что значит что функция непрерывна в точке

Непрерывность функции

Понятие непрерывности функции.

Функция \(f(x)\), определенная в некоторой окрестности точки \(a\), называется непрерывной в точке \(a\), если
$$
\displaystyle \lim_f(x)=f(a)\label
$$

Таким образом, функция \(f\) непрерывна в точке \(a\), если выполнены следующие условия:

Определение непрерывности функции \(f(x)\) в точке \(a\), выраженное условием \eqref, можно сформулировать с помощью неравенств (на языке \(\varepsilon-\delta\)), с помощью окрестностей и в терминах последовательностей соответственно в виде

Следует обратить внимание на то, что в определении непрерывности функции, в отличие от определения предела, рассматривается полная, а не проколотая окрестность точки \(a\), и пределом функции является значение этой функции в точке \(a\).

Назовем разность \(x-a\) приращением аргумента и обозначим \(\Delta x\), а разность \(f(x)-f(a)\) — приращением функции, соответствующим данному приращению аргумента \(\Delta x\), и обозначим \(\Delta y\). Таким образом,
$$
\Delta x=x-a,\;\Delta y=f(x)-f(a)=f(a+\Delta x)-f(a).\nonumber
$$

При этих обозначениях равенство \eqref примет вид
$$
\lim_<\Delta x\rightarrow 0>\Delta y=0.\nonumber
$$

Таким образом, непрерывность функции в точке означает, что бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Показать, что функция \(f(x)\) непрерывна в точке \(a\), если:

По аналогии с понятием предела слева (справа) вводится понятие непрерывности слева (справа). Если функция \(f\) определена на полуинтервале \((a-\delta,a]\) и \(\displaystyle \lim_f(x)=f(a)\), то есть\(f(a-0)=f(a)\), то эту функцию называют непрерывной слева в точке \(a\).

Аналогично, если функция \(f\) определена на полуинтервале \([a,a+\delta)\) и \(f(a+0)=f(a)\), то эту функцию называют непрерывной справа в точке \(a\).

Например, функция \(f(x)=[x]\) непрерывна справа в точке \(x=1\) и не является непрерывной слева в этой точке, так как \(f(1-0)=0,\;f(1+0)=f(1)=1\).

Очевидно, функция непрерывна в данной точке тогда и только тогда, когда она непрерывна как справа, так и слева в этой точке.

Точки разрыва.

Будем предполагать, что функция \(f\) определена в некоторой проколотой окрестности точки \(a\).

Точку \(a\) назовем точкой разрыва функции \(f\), если эта функция либо не определена в точке \(a\), либо определена, но не является непрерывной в точке \(a\).

Следовательно, \(a\) — точка разрыва функции \(f\), если не выполняется по крайней мере одно из следующих условий:

Если \(a\) — точка разрыва функции \(f\), причем в этой точке существуют конечные пределы слева и справа, то есть \(\displaystyle \lim_f(x)=f(a-0)\) и \(\displaystyle \lim_f(x)=f(a+0)\), то точку \(a\) называют точкой разрыва первого рода.

Если \(x=a\) — точка разрыва первого рода функции \(f(x)\), то разность \(f(a+0)-f(a-0)\) называют скачком функции в точке \(a\). В случае когда \(f(a+0)=f(a-0)\), точку \(a\) называют точкой устранимого разрыва. Полагая \(f(a)=f(a+0)=f(a-0)=A\), получим функцию
$$
f(x)=\left\<\beginf(x),\;если\;x\neq a,\\A,\;если\;x=a,\end\right.\nonumber
$$
непрерывную в точке \(a\) и совпадающую с \(f(x)\) при \(x\neq a\). В этом случае говорят, что функция доопределена до непрерывности в точке \(a\).

Пусть \(x=a\) — точка разрыва функции \(f\), не являющаяся точкой разрыва первого рода. Тогда ее называют точкой разрыва второго рода функции \(f\). В такой точке хотя бы один из односторонних пределов либо не существует, либо бесконечен.

