что такое альбедо планеты
Альбедо
Планета | Геометрическое альбедо | Сферическое альбедо |
---|---|---|
Меркурий | 0,106 | 0,119 |
Венера | 0,65 | 0,76 |
Земля | 0,367 | 0,39 |
Марс | 0,15 | 0,16 |
Юпитер | 0,52 | 0,343 |
Сатурн | 0,47 | 0,342 |
Уран | 0,51 | 0,3 |
Нептун | 0,41 | 0,29 |
Плутон | 0,6 | 0,5 |
Альбе́до (лат. albus — белый) — характеристика отражательной (рассеивающей) способности поверхности.
Значение альбедо для данной длины волны или диапазона длин волн зависит от спектральных характеристик отражающей поверхности, поэтому альбедо отличается для разных спектральных диапазонов (оптическое, ультрафиолетовое, инфракрасное альбедо) или длин волн (монохроматические альбедо).
Содержание
Ламбертово (истинное, плоское) альбедо
Нормальное альбедо чистого снега составляет
0,9, древесного угля
Геометрическое альбедо
Геометрическое оптическое альбедо Луны — 0,12, Земли — 0,367.
Бондовское (сферическое) альбедо
См. также
Примечания
Ссылки
Полезное
Смотреть что такое «Альбедо» в других словарях:
АЛЬБЕДО — АЛЬБЕДО, доля света либо другого излучения, отраженная от какой либо поверхности. У идеального отражателя альбедо равняется 1, у реальных это число меньше. Альбедо снега лежит в пределах от 0,45 до 0,90; альбедо Земли, с искусственных спутников,… … Научно-технический энциклопедический словарь
АЛЬБЕДО — (араб.). Термин в фотометрии, показывающий, какую часть световых лучей данная поверхность отражает. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. альбедо (лат. albus светлый) величина, характеризующая… … Словарь иностранных слов русского языка
АЛЬБЕДО — (позднелат. albedo, от лат. albus белый), величина, характеризующая соотношение между потоком солнечной радиации, попадающим на различные предметы, почвенным или снежный покров, и количеством такой радиации, поглощенной или отраженной ими;… … Экологический словарь
АЛЬБЕДО — (от позднелат. albedo белизна) величина, характеризующая способность поверхности отражать падающий на нее поток электромагнитного излучения или частиц. Альбедо равно отношению отраженного потока к падающему. В астрономии важная характеристика… … Большой Энциклопедический словарь
альбедо — нескл. albédo m. <лат. albedo. белизна. 1906. Лексис. Внутренний белый слой кожицы цитрусовых. Пищепром. Лекс. Брокг.: альбедо; СИС 1937: альбе/до … Исторический словарь галлицизмов русского языка
альбедо — Характеристика отражательной способности поверхности тела; определяется отношением светового потока, отражённого (рассеянного) этой поверхностью, к световому потоку, падающему на неё [Терминологический словарь по строительству на 12 языках… … Справочник технического переводчика
альбедо — Отношение солнечной радиации, отраженной от поверхности земли, к интенсивности радиации, падающей на нее, выражается в процентах или десятичных долях (среднее альбедо Земли равно 33%, или 0,33). → Рис. 5 … Словарь по географии
АЛЬБЕДО — (от позднелат. albedo белизна), величина, характеризующая способность поверхности к. л. тела отражать (рассеивать) падающее на неё излучение. Различают истинное, или ламбертово, А., совпадающее с коэфф. диффузного (рассеянного) отражения, и… … Физическая энциклопедия
альбедо — сущ., кол во синонимов: 1 • характеристика (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
АЛЬБЕДО — Величина, характеризующая отражательную способность любой поверхности; выражается отношением радиации, отражаемой поверхностью, к солнечной радиации, поступившей на поверхность (у чернозема 0,15; песка 0,3 0,4; среднее А. Земли 0,39; Луны 0,07)… … Словарь бизнес-терминов
Что такое альбедо?
