют следующие группы регистров:
● регистры, используемые при выполнении прикладных программ. К ним относят:
• основные функциональные регистры (регистры общего назначения; указатель команд, или программный счетчик; сегментные регистры; регистр флагов, или слова состояния);
обработки чисел с плавающей точкой (регистры данных, тегов, состояния, управления, регистры–указатели команды и операнда);
обработки пакетов чисел с плавающей точкой (регистры пакетов данных и регистр управления–состояния);
● системные регистры (регистры управления режимом, регистры системных адресов, регистры отладки);
● служебные (модельно–специфические) регистры, которые используются в процессе отладки систем, содержат информацию о процессе выполнения программы (число декодированных команд, полученных запросов прерывания, число загрузок в кэш–память и т. п.), обеспечивают различные режимы работы кэш–памяти при обращении к определенным областям основной памяти
О неоднородности регистров.
Регистровая область памяти микропроцессора (
— регистровый сегмент) представляет собой набор неоднородных по возможности доступа и по выполняемым функциям регистров. Например, в рассмотренном выше 8–разрядном процессоре:
● регистр команд является неадресуемым регистром и предназначен только для приема первого байта (кода команды) из памяти;
● адресуемые регистры В и С могут быть использованы для хранения одного байта данных или 16–разрядного адреса (в паре);
● указатель стека, представляющий собой 16–разрядный регистр, используется для доступа к стеку путем явной и неявной (с помощью специальных команд
● программный счетчик, или указатель команд, выполняет строго определенные функции и не может быть использован для хранения 16–разрядных операндов.
Функциональная неоднородность области
процессора проявляется в специализации регистров. В зависимости от выполняемых функций можно выделить три группы регистров:
● регистры данных, используемые в операциях АЛУ в качестве источника и приемника операндов;
● адресные регистры, или указатели, предназначенные для формирования адресов данных и команд;
● специальные регистры, служащие для индикации текущего состояния процессора и управления режимами его работы.
Функциональная специализация затрудняет программирование (из–за необходимости учета организации регистров), однако позволяет создать быстро исполняемую программу с меньшим требуемым объемом памяти для ее хранения.
Регистры обозначаются латинскими буквами, используемыми для символического кодирования и отражающими назначение регистра.
Среди регистров данных важное место занимает аккумулятор А (
), который выполняет функции временного хранения исходных операндов и результатов операций арифметическо–логических устройств (АЛУ). Интенсивное использование аккумулятора и связанное с ним большинство команд арифметической и логической обработки операндов способствует снижению загруженности шины данных, упрощению адресации, повышению быстродействия процессора. В системах команд микропроцессора выделяются операции с аккумулятором. Поэтому ссылка на аккумулятор при адресации, как правило, производится неявно с помощью кода операции. Неявная адресация позволяет не указывать в командах месторасположение одного из операндов и (или) результата операции, что уменьшает длину их кода. В составе микропроцессора может быть не один, а два аккумулятора (например, в МС6809). К регистрам данных относятся явно адресуемые рабочие регистры
1, …., используемые как сверхскоростные регистровые ОЗУ.
Рабочие регистры могут использоваться в операциях совместно с аккумулятором. Некоторые из них могут совмещать функцию хранения данных с функцией адресации. Для образования полноразмерного адреса регистры данных объединяются в пары.
В процессорах, предназначенных для работы в реальном времени, могут быть предусмотрены не один, а два или даже четыре (например, в некоторых микроконтроллерах) набора рабочих регистров. Один из регистров резервируется для системных целей или обработки прерываний, а остальные — для прикладных задач пользователя. В каждый момент времени доступен только один набор рабочих регистров, выбираемый специальным указателем.
К регистрам данных также относятся рассматриваемые ниже регистры общего назначения, которые совмещают функции хранения данных и адресов.
Среди регистров, на которые возложена функция адресации, следует выделить:
), или указатель инструкций–команд (
), хранящий адрес следующей команды выполняемой программы. Его разрядность обычно соответствует числу линий адресной шины. При выполнении программы с последовательно возрастающими адресами команд содержимое
увеличивается на 1 или 2 для указания следующего байта или слова. Увеличение содержимого счетчика происходит автоматически сразу после начала выполнения команды. Изменение последовательной выборки команд из ячеек памяти осуществляется путем загрузки программного счетчика адресом требуемой ячейки. Такая ситуация возникает, например:
• при выполнении команд условных и безусловных переходов;
• при инициализации микропроцессора путем сброса;
• при обслуживании запросов на прерывание;
используемый для обращений к системному стеку. Стек представляет собой область памяти, предназначенную для хранения адресов возврата и состояний процессора (содержимого регистров) при вызове подпрограмм и обслуживании прерываний. Доступ к стеку организован по принципу «последним пришел — первым ушел» (
т. е. в него можно только последовательно добавлять (вталкивать) или извлекать (выталкивать) элементы данных. Типовой стек, применяемый в большинстве процессоров, заполняется в сторону уменьшения адресов.
всегда показывает на последнюю заполненную ячейку, называемую вершиной стека (
Поэтому при операции записи (
) в стек элемента данных сначала содержимое указателя
уменьшается на 1 или 2 в зависимости от длины элемента (байт, два байта), формируя адрес ячейки, в которую затем помещается элемент. При операции считывания (
) сначала элемент данных извлекается из стека, после чего содержимое указателя
увеличивается на 1 или 2.
Принцип взаимодействия указателя
со стеком проиллюстрирован на примере записи в стек и считывания из него четырех однобайтных элементов (рис. 2.4.1, а).
При операциях со стеком значение указателя
непрерывно меняется, поэтому применять его в качестве точки отсчета при доступе к хранящимся в стеке данным вызывает определенные трудности. Поэтому в ряде случаев, например, при хранении в стеке локальных переменных или при обмене параметрами между вызываемой и вызывающей процедурой (подпрограммой), используется указатель кадра (
) — специально зарезервированный адресный регистр. Регистр
, указывающий на начало области параметров в стеке (рис. 2.4.1, б), принадлежит к классу базовых регистров. В 16–разрядных процессорах указателем кадра служит индексный регистр ВХ;
регистры, предназначенные для хранения адресов обращения к основной памяти. Такие регистры, называемые указательными или индексными, позволяют сократить размер кода (программы). К ним следует отнести:
• регистры косвенного адреса (
), содержащие непосредственно адрес операнда;
), хранящие начальные (базовые) адреса массивов и записей;
• индексные регистры I или X (
), содержимое которых является относительным (смещенным) адресом операнда;
• регистры автоинкрементной и автодекрементной адресации, автоматически увеличивающие или уменьшающие свое содержимое после выполнения операции;
• регистры расширения адресного пространства (до 1М байт).
К специальным регистрам следует отнести регистр флагов (
), или регистр слова состояния программы (
а также ряд регистров, используемых в сопроцессорах и микроконтроллерах.
На регистр флагов возлагается функция хранения признаков. С каждым признаком связывается одноразрядная переменная (бит), называемая флагом (флажком). Регистр флагов содержит:
● биты признаков состояния процессора. Обычно эти признаки формируются в АЛУ после выполнения операции и характеризуют ее результат;
● биты управления и системных признаков, которые устанавливаются операционной системой (некоторые пользователем) и задают режим процессора при организации ввода–вывода данных, обслуживании прерываний и исключений, решении последовательности вызываемых задач и реализации ряда других процедур.
Упаковка всех флагов в одно слово и хранение в регистре дает возможность их быстрой пересылки в память с последующим восстановлением, например, при обслуживании запросов на прерывание.
Ниже приведены обозначение, название и назначение флагов признаков состояния, а также показан принцип формирования некоторых флагов из отдельных бит
–разрядных операндов вида
, которые могут быть как исходным операндом, так и результатом выполненной операции: