что такое mimo 2×2
Технология передачи данных MIMO 2×2
Технология MIMO считается молодой разработкой. Первый патент на ее применение зарегистрирован в 1984 году. Первый разработчик – компания Bell Laboratories. Спустя 12 лет, в 1996 году, концерн Airgo Networks выпускает блок микросхем для материнской платы с использованием MIMO. Разработка получила актуальность именно с развитием беспроводных технологий Wi-Fi и распространением сети 3G. На сегодняшний день она внедрена также в устройства для передачи данных в формате 4G LTE.
Преимущества использования технологии MIMO
MIMO раздает несколько потоков данных посредством одного канала. Далее сигнал проходит через две или более антенны (при этом происходит доставка разных потоков данных только по единственному каналу) до приемных устройств. Данная технология решает проблему низкой пропускной способности, причем для достижения цели не нужно расширять полосу пропускания.
При излучении радиоволны поток данных в радиоканале как бы замирает. Данное явление можно заметить в городе среди многоэтажных домов, когда пользователь двигается на значительной скорости либо удаляется от зоны излучения радиосигнала. MIMO антенны транслируют кодированный сигнал с небольшой задержкой и восстанавливают его принимающей стороной. В результате возрастает скорость передачи данных и улучшается качество сигнала.
Стандартные системы излучения сигнала для передачи данных в формате LTE имеют показатели скорости порядка 50 Мб в секунду. Системы на основе двух устройств, которые принимают и передают сигнал (технология MIMO ), позволяют увеличить скорость более чем в два раза.
Технология MIMO успешно применяется в беспроводных системах WiFi, WiMAX и в сотовой сети, т.к. она улучшает спектральные показатели качества сигнала, скорость и емкость потока информации. Все это возможно благодаря передаче данных от 4G антенны MIMO с помощью нескольких беспроводных соединений, что и отражает суть технологии. Аббревиатура MIMO исходит из выражения Multiple Input Multiple Output, что переводится как «множественный вход и множественный выход».
Область применения MIMO
область применения мимо
Разработка активно применяется для улучшения качества связи и увеличения скорости в различных стандартах беспроводной связи:
Таким образом, устройства, произведенные на основе технологии MIMO, будут передавать данные без потери качества, с высокой скоростью независимо от того, насколько удалена базовая станция оператора от места работы пользователя сети, из какого материала стены помещения, какой они толщины. Система – с безграничным потенциалом, по сути, ее возможности еще предстоит открыть.
Еще несколько лет назад словосочетание MIMO 3 G ассоциировалось с пиком скорости передачи данных. Сегодня уже начали устанавливаться 4 G антенны. Не останавливается ни на день поиск и разработка новых конфигураций MIMO антенн. Производители планируют создать версию 64х64. Если их задумка воплотится в жизнь, то совсем скоро можно будет воспользоваться оборудованием с еще более эффективными спектральными данными, с супер скоростью передачи данных, с повышенной емкостью сетей.
MIMO в загородном доме
Система будет играть важную роль и при внедрении сетей сотовой связи по стандартам 5G, где также будут практиковаться LTE и WI-FI передача данных. Подобное телекоммуникационное оборудование планируется к внедрению операторами уже к 2020 году.
Как установить антенну MIMO
Подобное оборудование – отличный вариант для установки системы связи «точка приема – точка отдачи», «точка приема – много точек отдачи». 3G, 4G антенна с поддержкой технологии MIMO обычно оснащена пластиковым корпусом, предохраняющим его от осадков и УФ-лучей. Ее можно закрепить на вертикальной поверхности, регулировать угол наклона, что особенно важно, когда нужно «ловить» сигнал на даче.
Обращайтесь в «Лан Центр»! Мы взяли на вооружение новейшие технологии, чтобы связь за городом, на даче была вам в радость.
Для тех у кого MIMO прошло мимо…
Немножко истории
У большого числа технологий, которые имеют место в сегодняшней телекоммуникационной среде «ноги растут» из военных наработок. Технология ортогонального частотного мультиплексирования (OFDM), например, была предложена ещё в 80-х годах нашими американскими друзьями, но реализовать её удалось совсем недавно лишь потому, что она чрезвычайно требовательна к вычислительной мощности системы (всему виной пресловутое БПФ).
MIMO раньше представлялась только лишь как технология разнесенного приема (имеем одну передающую и N приемных антенн). Реализуя эту идею было выпущено несколько серий военных тропосферных станций (может кому и довелось послужить на таких) и в принципе на том этапе, расходы на разворачивание дополнительных антенн себя оправдывали.
Принцип обработки был прост как лопата: в двух приемных ветках сравнивалось отношение сигнал/шум и в соответствии с оценкой этого значения каждой ветке обработки назначались весовые коэффициенты, играющие роль при принятии решения, грубо говоря, что было передано: 0 или 1. Эта нехитрая система так и была названа критерием оптимального весового сложения (MRC).
Дальше-больше. В 1997 году ирано-американец Аламоути предлагает новинку основанную на уже известных тезисах, назвав её пространственно-временным блоковым кодом (STBC). После этого год от года увеличивается вал публикаций на тему MIMO и тема стает очень актуальной на фоне того, что частотно-энергетическую эффективность систем связи повышать стало все сложнее и сложнее (уже продуманы максимально эффективные сигнально-кодовые конструкции). А дальше пошло-поехало: пространственно-временное решетчатое кодирование, пространственное мультиплексирование, а также большое количество алгоритмов декодирования от простейшего «максимального правдоподобия (ML- max likehood)» до сферического турбодекодирования на GPU и т.д.
Как это работает
Радиоканалы
Вообще эта классификация огромна и её обзор достоен отдельной статьи, но мы остановимся лишь на нескольких моментах.
Проходя путь от передатчика (T) к приемника ( R) наша радиоволна затухает (теряет в энергетике), причем то насколько она потеряет зависит то, есть ли между нашими T и R прямая видимость. Если она есть, то основная вина за потери ложится на потери среды распространения (path loss), если прямой видимости нет, то начинается самое интересное. Сталкиваясь с различными препятствиями волна идет к пункту назначения несколькими путями (многолучевое распространение) и соответственно каждый луч проходит разное расстояние. На приеме все эти лучи могут складывать с противофазе, что дополнительно снижает интенсивность сигнала, что заставляет уровень сигнала постоянно «плавать». Поэтому в зоне неуверенного приема ваши мобильники никак не могут определиться сколько «палочек сигнала» показывать.
Все это безобразие назвали замираниями. Бывают они разными и могут описывать разными законами. При наличии постоянной компоненты (наличии прямой видимости) подойдет распределение Райса, а при её отсутствии — Релеевское (частный вариант). Формул не буду приводить умышленно, они большие и страшные.
MIMO вот ОНО
Разбор того, как ЭТО работает проведем на самом простом примере. У нас есть 2 антенны на передаче и одна на приеме.
k — так называемая комплексная передаточная функция канала (определяющая его ФЧХ и АЧХ), причем различная для каждого момента времени для каждого из принятых сигналов. Главная изюминка как раз и заключается в том, что сигналы для каждой из приемных антенн проходят разные пути.
В соответствии с методом ПВБК, входной поток данных разбивается на пары [с1, с2], причем, на первом полутактовом интервале символ c1 передается через антенну Т1 и символ c2 передается через антенну Т2. На втором полутактовом интервале порядок передачи изменяется: через антенну Т1 передается инверсия символа c2 (на рисунке обозначен как (–c*2), а символ c1 передается через антенну Т2 (на рисунке обозначен как (c*1). Данный алгоритм удобно представить в виде матрицы, где номер строки будет соответствовать номеру передатчика, а номер столбца – номер полутакта (в общем случае – шаг такта) передачи. Символ «*» как уже многие догадались-комплексное сопряжение.
В итоге на входе мы получаем 2 сигнала (мультипликативные отклики за первый и второй такт), проведя ряд занимательных математических преобразований мы получаем исходный сигнал, а точнее пару этих сигналов. Собственно вся фишка и заключается в том, что каждый из этих сигналов передавался 2 раза.
Почему это возможно? Потому что k разный для каждого луча, а матрица Аламоути (рисунок выше) является ортогональной.
Практика
А теперь проведем моделирование и посмотрим выигрыш MIMO перед SISO(single in single out).
Все свои расчеты и моделирование я провожу в Matlab‘e потому, что это самая лучшая в мире очень удобная для таких экспериментов среда.
Вот собственно кусок для расчета кривой Аламоути:
Эта часть для классической схемы:
Из графика видно что выигрыш для вероятности ошибки Pош=10^(-3) примерно 12 [дБ]. И это просто огромная величина.
Что такое MU-MIMO и что это дает конечному пользователю?
Что такое MIMO?
SU-MIMO и MU-MIMO: в чем различие?
Работа многопользовательского МИМО начинается с 802.11ax, 802.11ac Wave2. Старшие стандарты, такие как 802.11b, g и n его не поддерживают. Когда в 2015 году вышел стандарт ac Wave 2, с этой технологией могли работать только маршрутизаторы и точки доступа.
Технология MU-MIMO изнутри
В 2008 году стандарт 802.11n представил технологию multi-in multi-out (MIMO), предназначенную для повышения пропускной способности Wi-Fi между точками доступа и клиентскими устройствами. Чтобы MIMO работал, две беспроводные станции (т.е. и точка доступа, и клиентское устройство) должны иметь несколько антенн, которые идентичны и физически отделены друг от друга фиксированным расстоянием, чтобы отсутствовала разность фаз на рабочей длине волны.
Пространственное мультиплексирование (Spatial Mutiplexing)
Пространственный поток представляет собой набор данных, посланный передающими антеннами, который может быть математически реконструирован на антеннах приемника. В MIMO каждый пространственный поток передается с разных антенн в том же частотном канале, на котором работает передатчик. Рисунок ниже иллюстрирует это для случая с двумя потоками.
Приемник принимает каждый поток на идентичную радио цепь. Поскольку он знает смещения фазы своих собственных антенн, он может использовать математические методы обработки сигналов для реконструкции исходных потоков. Чтобы повысить пропускную способность нужно увеличивать количество потоков. Каждый пространственный поток содержит набор уникальных данных, а количество независимых пространственных потоков ограничено тем, какое Wi-Fi устройство имеет наименьшее количество радиолиний.
В первой волне 802.11ac пропускная способность повышалась не только за счет использования MIMO, а применялись и другие механизмы:
Однако общая ширина полосы в любом частотном диапазоне является «конечной» и это накладывает свои ограничения. Чем шире канал, тем больше он подвержен помехам.
Beamforming (адаптивное формирование диаграммы направленности луча)
Многопользовательский MIMO (MU-MIMO) повышает пропускную способность канала за счет одновременной передачи данных на множество клиентов. Но есть еще другая эффективная технология – формирование диаграммы направленности луча в нисходящем канале – TxBF.
TxBF впервые была представлена в стандарте 802.11n, но широкого распространения не получила. Если в MIMO с каждой антенны отправляются разные пространственные потоки, то при формировании луча с нескольких антенн отправляется один и тот же поток со сдвигом фаз.
Роутер отправляет служебную информацию к клиенту со всех своих антенн, а клиент в обязательном порядке отвечает роутеру матрицей, которая указывает, что он увидел от каждой из антенн. Программное обеспечение маршрутизатора вычисляет примерное местоположение клиента и вносит поправки в работу всех своих передатчиков таким образом, что бы максимизировать сигнал на клиенте.
Например, для устранения замираний на одной из антенн изменяется фазовый сдвиг или увеличивается амплитуда сигнала для прохождения преграды. Если сигнал с разных антенн приходит синфазно и с одинаковой мощностью, он складывается – это понятие называется конструктивной интерференцией. В этом случаем за счет увеличения мощности сигнала возрастает скорость передачи данных и максимальное расстояние до клиента. И наоборот если приходит два сигнал с противоположной фазой они гасятся, и результирующая амплитуда сигнала может быть равна нулю – это называется деструктивной интерференцией радиоволн.
Для формирования диаграммы направленности требуется использование фазированной антенной решетки, в которой имеется множество одинаковых антенн и они разнесены на фиксированное друг от друга расстояние (для работы в противофазе).
За счет одновременной передачи данных сразу нескольким клиентам и поддержки множества пространственных потоков MU-MIMO позволяет увеличить канальную скорость в полосе.
Механизм передачи информации в MU-MIMO
Максимальное количество одновременно работающих клиентов на единицу меньше, чем общее количество доступных потоков роутера. Это математическое ограничение и вот почему. Точка доступа должна контролировать как зоны максимальной конструктивной интерференции для фокусирования самого сильного сигнала на клиентском устройстве, так и зоны максимальной деструктивной интерференции, чтобы минимизировать сигнал на других клиентских устройствах в этой группе.
Математически число переменных превышает число неизвестных, поэтому одним потоком нельзя управлять независимо. Таким образом, для текущего поколения точек доступа 802.11ac Wave 2 с поддержкой MU-MIMO 4×4: 4 допустима следующая комбинация групп:
Совместное использование пространственного мультиплексирования и адаптивного формирования диаграммы направленности луча позволяет:
IoT (Интернет вещей) и MU-MIMO
Стандарт 802.11ax может поддерживать одновременно восемь передач MU-MIMO, по сравнению с четырьмя в 802.11ac. Одновременная поддержка восьми выделенных каналов позволяет большему количеству IoT устройств установить связь с точкой доступа и избежать проблем с пропускной способностью, которые существовали в более ранних версиях Wi-Fi, включая 802.11ac. Это особенно актуально, если в помещении большое количество устройств, обладающих низкой скоростью передачи данных (а это как раз и есть IoT).
Практические ограничения MU-MIMO
Комментарии
Даниил 2021-05-14 10:37:00
Технология MIMO: что это и с чем её едят?
Наверняка, многие уже слышали про технологию MIMO, в последние годы её частенько пестрят рекламные проспекты и плакаты, особенно в компьютерных магазинах и журналах. Но что же такое MIMO (МИМО) и с чем её едят? Давайте разберёмся поподробнее.
Технология MIMO
MIMO (Multiple Input Multiple Output; множественные входы, множественные выходы) — метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, при котором для передачи данных используются две и более антенны и такое же количество антенн для приёма. Передающие и приёмные антенны разнесены настолько, чтобы достичь минимального взаимного влияния друг на друга между соседними антеннами. Технология MIMO используется в беспроводных связи Wi-Fi, WiMAX, LTE для увеличения пропускной способности и более эффективного использования частотной полосы. Фактически MIMO позволяет в одном частотном диапазоне и заданном частотном коридоре передавать больше данных, т.е. увеличить скорость. Достигается это за счёт использования нескольких передающих и принимающих антенн.
История MIMO
Технологию MIMO можно отнести к достаточно молодым разработкам. Её история начинается в 1984 году, когда был зарегистрирован первый патент на использования данной технологии. Начальные разработки и исследования проходили в компании Bell Laboratories, а 1996 году компанией Airgo Networks был выпущен первый MIMO-чипсет под названием True MIMO. Наибольшее развитие технология MIMO получила в начале XXI века, когда бурными темпами начали развиваться беспроводные сети Wi-Fi и сотовые сети 4G. А сейчас технология MIMO вовсю используется в сетях 4G LTE и Wi-Fi 802.11b/g/ac, а также в будущих сетях 5G и Wi-Fi 6.
Что даёт технология MIMO?
Для конечного пользователя MIMO даёт значительный прирост в скорости передачи данных. В зависимости от конфигурации оборудования и количества используемых антенн, можно получить двукратный, трехкратный и до восьмикратного увеличения скорости. Обычно в беспроводных сетях используется одинаковое количество передающих и принимающих антенн, и записывается это как, например, 2×2 или 3×3. Т.е. если видим запись MIMO 2×2, значит две антенны передают сигнал и две принимают. Например, в стандарте Wi-Fi 802.11ac один канал шириной 20 Мгц даёт пропускную способность 867 Мбит/с, тогда как в конфигурации MIMO 8×8 объединяются 8 каналов, что даёт максимальную скорость около 7 Гбит/с. Аналогично и в LTE MIMO — потенциальный рост скорости в несколько раз. Для полноценного использования MIMO в сетях LTE необходимы 4G MIMO антенны, т.к. как правило встроенные антенны недостаточно разнесены и дают малый эффект. И конечно, должна быть поддержка MIMO со стороны базовой станции.
LTE-антенна с поддержкой MIMO передаёт и принимает сигнал в горизонтальной и вертикальной плоскостях. Это называется поляризация. Отличительной особенностью MIMO-антенн является наличие двух антенных разъёмов, и соответственно использование двух проводов для подключения к модему/роутеру.
Несмотря на то, что многие говорят, и не безосновательно, что MIMO-антенна для сетей 4G LTE фактически представляет собой две антенны в одной, не стоит думать, что при использовании такой антенны будет двукратный рост скорости. Таковым он может быть только в теории, а на практике разница между обычной и MIMO-антенной в сети 4G LTE составляет 20-25%, что уже можно назвать существенным результатом. Однако, более важным в данном случае будет стабильный сигнал, который может обеспечить MIMO-антенна.
Мы рекомендуем установку MIMO-антенн для получения максимально быстрого и стабильного интернета в сети 4G LTE.
Что такое MIMO и зачем оно нужно?
Итак, вы только что купили или только собираетесь новый беспроводной модем, и у него есть два порта для подключения вашей антенны, и вы, вероятно, задаетесь вопросом, какой использовать, и зачем вам два?
Как это было
Все мы привыкли, что мобильная связь и радиопередачи используют одну антенну. Одна антенна побольше, на огромной вышке передает сигнал и одна антенна поменьше уже у вас в руках или на крыше автомобиля, например, принимает это сигнал, они точно так же работают и в обратную сторону. Антенна, которая на вышке, в свою очередь, ретранслирует сигнал в пункт назначения, адресату которому вы звонили в случае с телефоном, или же принимает сигнал с радиостанции в случае с радио.
Эта технология проста и эффективна для передачи телефонного звонка.
Однако спрос на быстрый интернет растет, пропорционально росту людей, обучившихся использованию интернета и гаджетов, соответственно пропускную способность нужно тоже улучшать, иначе это приведет к неизбежному ухудшению связи. (По аналогии с пробкой в часы пик на трассах в городе) Это не касается радио, потому что каждый клиент только принимает сигнал, соответственно увеличение числа реципиентов никак не влияет на качество, но напрямую зависит на телефонную связь и интернет.
Если вы пользовались 3G-интернетом в течение нескольких лет, вы, вероятно, заметили, что заявленные максимальные скорости быстро растут. Начиная примерно с 3,6 Мбит/с для первой серии «широкополосных» широкополосных мобильных устройств, до 7,2 Мбит/с в 2007 г., до 21 Мбит/с в 2008 г., до 42 Мбит/с вскоре после этого, и теперь до 100 Мбит/с с введением 4G в конце 2011 г. С 5G стучится в нашу дверь, есть Некоторые считают, что новое поколение может увеличить скорость до 4 раз с 4G.
Так как же увеличить скорость?
Каждой телефонной башне присваивается общая ширина частот, на которых она может передаваться, и каждому подключенному человеку выделяется небольшой канал определенной ширины. Это означает, что каждая башня имеет ограниченное число клиентов, которые она может обслуживать, прежде чем она станет перегруженной.
Можно попробовать увеличить скорость – увеличив канал для каждого клиента – это значительно уменьшит количество людей, которое эта вышка сможет обслуживать в одну единицу времени. Увеличит скорость, но уменьшит пропускную способность, соответственно по такому плану надо значительно увеличивать количество вышек. Это работает в городской среде, но не выгодно загородом. Слишком дорого.
Скорость также ограничена отношением сигнал/шум (SNR), для улучшения этого мы можем увеличить мощность (или громкость) передачи, чтобы телефонная вышка могла «лучше слышать» нас, но это приводит к уменьшение дальности действия.
После того, как мы снизили все характеристики, которые мы можем получить от передачи от антенны к антенне, мы должны подойти к проблеме по-другому.
MIMO – это акроним Multiple-In, Multiple-Out, что переводится как «множественный вход, множественный выход».
Нам нужно больше антенн!
Используя несколько антенн, мы можем забыть о трудностях передачи по воздуху и вместо этого возложить нагрузку на оборудование обработки сигналов в вашем модеме.
Поскольку все антенны передают на одинаковых частотах, от телефонной вышки не требуется дополнительная полоса пропускания для каждого пользователя.
Данные сначала разделяют на несколько потоков, а потом собираются в точке приема. Приемник спроектирован так, чтобы учитывать небольшую разницу во времени между приемами каждого сигнала, а также дополнительные шумы или помехи и даже потерянные сигналы.
Важно знать, что MIMO включается и выключается модемом.
Решение о том, использовать ли MIMO, согласовывается с вышкой сотовой связи, в результате чего оценивается качество принятых и передаваемых сигналов (показатель, известный как CQI).
Когда уровень или качество сигнала низкое, модему сложно различить два потока данных, поэтому, когда уровни сигнала падают ниже определенного порогового уровня, MIMO выключается, и модем работает только с одной антенной.
Выводы
Из всего выше сказанного можно сделать вывод что MIMO – это технология улучшения передачи и приема сигнала, путем использования нескольких антенн. Это не означает, что нужно покупать две одинаковых антенны таким образом имитировать MIMO, это так не работает. Есть специальные антенны, которые уже «заточены» под данную технологию. Список антенн с MIMO в наших магазинах. Но тут важно понимать, что хоть потенциально MIMO может дать быстрее скорость, оно несет и большие расходы, т.к. обычно такие антенны чуть дороже обычных аналогов, а также необходимо покупать не одну кабельную сборку, а две (исключение антенны в которых модем находится в самой антенне). А также сам MIMO может по итогу не работать по причине упомянутой в тексте выше.
Статья имеет ознакомительный характер и не претендует на истину в научном плане, некоторые понятия могли быть упрощены или искажены для упрощения понимания читателем.