Когда астрономы говорят об отражательных свойствах поверхности планет и спутников, они часто используют термин альбедо. Однако, обратившись за разъяснением этого понятия к справочникам и энциклопедиям, мы узнаем, что существует множество различных видов альбедо: истинное, видимое, нормальное, плоское, монохроматическое, сферическое и так далее. Есть от чего загрустить. Поэтому давайте попробуем разобраться в этом круговороте терминов.
Само слово «альбедо» идет от латинского albedo — белизна. В самом общем виде так называют долю упавшего излучения, отраженного твердой поверхностью или рассеянного полупрозрачным телом. Поскольку величина отраженного излучения не может превосходить величину падающего излучения, то это отношение, то есть альбедо, всегда заключено в пределах от 0 до 1. Чем выше его значение, тем большая доля падающего света будет отражена.
Видимость всех несамосветящихся тел полностью определяется их альбедо, то есть их отражательной способностью. Можно даже сказать, что мы просто не видели бы несамосветящиеся предметы, если бы они не могли отражать свет. Благодаря этому свойству мы «на глаз» определяем форму тела, природу материала, его твердость и другие характеристики. Впрочем, умело подобранное альбедо может и скрыть от нас предмет — вспомните военный камуфляж или самолет-невидимку «Стелс». При исследовании тел Солнечной системы измерение альбедо помогает выяснять природу материала, находящегося на поверхности небесного тела, его структуру и даже химический состав.
Мы легко отличаем снег от асфальта потому, что снег почти полностью отражает свет, а асфальт почти полностью его поглощает. Однако мы также легко отличим снег от листа полированного алюминия, хотя оба они почти полностью отражают свет. Значит, только знания доли отраженного света еще не достаточно, чтобы судить о природе материала. Снег рассеивает свет диффузно, во все стороны, а алюминий отражает зеркально. Чтобы учесть эти и другие особенности отражения, различают несколько видов альбедо.
Истинное (абсолютное) альбедо совпадает с так называемым коэффициентом диффузного отражения: это отношение потока, рассеянного плоским элементом поверхности во всех направлениях, к падающему на него потоку.
Чтобы измерить истинное альбедо, требуются лабораторные условия, ведь необходимо учесть свет, рассеянный телом во всех направлениях. Для «полевых» условий более естественным является видимое альбедо — отношение яркости плоского элемента поверхности, освещенного параллельным пучком лучей, к яркости абсолютно белой поверхности, расположенной перпендикулярно к лучам и имеющей истинное альбедо, равное единице.
Если поверхность освещается и наблюдается под углом в 90 градусов, то ее видимое альбедо называют нормальным. Нормальное альбедо чистого снега приближается к 1.0, а древесного угля — около 0.04.
В астрономии часто используют геометрическое (плоское) альбедо — отношение освещенности на Земле, создаваемой планетой в полной фазе, к освещенности, которую создал бы плоский абсолютно белый экран того же размера, что и планета, отнесенный на ее место и расположенный перпендикулярно лучу зрения и солнечным лучам. Физическое понятие «освещенность» астрономы обычно выражают своим словом «блеск» и измеряют его в звездных величинах.
Ясно, что значение альбедо влияет на блеск небесных объектов так же сильно, как их размер и положение в Солнечной системе. Например, если бы астероиды Цереру и Весту расположить рядом, то их блеск был бы почти одинаковым, хотя диаметр Цереры вдвое больше, чем у Весты. Дело в том, что поверхность Цереры значительно хуже отражает свет: альбедо Весты около 0.35, а у Цереры только 0.09.
Значение альбедо зависит как от свойств поверхности, так и от спектра падающего излучения. Поэтому отдельно измеряют альбедо для разных спектральных диапазонов (оптическое, ультрафиолетовое, инфракрасное и так далее) или даже для отдельных длин волн (монохроматическое альбедо). Изучая изменение альбедо с длиной волны и сравнивая полученные кривые с такими же кривыми для земных минералов, образцов почв и различных пород, можно сделать некоторые выводы о составе и структуре поверхности планет и их спутников.
Для расчета энергетического баланса планет используется сферическое альбедо (альбедо Бонда), введенное американским астрономом Джорджем Бондом в 1861 году. Это отношение отраженного всей планетой потока излучения к падающему на нее потоку. Чтобы точно вычислить сферическое альбедо, вообще говоря, необходимо наблюдать планету под всевозможными фазовыми углами (угол Солнце-планета-Земля). Раньше это было возможно только для внутренних планет и Луны. С появлением искусственных спутников астрономы смогли вычислить сферическое альбедо у Земли, а межпланетные космические аппараты позволили это сделать и для внешних планет. Бондовское альбедо Земли — около 0.33, и в нем очень большую роль играет отражение света от облаков. У лишенной атмосферы Луны оно равно 0.12, а у Венеры, покрытой мощной облачной атмосферой, — 0.76.
Естественно, различные участки поверхности небесных тел, имеющие различную структуру, состав и происхождение, обладают различным альбедо. В этом вы сами можете убедиться, посмотрев хотя бы на Луну. Моря на ее поверхности имеют чрезвычайно низкое альбедо, в отличие, скажем, от лучевых структур некоторых кратеров. Кстати, наблюдая за лучевыми структурами, вы легко заметите, что их внешний вид сильно зависит от того, под каким углом их освещает Солнце. Это происходит как раз вследствие изменения их альбедо, которое принимает максимальное значение, когда лучи падают перпендикулярно к поверхности Луны, где расположены эти образования.
И еще один эксперимент. Посмотрите на Луну в телескоп (или же на какую-либо планету, лучше всего на Марс или Юпитер) с различными светофильтрами. И вы увидите, что, например, в красных лучах поверхность Луны выглядит несколько иначе, чем в синих. Это говорит о том, излучение различных длин волн отражаются от ее поверхности по-разному.
А вот о каком конкретно альбедо нужно говорить в описанных выше примерах, постарайтесь догадаться сами.
Альбедо Земли
Одним из факторов, влияющих на регулирование температуры на глобальном уровне, является альбедо земли. Он известен как эффект альбедо, и это параметр, который сильно влияет на температуру и, следовательно, влияет на изменение климата. Вы должны очень хорошо знать влияние альбедо, чтобы делать выводы и разрабатывать планы, которые помогут уменьшить влияние альбедо. Глобальное потепление.
В этой статье мы собираемся объяснить, что такое альбедо Земли и как оно колеблется и меняет глобальную температуру. Как это явление влияет на изменение климата?
Какое альбедо у Земли?
Ведь совокупность всех поверхностей планеты и их коэффициенты поглощения и отражения солнечных лучей составляют альбедо Земли. В зависимости от преобладающего цвета или различных типов поверхности нашей планеты, мы будем поглощать больше или меньше падающего солнечного излучения. Этот факт оказывает большое влияние на изменение климата. как мы увидим в этой статье.
Альбедо и изменение климата
Наверняка вам интересно, какое отношение этот эффект имеет к изменению климата и глобальному потеплению. Что ж, альбедо Земли оказывает огромное влияние в дополнение ко всем парниковым газам и увеличению их концентрации в атмосфере. Полюса Земли имеют очень выраженный эффект альбедо, поскольку поверхность полностью белая из-за наличия полярных шапок. Это означает, что большая часть солнечного излучения, попадающего на поверхность полюсов, отражается обратно, а не сохраняется в виде тепла.
С другой стороны, поверхности с более темным оттенком, такие как моря, океаны и даже леса, мы обнаруживаем более высокую степень поглощения. Это потому, что моря темного цвета, как верхушки деревьев. Чем меньше отражается солнечное излучение, тем выше скорость его поглощения.
Связь между альбедо Земли и изменением климата заключается в том, что с неизбежным таянием полярных ледяных шапок количество солнечных лучей, возвращаемых в космическое пространство, уменьшается. Тающая часть меняет свой цвет со светлого на темный, поэтому будет поглощено больше тепла, а температура земли еще больше повысится. Это похоже на путассу, кусающую свой хвост.
Мы повышаем мировую температуру из-за увеличения количества парниковых газов, которые сохраняют тепло в атмосфере, и, следовательно, тают полярные шапки, что, в свою очередь, способствует охлаждающему эффекту благодаря отражению солнечных лучей. что упало на его поверхность.
Леса считаются демонами
Что ж, даже если это так, мы должны помнить, что леса содержат миллионы видов растений, которые фотосинтез, и это очистит нашу атмосферу, уменьшая концентрацию парниковых газов, которые мы выбрасываем в атмосферу. Люди не могут в конечном итоге демонизировать эти леса, просто искажая информацию, которую они не смогли обработать или которую они неправильно поняли.
Кроме того, есть многочисленные исследования, подтверждающие влияние больших массивов леса при наличии дождевых осадков. Чем больше лесных массивов, тем больше выпадает количество осадков, которые имеют решающее значение для глобальной засухи, вызванной изменением климата. Хотя глупо упоминать об этом, все меры предосторожности незначительны, но деревья также снабжают нас кислородом, которым мы дышим и без которого мы не можем жить.
Решение проблемы
Если мы посадим и увеличим площадь лесов, мы также еще больше снизим концентрацию парниковых газов в атмосфере.
Надеюсь, изменение климата не будет продолжаться, и люди не будут продолжать демонизировать леса по этой причине.
Содержание статьи соответствует нашим принципам редакционная этика. Чтобы сообщить об ошибке, нажмите здесь.
Парадокс альбедо не сулит Земле ничего хорошего
Обнаружилось, что в последние годы Земля все интенсивнее отражала солнечные лучи. Казалось бы, это должно было привести к сокращению доли солнечной энергии, поступающей на Землю, и, соответственно, снижению эффекта глобального потепления. Но все оказалось гораздо хуже. Растет и температура Земли, и ее «блеск». Этот парадокс вызван, как выяснилось, резкой перестройкой характера распределения облачности по ярусам в последние пять лет. До этого данный параметр в течение длительного времени испытывал лишь незначительные колебания.
«Наше открытие окажет значительное воздействие на исследования климатических изменений, полагает Филип Р. Гуд (Philip R. Goode), профессор физики технологического института штата и директор солнечной обсерватории Big Bear в Калифорнии. Становится непонятным, каким образом происходит непрерывное потепление, если количество солнечного излучения, достигающего поверхности Земли, сокращается».
По мнению исследователей, парадокс может быть связан с ростом облачности в сочетании с необычными изменениями строения самой облачности, однако ученые сами не очень уверены в таком объяснении. Значительная изменчивость облачного покрова и альбедо Земли препятствует прогнозированию климата Земли и возможности представлять происходящие в нем процессы.
Результаты наблюдений, ведущихся в обсерватории Big Bear начиная с 1997 года, легли в основу работы Гуда и его коллег под названием «Возможность одновременного роста альбедо Земли и температуры поверхности планеты» (Can the Earths Albedo and Surface Temperatures Increase Together), опубликованной в еженедельном издании американского геофизического союза Eos. Исследования финансировались НАСА.
«Последние результаты анализа облачного покрова, полученные в рамках проекта International Satellite Cloud Climatology Project (ISCCP), подтверждают выявленный в отражающей способности Земли тренд, отметил Гуд. Данные свидетельствуют о том, что с 2000 года по настоящее время облачный покров изменился таким образом, что Земля будет продолжать нагреваться, несмотря на сокращение количества доходящей до ней солнечной радиации. Наблюдаемая значительная и необычная изменчивость облачного покрова в сочетании с вызванным ею ростом альбедо представляют собой фундаментальное препятствие не только прогнозированию климата Земли, но и самой возможности адекватно представлять происходящие в нем процессы».
На климат Земли оказывают определяющее влияние солнечная радиация, в несколько меньшей степени ее доля, отражаемая обратно в космическое пространство, а также то, насколько хорошо Земля «удерживает» полученное извне тепло. В нынешнюю эпоху больше половины поверхности Земли покрыто облаками, и именно они определяют альбедо Земли. Структура облачного покрова определяется количеством тепла, достигшего поверхности Земли, а также поглощенного самой атмосферой. Облака одновременно и охлаждают Землю (в особенности низкие плотные облака), и способствуют ее нагреву, действуя как своеобразное «одеяло». Роль такого «одеяла» играют в основном высотные тонике облака.
Наблюдаемый учеными на протяжении последних пяти лет рост альбедо Земли плохо согласуется и просто противоречит тенденции повышения температуры на поверхности Земли и мирового океана, поскольку рост доли солнечной радиации, отражаемой обратно в космическое пространство, должен приводить к соответственному уменьшению той ее доли, которая достигает Земли и способствует разогреву планеты.
Данные наблюдений за облачным покровом Земли в рамках программы ISCCP на протяжении последних 20 лет обескураживают ученых. Первые 15 лет различие между высотной и низкой облачностью стабильно поддерживалось на уровне 78%. Однако в последние 5 лет по совершенно непонятным причинам этот параметр практически удвоился, достигнув значения 13%. Данным, по мнению ученых, можно верить они создавались на основе скрупулезной компиляции наблюдений за облачностью над всей Землей с помощью различных метеорологических спутников одновременно.
«Рост данного дифференциального параметра сигнализирует о растущем снижении охлаждающего эффекта облачности, считает Гуд. Таким образом, растущий коэффициент отражения радиации Землей не ведет к снижению эффекта глобального потепления только за счет роста доли солнечного света, отражаемого обратно в космос». Это вызвано тем, что доля низких облаков в облачном покрове планеты последние годы снижалась, в то время как доля высоких, «согревающих» ее облаков наоборот, быстро росла.
Отражающая способность Земли существенно меняется со временем. Так, на протяжении 19852000 гг. Земля получала все больше световой энергии, однако в 20002004 гг. эта тенденция сменилась на противоположную.
Подобные странные изменения наблюдаются в истории Земли не в первый раз, причем в не согласующиеся друг с другом периоды. Так, радиометрические измерения на Земле, проводившиеся в 19601980 гг., выявили аналогичную тенденцию снижения доли солнечных лучей, достигающих Земли, в указанный период феномен получил название эффекта «глобального затемнения» (global dimming). Становится очевидным, что и количество солнечной радиации, и ее воздействие на «перестройку» облачности по высотным ярусам испытывают значительные, необъяснимые пока что долгосрочные вариации. По мнению Гуда, пока что можно лишь порекомендовать научному сообществу не спешить с выводами о том, что эффект «глобального затемнения» оказывает положительное воздействие на климат Земли, в мере противодействуя эффекту глобального потепления, и уделить большее внимание изучению механизмов образования облачности и ее роли в климатических моделях вообще.
Что такое альбедо планеты
Интересно в какой последовательности выстраиваются планеты Солнечной системы с точки зрения их альбедо? [1]
В первую очередь, по моему мнению, заслуживает внимания геометрическое альбедо, поскольку оно находится чуть ближе к геоцентрической астрологической реальности. Сферическое альбедо, на мой взгляд, ближе к абсолютному, космическому пониманию способности отражать свет. Поскольку нас интересуют дела земные или, по крайней мере, дела в нашей солнечной системе, то геометрическое альбедо будет в приоритете.
Объект | Геометрическое альбедо | Сферическое альбедо |
Венера | 0,67 | 0,90 |
Плутон | 0,44-0,61 | 0,4-0,6 |
Юпитер | 0,52 | 0,343 |
Уран | 0,51 | 0,30 |
Сатурн | 0,47 | 0,342 |
Нептун | 0,41 | 0,29 |
Земля | 0,367 | 0,306 |
Марс | 0,17 | 0,25 |
Меркурий | 0,142 | 0,068 |
Луна | 0,12 | 0,11 |
Рассмотрим полученные последовательности планет:
С учётом высших планет и Земли:
Без учета высших планет и Земли последовательность такова:
Без учета высших планет, Земли и Луны (спутник Земли):
Если попытаться использовать альбедо для понимания природы добра и зла в целом, то получится, что быть покалеченным, испытывать горе, лишения и потери (Марс и Сатурн), все же лучше, чем подавать минимальные признаки жизни. Мне кажется, что такое понимание зла в астрологии найдет себе применение.
Руслан Суси, 18.10.2011