Например, для функции \(f(x)=\displaystyle x\sin<\frac<1>>\) точка \(x=0\) — точка разрыва первого рода. Доопределив эту функцию по непрерывности, получим функцию
$$
\overline(x)=\left\<\begin
x\sin<\frac<1>>,\;если\;x\neq 0,\\
0,\;если\;x=0,
\end\right.\nonumber
$$
непрерывную в точке \(x=0\), так как
$$
\lim_x\sin\frac<1>=0.\nonumber
$$

Для функций \(\displaystyle \sin<\frac<1>>\) и \(\displaystyle \frac<1>\) точка \(x=0\) — точка разрыва второго рода.

Если функция \(f\) определена на отрезке \([a,b]\) и монотонна, то она может иметь внутри этого отрезка точки разрыва только первого рода.

\(\circ\) Пусть \(x_0\) — произвольная точка интервала \((a,b)\). Функция \(f\) имеет в точке \(x_<0>\) конечные пределы слева и справа. Если, например, \(f\) — возрастающая функция, то
$$
f(x_<0>-0)\leq f(x_<0>)\leq f(x_<0>+0),\nonumber
$$
где \(f(x_<0>-0)\) и \(f(x_<0>+0)\) — соответственно пределы функции \(f\) слева и справа в точке \(x_<0>\).

Свойства функций, непрерывных в точке.

Локальные свойства непрерывной функции.

Если функция \(f\) непрерывна в точке \(a\), то она ограничена в некоторой окрестности этой точки, то есть
$$
\exists\delta>0\quad\exists C>0:\;\forall x\in U_<\delta>(a)\rightarrow|f(x)|\leq C\nonumber
$$

Если функция \(f\) непрерывна в точке \(a\), причем \(f(a)\neq 0\), то в некоторой окрестности точки \(a\) знак функции совпадает со знаком числа \(f(a)\), то есть
$$
\exists\delta>0:\quad\forall x\in U_<\delta>(a)\rightarrow \operatorname\ f(x)=\operatorname\ f(a).\nonumber
$$

\(\circ\) Эти утверждения следуют из свойств пределов. \(\bullet\)

Непрерывность суммы, произведения и частного.

Если функции \(f\) и \(g\) непрерывны в точке \(a\), то функции \(f+g\), \(fg\) и \(f/g\) (при условии \(g(a)\neq 0\)) непрерывны в точке \(a\).

\(\circ\) Это утверждение следует из определения непрерывности и свойств пределов. \(\bullet\)

Непрерывность сложной функции.

Напомним, что такое сложная функция.

Пусть функции \(y=\varphi(x)\) и \(z=f(y)\) определены на множествах \(X\) и \(Y\) соответственно, причем множество значений функции \(\varphi\) содержится в области определения функции \(f\). Тогда функция, которая принимает при каждом \(x\in X\) значение \(F(x)=f(\varphi(x))\), называется сложной функцией или суперпозицией (композицией) функций \(\varphi\) и \(f\).

Если функция \(z=f(y)\) непрерывна в точке \(y_0\), а функция \(y=\varphi(x)\) непрерывна в точке \(x_0\), причем \(y_0=\varphi(x_0)\), то в некоторой окрестности точки \(x_0\) определена сложная функция \(f(\varphi(x_0))\), и эта функция непрерывна в точке \(x_0\).

\(\circ\) Пусть задано произвольное число \(\varepsilon>0\). В силу непрерывности функции \(f\) в точке \(y_0\) существует число \(\rho=\rho(\varepsilon)>0\) такое, что \(U_\rho(y_0)\subset D(f)\) и
$$
\forall y\in U_\rho(y_0)\rightarrow f(y)\in U_<\varepsilon>(z_<0>),\label
$$
где \(z_<0>=f(y_<0>)\).

В силу непрерывности функции \(\varphi\) в точке \(x_<0>\) для найденного в \eqref числа \(\rho>0\) можно указать число \(\delta=\delta_<\rho>=\delta(\varepsilon)>0\) такое, что
$$
\forall x\in U_\delta(x_0)\rightarrow \phi (x)\in U_\rho (y_0).\label
$$

Из условий \eqref и \eqref следует, что на множестве \(U_\delta(x_0)\) определена сложная функция \(f(\varphi(x))\), причем
$$
\forall x\in U_\delta(x_0)\rightarrow f(y)=f(\varphi(x))\in U_<\varepsilon>(z_<0>),\nonumber
$$
где \(z_0=f(\varphi(x_0))=f(y_<0>)\), то есть
$$
\forall \varepsilon>0\;\exists \delta>0:\quad \forall х\in U_\delta(x_0)\rightarrow f(\varphi(х))\in U_\varepsilon(\varphi(x_0)).\nonumber
$$

Это означает, в силу определения непрерывности, что функция \(f(\varphi(x))\) непрерывна в точке \(x_0\). \(\bullet\)

Соответствие между окрестностями точек \(x_0,\ y_0,\ z_0\) представлено на рис. 11.1. По заданному числу \(\varepsilon>0\) сначала находим \(\rho>0\), а затем для чисел \(\rho>0\) находим \(\delta>0\).

что значит что функция непрерывна в точке. Смотреть фото что значит что функция непрерывна в точке. Смотреть картинку что значит что функция непрерывна в точке. Картинка про что значит что функция непрерывна в точке. Фото что значит что функция непрерывна в точкеРис. 11.1

Свойства функций, непрерывных на отрезке.

Функцию \(f(x)\) называют непрерывной на отрезке \([a,b]\), если она непрерывна в каждой точке интервала \((a,b)\) и, кроме того, непрерывна справа в точке \(a\) и непрерывна слева в точке \(b\).

Ограниченность непрерывной на отрезке функции.

Если функция \(f\) непрерывна на отрезке \([a,b]\), то она ограничена, то есть
$$
\exists C>0:\forall x\in[a,\ b]\rightarrow|f(x)|\leq C.\label
$$

\(\circ\) Предположим противное, тогда
$$
\forall C>0\;\exists x_\in [a,b]:\;|f(x_)|>C.\label
$$

Полагая в этом выражении \(C=1,2\ldots,n,\ldots,\) получим, что
$$
\forall n\in\mathbb\quad\exists x_\in[a,b]:\;|f(x_)|>n.\label
$$

Последовательность \(x_n\) ограничена, так как \(a\leq x_\leq b\) для всех \(n\in\mathbb\). По теореме Больцано-Вейерштрасса из нее можно выделить сходящуюся подпоследовательность, то есть существуют подпоследовательность \(x_\) и точка \(\xi\) такие, что
$$
\lim_x_>=\xi,\label
$$
где в силу условия \eqref для любого \(k\in\mathbb\) выполняется неравенство
$$
a\leq x_>\leq b.\label
$$

Из условий \eqref и \eqref следует, что \(\xi\in [а,b]\) а из условия \eqref в силу непрерывности функции \(f\) в точке \(\xi\) получаем
$$
\displaystyle \lim_f(x_>)=f(\xi).\label
$$

С другой стороны. утверждение \eqref выполняется при всех \(n\in\mathbb\) и, в частности, при \(n=n_k\;(k=1,2,\ldots)\), то есть
$$
|f(x_>)|>n_,\nonumber
$$
откуда следует, что \(\displaystyle \lim_f(x_>)=\infty\), так как \(n_\rightarrow +\infty\) при \(k\rightarrow\infty\). Это противоречит равенству \eqref, согласно которому последовательность \(\>)\>\) имеет конечный предел. По этому условие \eqref не может выполняться, то есть справедливо утверждение \eqref. \(\bullet\)

Теорема Вейерштрасса неверна для промежутков, не являющихся отрезками. Например, функция \(f(x)=\displaystyle \frac<1>\) непрерывна на интервале \((0,1)\), но не ограничена на этом интервале. Функция \(f(x)=x^<2>\) непрерывна на \(\mathbb\), но не ограничена на \(\mathbb\).

Достижимость точных граней.

