что такое solar power
Отзыв на энергетик Solar Power Восстановление (Солар Пауэр Рекавери)
Производитель: ООО «Объединенные пивоварни Хейнекен»
Происхождение: Санкт-Петербург, Россия
На отзыве красный энергетик Solar Power Recovery (Восстановление). Попробуем этот энергетический напиток Солар Пауэр Рекавери на вкус. Узнаем состав, калорийность, уровень сахара и калорий. Дадим фото банки и фотографию её содержимого. Начнем.
Состав и обзор банки энергетика Solar Power Восстановление
Купил банку 0,45 л (450 мл) этого энергетика в одном из небольших магазинов недалеко от моего дома. Уже дегустировал два образца этого бренда. И вот случайно заметил эту красную банку. Стало интересно попробовать, что это такое. Давайте разбираться.
Солар Пауэр Восстановление (Рекавери) – это безалкогольный газированный энергетический напиток. Пастеризованный. С ягодами асаи.
Состав: вода, сахар, солод пивоваренный ячменный, регулятор кислотности (лимонная кислота), вкусо-ароматическая основа (натуральный ароматизатор, концентрированный сок черной моркови, таурин, кофеин, пантотеновая кислота, инозит, L-карнитин, витамин В6, ниацин, экстракт асаи, фолиевая кислота, экстракт зеленого чая, витамины В12 и D), хмелепродукты.
Состав типичен для продукции этого бренда. Солод и хмелепродукты, так как производитель пивной. А так, классика – вода, сахар, ароматизаторы, краситель. Бодрит таурином, кофеином, L-карнитином и витаминами. Ну и еще ягоды асаи из необычного.
Сахара (углеводов) здесь 10 гр на 100 мл или порядка 7-9 чайных ложек на эту красную банку 0,45 л. Калорийность равна 40 ккал (кило калорий) на 100 мл или 180 ккал (килокалорий) на этот объем. Но давайте пробовать уже.
Вкус энергетического напитка Солар Пауэр Рекавери
Налил в стакан энергетический напиток насыщенного красного (даже бордово-розоватого) цвета. Чуть газированный (пузырьков не много). Ароматика чуть ягодная, но больше классически-энергетическая (барбарис, яблочный сок, аскорбинка, крем с торта).
Во вкусе красный энергетик Solar Power Recovery Natural Energy Drink чуть сладковатый и с мощной кислинкой. Вновь чуть ягодных оттенков. Но, по большей части, классические энерго-оттенки: барбариски (сосательные конфетки), яблочный сок, аскорбинка и прочее.
Мой отзыв на энергетик Solar Power (напиток Солар Пауэр)
Совершенно ничего особенного. Взять обычный энергетик, добавить в него чуть ягодных ароматизаторов, подкрасить концентрированным морковным соком – и получится нечто такое же. Тут даже солод и хмель не чувствуется, как в других образцах этого бренда. Что является их интересной особенностью. Поэтому как-то не прикольно получилось.
Да и цена высоковата у энергетического напитка Солар Пауэр Восстановление или Рекавери (Solar Power Recovery Natural Energy Drink). Я не очень понимаю, за что тут платить столько. Поэтому рекомендовать купить попробовать не стану.
На этом мой отзыв завершен. Очень рад, что заглянули к нам на сайт и прочли мой обзор!
Отзыв на энергетик Solar Power Активатор Мозга (Солар Пауэр Брейн Буст)
Производитель: ООО «Объединенные пивоварни Хейнекен»
Происхождение: Санкт-Петербург, Россия
На отзыве энергетик Solar Power Brain Boost (Солар Пауэр Брейн Буст). Попробуем этот энергетический напиток Активатор Мозга на вкус. Узнаем состав, калорийность, уровень калорий и сахара. Дадим фото банки и фотографию её содержимого. Начнём.
Состав и обзор банки энергетика Solar Power Активатор Мозга
Купил банку 0,45 л (450 мл) этого энергетика в гипермаркете «Окей». Уже пробовал вариант в синей банке. Вот решил и эту серую взять на пробу. Тем более что тот образец прямо сильно понравился.
Солар Пауэр Брейн Буст – это безалкогольный газированный энергетический напиток. Brain Boost переводится как «Ускоритель» или «Активатор мозга». Такой вот перевод.
В составе: вода, сахар, солод пивоваренный ячменный, регулятор кислотности (лимонная кислота), вкусо-ароматическая основа (натуральный ароматизатор, таурин, натуральный кофеин, инозит, L-карнитин, витамины В6, В12 и D, ниацин, пантотеновая кислота, фолиевая кислота, экстракт элеутерококка (элеутерозиды – 2,4 мкг на 100 мл)), хмелепродукты, краситель сахарный колер I простой.
Состав типичен для подобных энерго-напитков. За исключением солода и хмелепродуктов, которые используются при производстве пива. Хейнекен же производит.
Сахара тут 10 гр на 100 мл или порядка 7-9 чайных ложек на эту банку в 0,45 л (450 мл). Калорийность равна 40 ккал (кило калорий) на 100 мл или 180 ккал (килокалорий) всего.
Вкус энергетического напитка Солар Пауэр Брейн Буст
Налил в стакан энергетический напиток светло-янтарного цвета. Чуть газированный. Ароматика очень типичная – барбарис, крем с торта, яблочный сок, аскорбинка…
Во вкусе энергетик Solar Power Активатор мозга с мощной кислинкой и небольшой горчинкой. Вновь барбарис (конфетки те сосательные), чуть яблочного сока, крем с торта и разная «кондитерка», аскорбинка и лимонная кислота.
Мой отзыв на энергетик Solar Power (напиток Солар Пауэр)
Супер типичный энергетик, каких много. Если хоть раз пробовали классический Ред Булл, Адреналин Раш и прочие подделки под них, то узнаете сразу.
Удивило только полное отсутствие солода и хмеля во вкусе и аромате. В той синей банке прямо четко они чувствовались. Тут же – ни намёка! Что меня чуть расстроило…
Цена у энергетического напитка Solar Power Brain Boost (Солар Пауэр Брейн Буст Активатор мозга) не маленькая, но и не запредельная. Мне так и вовсе со скидкой повезло.
Однако я свой отзыв не буду завершать рекомендацией купить этот вариант в серой банке. Лучше возьмите в синей. Она куда интереснее. Тут – чисто классика…
На этом мой обзор завершён. Большое спасибо, что заглянули к нам на сайт!
«Зеленый» курс: какое будущее ждет альтернативные источники энергии
Что такое альтернативные источники энергии
Возобновляемую энергию получают из устойчивых источников, таких как гидроэнергия, энергия ветра, солнечная энергия, геотермальная энергия, биомасса и энергия приливов и отливов. В отличие от ископаемых видов топлива — например, нефти, природного газа, угля и урановой руды, эти источники энергии не истощаются, поэтому их называют возобновляемыми. Только за 2019 год по всему миру установлено объектов возобновляемых источников энергии (ВИЭ) общей мощностью 200 ГВт.
Виды альтернативных источников энергии
1. Солнечная энергия
Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.
Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.
2. Энергия ветра
Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.
Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.
3. Энергия воды
Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.
4. Геотермальная энергия
Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.
5. Биоэнергетика
Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.
6. Энергия приливов и отливов
Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.
Как разные страны мира выполняют планы по энергопереходу
Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.
Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.
В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.
Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.
Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.
Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и Великобритания. Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.
Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.
В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.
Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.
Геотермальная энергия в Рейкьявике и солнечные батареи для Берлина
Отдельные города по всему миру также стремятся стать климатически нейтральными. По данным CDP, из более чем 570 городов мира, по которым ведется статистика, более 100 получают по крайней мере 70% электроэнергии из возобновляемых источников — энергии воды, геотермальной, солнечной и ветровой энергии.
В списке присутствуют такие города, как Окленд, Найроби, Осло, Сиэтл, Ванкувер, Рейкьявик, Порту, Базель, Богота и другие.
Например, Берлингтон (штат Вермонт, США) уже получает 100% электроэнергии от ветра, солнца, воды и биомассы. Вся электроэнергия Рейкьявика производится за счет гидроэлектростанций и геотермальных источников. К 2040 году весь общественный и личный транспорт столицы должен стать свободным от ископаемого топлива.
100% энергии из возобновляемых источников для швейцарского Базеля обеспечивает собственная энергоснабжающая компания. Большая часть электроэнергии поступает от гидроэнергетики и 10% — от ветра. В мае 2017 года Швейцария проголосовала за постепенный отказ от атомной энергетики в пользу ВИЭ.
Мировые столицы также не остаются в стороне. Например, Сенат Берлина утвердил план мероприятий по развитию солнечной энергетики в столице Германии «Masterplan Solarcity». В соответствии с общей стратегией развития города Берлин должен стать климатически нейтральным к 2050 году. В конце 2018 года в Берлине работали солнечных электростанций, которые покрывали 0,7% потребления электроэнергии, к 2050 году 25% энергопотребления города будут обеспечиваться за счет солнечной энергетики.
«Мы продвигаем расширение возобновляемых источников энергии в Берлине. Сейчас на рассмотрении Сената столицы находятся два законопроекта. Закон о солнечной энергии обязывает владельцев частных домов устанавливать солнечные системы на крышах. Законопроект Администрации по окружающей среде и климату сделает использование солнечной энергии в общественных зданиях обязательным уже в 2023 году. Это радикально сократит выбросы CO2 в Берлине», — рассказала руководитель фракции «Зеленые» в берлинском Сенате Зильке Гебель.
Как бизнес формирует положительный имидж, инвестируя в ВИЭ
Компании по всему миру также создают стратегии и определяют «зеленые» цели, которых они хотят достичь в течение определенного периода времени. Появилось осознание: нужно действовать ответственно и подавать экологичный пример потребителям. Конечно, использование ВИЭ может не только помочь в формировании положительного имиджа для компаний, но и снизить затраты на электроэнергию.
Так, новые серверы Facebook, а также компания General Motors будут получать энергию от солнечной электростанции. Ее строят в штате Кентукки в рамках масштабной программы Green Invest.
Химический концерн BASF будет постепенно переходить на возобновляемые источники энергии, а также планирует инвестировать в ветропарки.
Apple также ставит перед собой цель стать углеродно нейтральной. Она приобрела несколько солнечных ферм, обеспечивая устойчивую энергию для своих центров обработки данных. С 2018 года все розничные магазины, офисы и центры обработки данных Apple работают на 100% возобновляемой энергии.
Microsoft ежегодно использует более 1,3 млрд. кВт·ч «зеленой» энергии при разработке ПО, работы центров обработки данных и производства. Компания обязалась сократить выбросы углекислого газа на 75% к 2030 году.
solar power
1 solar power
2 solar power
3 solar power
4 solar power
5 solar power
6 solar power
7 solar power
8 solar power
9 solar electric power
10 solar sea power
энергия за счет температурного градиента слоев воды в океане
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]
Тематики
11 solar array power
12 solar array power
13 solar array power
14 solar electric power
15 solar sea power
16 solar-array power
17 solar-battery power
18 solar sea power
19 solar array power
20 solar sea power
См. также в других словарях:
solar power — UK US noun [U] NATURAL RESOURCES, ENVIRONMENT ► electricity produced by using the energy from the sun: »The city will install 25 solar power systems as part of a pilot program. » solar power plant … Financial and business terms
solar power — ► NOUN ▪ power obtained by harnessing the energy of the sun s rays … English terms dictionary
solar power — noun energy from the sun that is converted into thermal or electrical energy the amount of energy falling on the earth is given by the solar constant, but very little use has been made of solar energy • Syn: ↑solar energy • Hypernyms:… … Useful english dictionary
Solar power — Electricity generated from solar radiation. California Energy Comission. Dictionary of Energy Terms … Energy terms
solar power — noun power obtained by harnessing the energy of the sun s rays … English new terms dictionary
Solar power in the United States — is the largest available energy source for the United States, although in 2006 it accounted for less than 0.1% of electricity generation. Renewable resources (solar, wind, geothermal, hydroelectric, biomass, and waste) provided nearly 12 percent… … Wikipedia
Solar power in Australia — Solar power use in Australia, despite the country having a reputation for a hot dry and sunny climate that might make it ideal for utilisation, provides less than one percent of electricity needs. This unreached grid parity is mainly due to the… … Wikipedia
Solar power in South Asia — Solar power is a viable means of generating energy in South Asia. South Asia has the ideal combination of both high solar insolation [ [http://www.energie atlas.net/so 100.htm#1 2 101 Energy Atlas Solar radiation] ] and a high density of… … Wikipedia
Solar power in Alameda County — Solar photovoltaic (PV) power systems from PowerLight generate electricity for seven Alameda County facilities, including the Oakland Courthouse and the offices of county emergency services and environmental health services. The first and by far… … Wikipedia
Solar power satellite — A solar power satellite, or SPS or Powersat, as originally proposed would be a satellite built in high Earth orbit that uses microwave power transmission to beam solar power to a very large antenna on Earth. Advantages of placing the solar… … Wikipedia
Solar power by country — Nellis Solar Power Plant at Nellis Air Force Base in the USA. These panels track the sun in one axis. The development of solar power by country depends on national economic incentives more than insolation.[1] Many industrialized nations are… … Wikipedia
Как работают солнечные батареи?
Солнечная энергия удивительна. В среднем на каждый квадратный метр поверхности Земли поступает 164 Вт солнечной энергии (цифру мы объясним более подробно ниже). Другими словами, вы могли бы поставить действительно мощную (150 Вт) настольную лампу на каждый квадратный метр поверхности Земли и осветить всю планету энергией Солнца! Или, другими словами, если бы мы покрыли всего один процент пустыни Сахара солнечными батареями, мы могли бы генерировать достаточно электричества, чтобы питать весь мир. Это хорошо в солнечной энергии: ее очень много — гораздо больше, чем мы могли бы когда-либо использовать.
Чтобы узнать, как работают солнечные панели, вам нужно понять, как они сделаны. Многие солнечные панели используют кремний, один из самых распространенных элементов планеты. Но поскольку создание кристаллов кремния подходящего качества сложно и дорого, домашние солнечные системы обычно строятся из аналогичных, но менее дорогих материалов, таких как медь, индий, галлий и селенид (CIGS). Они не так эффективны, как высококачественный кремний, но все же обеспечивают достаточную мощность при разумных затратах.
Солнечный элемент представляет собой сэндвич из двух разных слоев кремния, которые были специально обработаны или легированы, чтобы они могли электричеством проходить через них определенным образом. Нижний слой легирован, поэтому в нем слишком мало электронов. Он называется кремнием p-типа или положительного типа (потому что электроны заряжены отрицательно, и их в этом слое слишком мало). Верхний слой легирован противоположным образом, чтобы дать ему немного слишком много электронов. Это называется кремнием n-типа или отрицательного типа.
Когда мы помещаем слой кремния n-типа на слой кремния p-типа, на стыке двух материалов создается барьер (важнейшая граница, где встречаются два вида кремния). Никакие электроны не могут пересечь барьер, поэтому, даже если мы подключим этот кремниевый бутерброд к фонарику, ток не будет течь: лампочка не загорится. Но если мы проливаем свет на бутерброд, происходит нечто замечательное. Мы можем думать о свете как о потоке энергичных «легких частиц», называемых фотонами., Когда фотоны попадают в наш сэндвич, они отдают свою энергию атомам в кремнии. Поступающая энергия выбивает электроны из нижнего слоя p-типа, поэтому они перепрыгивают через барьер к слою n-типа выше и текут по кругу. Чем больше света светит, тем больше электронов подпрыгивает и течет больше тока.
Видимый солнечный свет состоит из невидимых частиц, называемых фотонами. У них есть энергия, но нулевая масса покоя. Когда фотоны сталкиваются с другими частицами, их энергия преобразуется в другие формы в зависимости от вида атомов, к которым они прикасаются. Большинство столкновений создают только тепло.
Но электричество также может быть произведено, когда фотоны делают электроны в атомах настолько возбужденными, что они отрываются и перемещаются свободно. Кремниевые электроны n-типа ищут электроны в кремнии p-типа, чтобы заменить отсутствующие электроны и поток между двумя полученными типами.
Замечательные свойства полупроводников, таких как кремний, позволяют поддерживать электрический дисбаланс. Это означает постоянную подачу электричества, пока фотоны попадают на солнечные панели. Ток собирается по проводам и распространяется по всей системе.
Солнечный элемент представляет собой сэндвич из кремния n-типа (синий) и кремния p-типа (красный). Он генерирует электричество, используя солнечный свет, чтобы электроны перепрыгивали через соединение между различными ароматами кремния:
Основное правило физики, называемое законом сохранения энергии, гласит, что мы не можем волшебным образом создавать энергию или заставить ее исчезнуть в воздухе; все, что мы можем сделать, это преобразовать его из одной формы в другую. Это означает, что солнечный элемент не может производить больше электрической энергии, чем он получает каждую секунду в качестве света. На практике, как мы вскоре увидим, большинство клеток преобразует около 10–20 процентов энергии, которую они получают, в электричество. Типичный однопереходный кремниевый солнечный элемент имеет теоретический максимальный КПД около 30 процентов, известный как предел Шокли-Кейссера, Это в основном потому, что солнечный свет содержит широкую смесь фотонов с различными длинами волн и энергией, и любой однопереходный солнечный элемент будет оптимизирован для захвата фотонов только в пределах определенной полосы частот, тратя впустую остальное. Некоторые из фотонов, попадающих на солнечный элемент, не имеют достаточно энергии, чтобы выбить электроны, поэтому они эффективно тратятся впустую, в то время как у некоторых слишком много энергии, а избыток также теряется. Самые лучшие, передовые лабораторные ячейки могут управлять 46-процентной эффективностью в абсолютно идеальных условиях, используя множество соединений для захвата фотонов с различной энергией.
Реальные бытовые солнечные панели могут достичь эффективности около 15 процентов, дать процентное соотношение здесь или там, и это вряд ли станет намного лучше. Солнечные элементы первого поколения с однопереходными солнечными батареями не будут приближаться к 30-процентному КПД ограничения Шокли-Кейссера, не говоря уже о лабораторных показателях в 46 процентов. Все виды неприятных реальных факторов будут влиять на номинальную эффективность, включая конструкцию панелей, то, как они расположены и под каким углом находятся, попадают ли они в тень, в какой чистоте вы их держите, насколько они горячие (повышение температуры имеют тенденцию снижать их эффективность), и вентилируются ли они (позволяя воздуху циркулировать внизу), чтобы они оставались прохладными.
Большинство солнечных панелей, которые вы видите сегодня на крышах домов, по сути, представляют собой просто кремниевые бутерброды, специально обработанные («легированные»), чтобы сделать их лучшими электрическими проводниками. Ученые называют эти классические солнечные элементы первым поколением, в значительной степени отличая их от двух разных, более современных технологий, известных как второе и третье поколение. Так в чем же разница?
Около 90 процентов солнечных панелей в мире изготовлены из пластин кристаллического кремния (сокращенно c-Si), нарезанных из крупных слитков, которые выращиваются в суперчистых лабораториях, процесс которых может занять до месяца. Слитки либо принимают форму монокристаллов (монокристаллический или моно-Si), либо содержат несколько кристаллов (поликристаллический, мульти-Si или поли-c-Si). Солнечные элементы первого поколения работают так, как мы показали выше: они используют одно простое соединение между кремниевыми слоями n-типа и p-типа, которые вырезаны из отдельных слитков. Таким образом, слиток n-типа можно получить, нагревая куски кремния с небольшим количеством фосфора, сурьмы или мышьяка в качестве легирующей добавки, в то время как слиток р-типа будет использовать бор в качестве легирующей примеси. Ломтики кремния n-типа и p-типа затем сливаются для соединения. Добавлены еще несколько наворотов (например, антиотражающее покрытие, которое улучшает поглощение света и придает фотоэлектрическим элементам их характерный синий цвет, защитное стекло на передней панели и пластиковая подложка, а также металлические соединения, позволяющие подключить элемент к цепи), но простой pn-переход — это сущность большинства солнечных панелей.
Новейшие технологии сочетают в себе лучшие черты ячеек первого и второго поколения. Как и клетки первого поколения, они обещают относительно высокую эффективность (30 процентов и более). Как и элементы второго поколения, они, скорее всего, будут изготовлены из материалов, отличных от «простого» кремния, таких как аморфный кремний, органические полимеры (создание органических фотоэлектрических элементов), кристаллы перовскита, и имеют несколько соединений (из нескольких слоев) различных полупроводниковых материалов. В идеале это сделало бы их дешевле, эффективнее и практичнее, чем клетки первого или второго поколения.
В теории огромное количество. Давайте на время забудем солнечные элементы и просто рассмотрим чистый солнечный свет. До 1000 Вт необработанной солнечной энергии попадает на каждый квадратный метр Земли, направленной прямо с Солнца (это теоретическая мощность прямого солнечного света в полдень в безоблачный день — солнечные лучи излучают перпендикулярно поверхности Земли и дают максимальное освещение или инсоляцию), как это технически известно. На практике, после того, как мы скорректировали наклон планеты и время суток, лучшее, что мы можем получить, это, возможно, 100–250 Вт на квадратный метр в типичных северных широтах (даже в безоблачный день). Это составляет примерно 2–6 кВт/ч в день (в зависимости от того, находитесь ли вы в северном регионе, например, в Канаде или Шотландии, или наоборот в южном полушарии, например, в Аризоне или Мексике). Умножение производства на целый год дает нам где-то между 700 и 2500 кВт/ч на квадратный метр (700–2500 единиц электроэнергии). Более жаркие регионы, очевидно, обладают гораздо большим солнечным потенциалом: например, на Ближнем Востоке ежегодно получается на 50–100 процентов больше солнечной энергии, чем в Европе.
К сожалению, типичные солнечные элементы эффективны только на 15 процентов, поэтому мы можем захватить только часть этой теоретической энергии. Вот почему солнечные панели должны быть такими большими: количество энергии, которую вы можете производить, очевидно, напрямую связано с тем, сколько места вы можете позволить себе покрыть панелями. Один солнечный элемент (примерно размером с компакт-диск) может генерировать около 3–4,5 Вт; типичный солнечный модуль, изготовленный из массива около 40 элементов (5 рядов по 8 элементов), может генерировать около 100–300 Вт; поэтому несколько солнечных панелей, каждая из которых состоит из 3–4 модулей, могут генерировать абсолютный максимум в несколько киловатт (вероятно, достаточно для удовлетворения пиковой потребности дома в электроэнергии).