Если функция \(f\) непрерывна на отрезке \([a,b]\), то она достигает своей точной верхней и нижней грани, то есть
$$
\exists\xi\in[a,b]:\quad f(\xi)=\sup_ f(x),\label
$$

\(\circ\) Так как непрерывная на отрезке функция \(f(x)\) ограничена (теорема 3), то есть множество значений, принимаемых функцией \(f\) на отрезке \([a,b]\), ограничено, то существуют \(\displaystyle \sup_f(x)\) и \(\displaystyle \inf_f(x)\).

Докажем утверждение \eqref. Обозначим \(M=\displaystyle \sup_f(x)\). В силу определения точной верхней грани выполняются условия
$$
\forall х\in [a,b]\rightarrow f(x)\leq M,\label
$$
$$
\forall\varepsilon>0\;\exists x(\varepsilon)\in[a,b]:\quad f(x(\varepsilon))>M-\varepsilon.\label
$$

Полагая \(\varepsilon=\displaystyle \frac<1><2>, \displaystyle \frac<1><3>,\ldots,\frac<1>,\ldots\), получим в силу условия \eqref последовательность\(\\), где \(x_n=\displaystyle x\left(\frac1n\right)\), такую, что для всех \(n\in\mathbb\) выполняются условия
$$
x_n\in [a,b],\label
$$
$$
f(x_)>M-\displaystyle \frac<1>.\label
$$

Из соотношений \eqref, \eqref и \eqref следует, что
$$
\forall n\in\mathbb\rightarrow M-\frac<1>\; Замечание 4

Теорема 4 неверна для интервалов: функция, непрерывная на интервале, может не достигать своих точных граней. Например, функция \(f(x)=x^<2>\) не достигает на интервале (0,1) своей точной нижней грани, равной нулю, и точной верхней грани, равной единице.

Промежуточные значения.

(теорема Коши о нулях непрерывной функции)

Если функция \(f\) непрерывна на отрезке [a,b] и принимает в его концах значения разных знаков, то есть \(f(a)f(b)\; Доказательство

\(\circ\) Разделим отрезок \([a,b]\) пополам. Пусть \(d\) — середина этого отрезка. Если \(f(d)=0\), то теорема доказана, а если \(f(d)\neq 0\), то в концах одного из отрезков \([a,d],\ [d,b]\) функция \(f\) принимает значения разных знаков. Обозначим этот отрезок \(\Delta_<1>=[a_<1>,b_<1>]\). Пусть \(d_<1>\) — середина отрезка \(\Delta_1\). Возможны два случая:

Продолжая эти рассуждения, получим:

С другой стороны, из неравенства \eqref следует, что \(b_-a_\rightarrow 0\) при \(n\rightarrow\infty\), и поэтому
$$
\exists n_0\in\mathbb:\quad b_>-a_>\; Замечание 5

Теорема 5 утверждает, что график функции \(y=f(x)\), непрерывной на отрезке \([a,b]\) и принимающей в его концах значения разных знаков, пересекает ось \(Ox\) (рис. 11.2) хотя бы в одной точке отрезка \([a,b]\).

что значит что функция непрерывна в точке. Смотреть фото что значит что функция непрерывна в точке. Смотреть картинку что значит что функция непрерывна в точке. Картинка про что значит что функция непрерывна в точке. Фото что значит что функция непрерывна в точкеРис. 11.2

(теорема Коши о промежуточных значениях)

Если функция \(f\) непрерывна на отрезке \([a,b]\) и \(f(a)\neq (b)\), то для каждого значения \(C\), заключенного между \(f(a)\) и \(f(b)\), найдется точка \(\xi\in [a,b]\) такая, что \(f(\xi)=C\).

\(\circ\) Обозначим \(f(a)=A,\ f(b)=B\). По условию \(А\neq В\). Пусть, например, \(A 0\) и по теореме 5 найдется точка \(\xi\in [a,b]\) такая, что \(\varpi(\xi)=0\), то есть \(f(\xi)=C\). Утверждение \eqref доказано. \(\bullet\)

Если функция \(f\) непрерывна на отрезке \([a,b],\ m=\displaystyle \inf_ f(x),\ M=\displaystyle \sup_ f(x)\), то множество значений, принимаемых функцией \(f\) на отрезке \([a,b]\), есть отрезок \([m,M]\).

\(\circ\) Для всех \(x\in[a,b]\) выполняется неравенство \(m\leq f(x)\leq M\), причем согласно теореме 4 функция \(f\) принимает на отрезке \([a,b]\) значения, равные \(m\) и \(М\). Все значения из отрезка \([m,M]\) функция принимает по теореме 6. Отрезок \([m,M]\) вырождается в точку, если \(f(x)=const\) на отрезке \([a,b]\). \(\bullet\)

Существование и непрерывность функции, обратной для непрерывной и строго монотонной функции.

Ранее мы уже рассматривали понятие обратной функции. Докажем теорему о существовании и непрерывности обратной функции.

Если функция \(y=f(x)\) непрерывна и строго возрастает на отрезке \([a,b]\), то на отрезке \([f(a),(b)]\) определена функция \(x=g(y)\), обратная к f, непрерывная и строго возрастающая.

\(\circ\) Существование обратной функции. Обозначим \(A=f(a),\;B=f(b)\). Так как f — возрастающая функция, то для всех \(х\in [a,b]\) выполняется неравенство \(A\leq f(x)\leq B\), где \(A= \displaystyle \inf_ f(x),\;B=\sup_f(x)\), и в силу непрерывности f (следствие из теоремы 6) множество значений функции \(E(f)=[A,B]\).

Согласно определению обратной функции (\S\ 9,п. 9) нужно доказать, что для каждого \(у_0\in [A,В]\) уравнение
$$
f(x)=y_<0>\label
$$
имеет единственный корень \(x=x_<0>\), причем \(x_0\in [a,b]\).

Существование хотя бы одного корня уравнения \eqref следует из теоремы 6. Докажем, что уравнение \eqref имеет на отрезке \([a,b]\) единственный корень.

Предположим, что наряду с корнем \(x=x_<0>\) уравнение \eqref имеет еще один корень \(x=\widetilde_<0>\), где \(\widetilde_<0>\neq x_0\); тогда \(f(\widetilde)=y_<0>,\;\widetilde x_0\in[a,b]\).

Пусть, например, \(\widetilde_0>x_0\). Тогда в силу строгого возрастания функции \(f\) на отрезке \([a,b]\) выполняется неравенство \(f(\widetilde_0)>f(x_<0>)\). С другой стороны, \(f(\widetilde_0)=f(x_0)=y_<0>\). Отсюда следует, что неравенство \(\widetilde_0>x_<0>\) не может выполняться. Следовательно, \(\widetilde_0=x_0\). Существование обратной функции доказано, то есть на отрезке \([A,В]\) определена функция \(x=f^<-1>(y)=g(y)\), обратная к \(f\), причем \((g)=[a,b]\) и
$$
g(f(x))=x,\quad x\in[a,b],\quad f(g(y))=y,\quad u\in [A,B].\label
$$

Монотонность обратной функции. Докажем, что \(g(y)\) — строго возрастающая на отрезке [A,В] функция, то есть
$$
\forall\;y_<1>,\;y_<2>\in [A,B]:\quad y_<1>\; Замечание 6

Если функция \(f\) непрерывна и строго убывает на отрезке \([a,b]\), то обратная к ней функция \(g\) непрерывна и строго убывает на отрезке \([f(b),f(a)]\).

Аналогично формулируется и доказывается теорема о функции \(g\), обратной к функции \(f\), для случаев, когда функция \(f\) задана на интервале (конечном либо бесконечном) и полуинтервале.
Если функция \(f\) определена, строго возрастает и непрерывна на интервале \((a,b)\), то обратная функция \(g\) определена, строго возрастает и непрерывна на интервале \((A,B)\), где
$$
A=\lim_f(x),\quad B=\lim_f(x).\nonumber
$$

Источник

Определение непрерывности функции в точке

что значит что функция непрерывна в точке. Смотреть фото что значит что функция непрерывна в точке. Смотреть картинку что значит что функция непрерывна в точке. Картинка про что значит что функция непрерывна в точке. Фото что значит что функция непрерывна в точке

Непрерывность в точке

Определение непрерывности

Определение непрерывности функции в точке
Функция f ( x ) называется непрерывной в точке x 0 , если она определена на некоторой окрестности U ( x 0) этой точки, включая саму точку, и если предел при x стремящемся к x 0 существует и равен значению функции в x 0 :
.

Здесь подразумевается, что x 0 – это конечная точка. Значение функции в ней может быть только конечным числом.

Если привлечь сюда определение конечного предела функции в конечной точке, то можно дать развернутую формулировку определения непрерывности функции. Поскольку имеется два равносильных определения предела функции (по Коши и по Гейне), то можно дать, как минимум, еще два эквивалентных определения непрерывности.

Запишем эти определения с помощью логических символов существования и всеобщности.
По Гейне:
.
По Коши:
.

Определение отсутствия непрерывности

Непрерывность на концах отрезка

Определение непрерывности справа (слева)
Функция f ( x ) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.

Примеры

Пример 1

Используем определение по Гейне

Используем определение по Коши

Пример 2

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Источник

Непрерывность функции в точке, разрывы первого и второго рода

Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.

Непрерывность функции в точке

Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.

Решение

Соответствующая последовательность значений функций выглядит так:

на чертеже они обозначены зеленым цветом.

Соответствующая последовательность функций:

на рисунке обозначена синим цветом.

После вычисления значения функции в заданной точке очевидно выполнение равенства:

что значит что функция непрерывна в точке. Смотреть фото что значит что функция непрерывна в точке. Смотреть картинку что значит что функция непрерывна в точке. Картинка про что значит что функция непрерывна в точке. Фото что значит что функция непрерывна в точке

Устранимый разрыв первого рода

Решение

Ответ: пределы справа и слева являются равными, а заданная функция в точке х 0 = 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.

Неустранимый разрыв первого рода

Неустранимый разрыв первого рода также определяется точкой скачка функции.

Решение

Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:

Ответ: в конечном счете мы получили:

Нам остается только подготовить чертеж данного задания.

что значит что функция непрерывна в точке. Смотреть фото что значит что функция непрерывна в точке. Смотреть картинку что значит что функция непрерывна в точке. Картинка про что значит что функция непрерывна в точке. Фото что значит что функция непрерывна в точке

Разрыв второго рода (бесконечный разрыв)

Решение

Зададим произвольную последовательность значений аргумента, сходящуюся к х 0 слева. К примеру:

Ей соответствует последовательность значений функции:

Источник

Что значит что функция непрерывна в точке

Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `ain R`, за исключением, быть может, самой точки `a`.

Число `A` называется пределом функции `y=f(x)` в точке `a`, если для любой последовательности `(x_n)` из области её определения такой, что `x_n!=a` и `lim_(n->oo)x_n=a` выполняется равенство `lim_(n->oo)f(x_n)=A`.

Обозначение: `lim_(n->oo)f(x)=A`, или `f(x)->A` при `x->a`.

В определении предела рассматриваются значения `x_n`, не равные `a`, поэтому в самой точке `a` функция `y=f(x)` может быть не определена; если значение `f(a)` определено, то оно не обязано совпадать с `A`. К тому же, поскольку последовательность `(f(x_n))` имеет не более одного предела, получаем, что если функция `y=f(x)` имеет предел при `x->a`, то этот предел единственный.

На рис. 2 изображена лишь одна последовательность `(x_n)`, которая к тому же является монотонной. Важно понимать, что `lim_(n->oo)f(x_n)=A` для любой последовательности `(x_n)` с условием `x_n!=a` и `lim_(n->oo)x_n=a`.

что значит что функция непрерывна в точке. Смотреть фото что значит что функция непрерывна в точке. Смотреть картинку что значит что функция непрерывна в точке. Картинка про что значит что функция непрерывна в точке. Фото что значит что функция непрерывна в точке

Доказать, что `lim_(n->oo)x=a`.

Очевидно, функция `f(x)=x` определена на любом интервале, содержащем `a`. Выберем произвольную последовательность `(x_n)` такую, что `x_n!=a` и `lim_(n->oo)x_n=a`. Тогда `f(x_n)=x_n` и, значит, `lim_(n->oo)f(x_n)=a`.

Доказать, что при `a>0lim_(n->a)sqrtx=sqrta`.

Функция `f(x)=sqrtx` определена при `x>=0` и, следовательно, определена на некотором интервале, содержащем `a`. Выберем произвольную последовательность неотрицательных чисел `x_n!=a`, что `lim_(n->oo)x_n=a`. Нам нужно показать, что `lim_(n->oo)sqrtx_n=sqrta`. Фиксируем произвольное `epsilon>0`, тогда найдётся такое число `k`, что при `n>k` выполняется неравенство `|x_n-a| 1)(x^2-1)/(x-1)=2`.

Функция `f(x)=(x^2-1)/(x-1)` определена на любом интервале, содержащем `x=1`, кроме этой точки. Поскольку при `x!=1` имеет место равенство `f(x)=x+1`, то для любой последовательности `(x_n)` такой, что `x_n!=1` и `lim_(n->oo)x_n=1` выполняется `lim_(n->oo)f(x_n)=lim_(n->oo)x_n+1=2`.

Пусть функции `y=f(x)`, `y=g(x)` определены на некотором интервале, содержащем точку `a in R`, за исключением, быть может, самой точки `a`, `lim_(x->a)f(x)=A` и `lim_(x->a)g(x)=B`. Тогда

3) если дополнительно `g(x)!=0` при `x!=a`, `B!=0`, то `lim_(x->a)(f(x))/(g(x))=A/B`.

Эти свойства вытекают из арифметических операций над пределами последовательностей (теорема 2.2). Приведём доказательство для свойства 2. Остальные доказываются аналогично.

Пусть некоторая произвольная последовательность `(x_n)` из интервала, на котором определены функции, такова что `x_n!=a` и `lim_(n->oo)x_n=a`. Тогда по определению предела функции `lim_(n->oo)f(x_n)=A` и `lim_(n->oo)g(x_n)=B`. По пункту 2 теоремы 2.2 `lim_(n->oo)f(x_n)g(x_n)=AB`. По определению предела функции получаем, что `lim_(x->a)f(x)g(x)=AB`.

Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `a`. Функция `y=f(x)`называется непрерывной в точке `a`, если `lim_(x->a)f(x)=f(a)`, т. е. если для любой последовательности `(x_n)` из области определения функции такой, что `lim_(n->oo)x_n=a`, выполняется равенство `lim_(n->oo)f(x_n)=f(a)`.

Отметим два обстоятельства, связанных с определением непрерывности. Во-первых, оговорка `x_n!=a` здесь не нужна, т. к. при `x_n=a` значения `f(x_n)` равны `f(a)`. Во-вторых, важно понимать, что если функция `y=f(x)` непрерывна в точке `a`, то

1) она определена в точке `a`;

2) существует `lim_(x->a)f(x)=A` и

Если хотя бы один из пунктов 1) – 3) не выполнен, то функция не является непрерывной в точке `a`.

Многочлен является непрерывной на всей числовой прямой функцией.

Из теоремы 3.1 вытекает, что если функции `y=f(x)`, `y=g(x)` непрерывны в точке `a`, то функции `y=f(x)+-g(x)`, `y=f(x)g(x)`, `y=f(x)//g(x)` `(g(a)!=0)` также непрерывны в `a`.

Функция называется непрерывной на множестве, если она непрерывна в каждой точке этого множества.

Функция `y=|x|` непрерывна на всей числовой прямой.

Вообще, все элементарные функции, изучаемые в школьном курсе, непрерывны в каждой точке, в окрестности которой эти функции определены.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *