что значит преодолеть звуковой барьер
Сверхзвуковая скорость: что такое звуковой барьер, что за хлопок происходит во время его преодоления самолетом
Первый пилот, сумевший преодолеть звуковой барьер — Чарльз Йегер, совершивший полет на самолете Bell X-1 осенью 1947 года. В Советском Союзе данный подвиг повторили летчики Федоров и Соколовский, пилотировавшие истребитель ЛА-176 на высоте более 15 тысяч метров. Сверхзвуковая скорость судна составляла 1104 км/час, на которой он мог пройти порядком тысячи километров без дозаправок. Число маха — это отношение скорости звука к скорости, с которой передвигается летательный аппарат. Названо в честь известного австрийского физика Эрнста Маиевского, изучавшего причины возникновения ударных волн и аэродинамические процессы при сверхзвуковом передвижении тел.
Что такое звуковой барьер?
Самолёт FA-18 Hornet, движущийся с околозвуковой скоростью
Потребность в преодолении звукового барьера возникла в годы Второй мировой войны, когда многие летчики замечали, что при увеличении скорости истребителя ухудшается его управляемость и ряд других важных характеристик, таких как корректировка элеронов и воздушных рулей.
Значимую роль в задаче объяснения и преодоления звукового барьера сыграли научные работы, посвященные исследованиям сверхзвукового движения газа.
Величина сверхзвуковой скорости полета
Пока самолет передвигается с небольшой скоростью (до 420 км/час) на высоте до 3 тысяч метров, вычислить точные параметры полета довольно просто. Однако в случае преодоления звукового барьера самолетом падает не только температура за бортом, но и плотность воздушной среды. Когда приборы демонстрируют эквивалентные показания скорости на высоте 2 тысячи метров и 10 тысяч метров, в условиях разреженного воздуха реальная скорость будет больше.
Величина сверхзвуковой скорости полета
На скорости звука воздушное пространство перестает быть однородным и сильно затрудняет передвижение низкоскоростных летательных аппаратов. Создается среда, в которой возникают скачки уплотнения и изменение характера обтекания самолета, что создает предпосылки для волнового кризиса. Скачок уплотнения увеличивает энтропию газа, которая уменьшается в процессе прохождения звукового барьера.
Особенности сверхзвукового полета
Переход на сверхзвуковую скорость сопровождается ударной волной, возникающей из-за разницы давления. В случае, если она будет длиться больше секунды, фюзеляж судна может не выдержать подобных нагрузок, что приведет к его крушению. Если посмотреть на преодоление самолетом звукового барьера на видео, то можно заметить, что ударной волной разрушаются практически все стекла жилых домов, расположенных на поверхности земли.
После того как американский летчик Чарльз Йегер сумел впервые преодолеть звуковой барьер, он был поражен воцарившейся в кабине самолета «божественной тишиной». В момент, когда стрелке махметра удается перевалить за отметку 1.0, звуковое давление внутри судна заметно уменьшается. Однако повышается риск деформации фюзеляжа и других частей летательного аппарата.
На показатели энергетики (интенсивности) скачка уплотнения оказывают влияние условия окружающей среды, конструктивные особенности самолета и скорость его передвижения. Пилотам гиперзвуковых пассажирских лайнеров «Concorde» и «ТУ-144» было дозволено преодолевать звуковой барьер исключительно над поверхностью океана в воздушном пространстве, превышающем на несколько тысяч метров высоту передвижения стандартных летательных аппаратов гражданской авиации.
Вы когда-нибудь слышали хлопок от самолета, переходящего сверхзвуковой барьер?ДаНет
Что происходит с самолетом во время преодоления звукового барьера?
Что происходит с летательным аппаратом при достижении скорости звука? Начинается образование ударных волн, которые появляются в хвостовой части самолета, в задней и фронтальной кромке, а также на острие фюзеляжа. Скачок уплотнения обладает очень малой толщиной, а фронт ударной волны отличается кардинальными изменениями, происходящими со свойствами потока. Его скоростные показатели снижаются по отношению к телу, и скорость приобретает свойства дозвуковой. Кинетическая энергия частично преображается в газовую (внутреннюю).
Хлопок сверхзвукового самолета представляет собой «звуковой удар», который возникает из-за скачков давления воздуха. Хлопок появляется в результате прохождения основной волны и воспринимается слушателем каждый раз, когда самолет пролетает над его головой.
Масштаб подобных изменений прямо пропорционален скорости гиперзвукового потока. Число маха в данном случае превышает 5, а температурные показатели серьезно повышаются, что выступает причиной ряда проблем для летательных аппаратов, передвигающихся на сверхзвуковых скоростях. Повреждение термозащитных оболочек спровоцировало крушение многоразового космического транспортного корабля NASA под названием «Columbia» в 2003 году. Шаттл входил в земную атмосферу для совершения посадки и был поврежден ударной волной высокой силы.
Российский пассажирский сверхзвуковой самолет
Первый пассажирский самолет, который преодолел звуковой барьер, — ТУ-144, созданный инженерами из конструкторского бюро Туполева. Для преодоления звукового барьера лайнер был выполнен в форме бесхвостового низкоплана, оснащенного дополнительными силовыми установками. ТУ-144 был лишен привычных для летательных средств предыдущего поколения закрылков и предкрылков, а переход на гиперзвуковой режим осуществлялся благодаря сложной процедуре перераспределения топлива в задние центровочные баки.
Сверхзвуковой высотный бомбардировщик Валькирия
Без затруднений преодолевает звуковой барьер высотный бомбардировщик «Валькирия» XB-70, развивающий скорость свыше трех махов (3673 км/час) и поднимающийся на высоту свыше 20 тысяч метров. Для передвижения на гиперзвуковой скорости конструкторы были вынуждены снизить взлетную массу, а также перевести самолет на пентаборан (бороводородную топливную смесь), обладающую повышенной энергией сгорания. Бомбардировщик представляет собой «бесхвостку», выполненную из высокопрочной инструментальной стали.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Что происходит во время преодоления звукового барьера самолетом
Первый пилот, сумевший преодолеть звуковой барьер — Чарльз Йегер, совершивший полет на самолете Bell X-1 осенью 1947 года. В Советском Союзе данный подвиг повторили летчики Федоров и Соколовский, пилотировавшие истребитель ЛА-176 на высоте более 15 тысяч метров. Сверхзвуковая скорость судна составляла 1104 км/час, на которой он мог пройти порядком тысячи километров без дозаправок. Число маха — это отношение скорости звука к скорости, с которой передвигается летательный аппарат. Названо в честь известного австрийского физика Эрнста Маиевского, изучавшего причины возникновения ударных волн и аэродинамические процессы при сверхзвуковом передвижении тел.
Что такое звуковой барьер?
Самолёт FA-18 Hornet, движущийся с околозвуковой скоростью
Потребность в преодолении звукового барьера возникла в годы Второй мировой войны, когда многие летчики замечали, что при увеличении скорости истребителя ухудшается его управляемость и ряд других важных характеристик, таких как корректировка элеронов и воздушных рулей. Пилоты самолетов поршневого типа, предпринимавшие попытки развить предельные скорости, неизбежно сталкивались с волновым кризисом, выбраться из которого без пикирования не представлялось возможным.
Значимую роль в задаче объяснения и преодоления звукового барьера сыграли научные работы, посвященные исследованиям сверхзвукового движения газа.
Величина сверхзвуковой скорости полета
Пока самолет передвигается с небольшой скоростью (до 420 км/час) на высоте до 3 тысяч метров, вычислить точные параметры полета довольно просто. Однако в случае преодоления звукового барьера самолетом падает не только температура за бортом, но и плотность воздушной среды. Когда приборы демонстрируют эквивалентные показания скорости на высоте 2 тысячи метров и 10 тысяч метров, в условиях разреженного воздуха реальная скорость будет больше.
Величина сверхзвуковой скорости полета
На скорости звука воздушное пространство перестает быть однородным и сильно затрудняет передвижение низкоскоростных летательных аппаратов. Создается среда, в которой возникают скачки уплотнения и изменение характера обтекания самолета, что создает предпосылки для волнового кризиса. Скачок уплотнения увеличивает энтропию газа, которая уменьшается в процессе прохождения звукового барьера.
Особенности сверхзвукового полета
Переход на сверхзвуковую скорость сопровождается ударной волной, возникающей из-за разницы давления. В случае, если она будет длиться больше секунды, фюзеляж судна может не выдержать подобных нагрузок, что приведет к его крушению. Если посмотреть на преодоление самолетом звукового барьера на видео, то можно заметить, что ударной волной разрушаются практически все стекла жилых домов, расположенных на поверхности земли.
После того как американский летчик Чарльз Йегер сумел впервые преодолеть звуковой барьер, он был поражен воцарившейся в кабине самолета «божественной тишиной». В момент, когда стрелке махметра удается перевалить за отметку 1.0, звуковое давление внутри судна заметно уменьшается. Однако повышается риск деформации фюзеляжа и других частей летательного аппарата.
На показатели энергетики (интенсивности) скачка уплотнения оказывают влияние условия окружающей среды, конструктивные особенности самолета и скорость его передвижения. Пилотам гиперзвуковых пассажирских лайнеров «Concorde» и «ТУ-144» было дозволено преодолевать звуковой барьер исключительно над поверхностью океана в воздушном пространстве, превышающем на несколько тысяч метров высоту передвижения стандартных летательных аппаратов гражданской авиации.
Что происходит с самолетом во время преодоления звукового барьера?
Что происходит с летательным аппаратом при достижении скорости звука? Начинается образование ударных волн, которые появляются в хвостовой части самолета, в задней и фронтальной кромке, а также на острие фюзеляжа. Скачок уплотнения обладает очень малой толщиной, а фронт ударной волны отличается кардинальными изменениями, происходящими со свойствами потока. Его скоростные показатели снижаются по отношению к телу, и скорость приобретает свойства дозвуковой. Кинетическая энергия частично преображается в газовую (внутреннюю).
Хлопок сверхзвукового самолета представляет собой «звуковой удар», который возникает из-за скачков давления воздуха. Хлопок появляется в результате прохождения основной волны и воспринимается слушателем каждый раз, когда самолет пролетает над его головой.
Масштаб подобных изменений прямо пропорционален скорости гиперзвукового потока. Число маха в данном случае превышает 5, а температурные показатели серьезно повышаются, что выступает причиной ряда проблем для летательных аппаратов, передвигающихся на сверхзвуковых скоростях. Повреждение термозащитных оболочек спровоцировало крушение многоразового космического транспортного корабля NASA под названием «Columbia» в 2003 году. Шаттл входил в земную атмосферу для совершения посадки и был поврежден ударной волной высокой силы.
Российский пассажирский сверхзвуковой самолет
Первый пассажирский самолет, который преодолел звуковой барьер, — ТУ-144, созданный инженерами из конструкторского бюро Туполева. Для преодоления звукового барьера лайнер был выполнен в форме бесхвостового низкоплана, оснащенного дополнительными силовыми установками. ТУ-144 был лишен привычных для летательных средств предыдущего поколения закрылков и предкрылков, а переход на гиперзвуковой режим осуществлялся благодаря сложной процедуре перераспределения топлива в задние центровочные баки.
Сверхзвуковой высотный бомбардировщик Валькирия
Без затруднений преодолевает звуковой барьер высотный бомбардировщик «Валькирия» XB-70, развивающий скорость свыше трех махов (3673 км/час) и поднимающийся на высоту свыше 20 тысяч метров. Для передвижения на гиперзвуковой скорости конструкторы были вынуждены снизить взлетную массу, а также перевести самолет на пентаборан (бороводородную топливную смесь), обладающую повышенной энергией сгорания. Бомбардировщик представляет собой «бесхвостку», выполненную из высокопрочной инструментальной стали.
masterok
Мастерок.жж.рф
Хочу все знать
Необычную картину можно иногда наблюдать во время полета реактивных самолетов, которые словно выныривают из облака тумана. Это явление называется эффектом Прандтля-Глоерта и заключается в возникновении облака позади объекта, движущегося на околозвуковой скорости в условиях повышенной влажности воздуха.
Причина возникновения этого необычного явления заключается в том, что летящий на высокой скорости самолёт создаёт область повышенного давления воздуха впереди себя и область пониженного давления позади. После пролёта самолёта область пониженного давления начинает заполняться окружающим воздухом. При этом в силу достаточно высокой инерции воздушных масс сначала вся область низкого давления заполняется воздухом из близлежащих областей, прилегающих к области низкого давления.
Этот процесс локально является адиабатическим процессом, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура может понизиться до такого значения, что окажется ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако.
По мере того, как давление воздуха нормализуется, температура в нём выравнивается и вновь становится выше точки росы, и облако быстро растворяется в воздухе. Обычно время его жизни не превышает долей секунды. Поэтому при полёте самолёта кажется, что облако следует за ним — вследствие того, что оно постоянно образуется сразу позади самолёта, а затем исчезает.
Существует распространённое заблуждение, что возникновение облака из-за эффекта Прандтля-Глоерта означает, что именно в этот момент самолёт преодолевает звуковой барьер. В условиях нормальной или слегка повышенной влажности облако образуется только при больших скоростях, близких к скорости звука. В то же время при полётах на малой высоте и в условиях очень высокой влажности (например, над океаном) этот эффект можно наблюдать и при скоростях, значительно меньших скорости звука.
Кликабельно 2100 рх
С “хлопком” происходит недоразумение, вызванное неверным пониманием термина “звуковой барьер”. Этот “хлопок” правильно называть “звуковым ударом”. Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.
Клкиабельно 2500 рх
Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.
Что это, преодоление звукового барьера? Ответ неверный
О впечатляющих фотографиях реактивных истребителей в плотном конусе водяного пара часто говорят, что это, мол, самолет преодолевает звуковой барьер. Но это ошибка. Обозреватель BBC Future рассказывает об истинной причине феномена.
Это эффектное явление неоднократно запечатлевали фотографы и видеооператоры. Военный реактивный самолет проходит над землей на большой скорости, несколько сотен километров в час.
По мере развития авиастроения аэродинамические формы становились все более обтекаемыми, а скорость летательных аппаратов неуклонно росла – самолеты начали делать с окружающим их воздухом такие вещи, на которые не были способны их более тихоходные и громоздкие предшественники.
Загадочные ударные волны, формирующиеся вокруг низколетящих самолетов по мере приближения к скорости звука, а затем и преодоления звукового барьера, свидетельствуют о том, что воздух на таких скоростях ведет себя весьма странным образом.
Так что же это за таинственные облака конденсата?
Эффект Прандтля-Глоерта наиболее ярко выражен при полетах в теплой, влажной атмосфере
Мы быстро, просто и понятно объясняем, что случилось, почему это важно и что будет дальше.
Конец истории Подкаст
По словам Рода Ирвина, председателя аэродинамической группы Королевского общества воздухоплавания, условия, при которых возникает конус пара, непосредственно предшествуют преодолению самолетом звукового барьера. Однако фотографируют это явление обычно на скоростях чуть меньше скорости звука.
Приземные слои воздуха плотнее, чем атмосфера на больших высотах. При полетах на малых высотах возникает повышенные трение и лобовое сопротивление.
Для фотографирования моделей, продуваемых на сверхзвуковых скоростях в аэродинамических трубах, обычно используют специальные зеркала, чтобы засечь разницу в отражении света, вызванную формированием ударной волны.
Хождение за сверхзвук
26 декабря 1948 года с аэродрома близ города Саки стартовал реактивный истребитель, который пилотировал капитан Олег Соколовский. На высоте 10.000 метров пилот перевёл сектор газа вперёд, и самолёт серебряной стрелой понёсся к земле. Началась тряска, а трёхзначные цифры на шкале указателя скорости уступили место четырёхзначным. Теперь всё внимание на Мах-метр (указатель числа М), стрелка которого приближается к единице.
«Битва» конструкторов
Именно тогда Семён Алексеевич определил для себя стратегическую цель: создать самолёт, который будет способен летать со скоростью звука или превышающей её.
«Крутое» крыло
Путь Семёна Лавочкина к сверхзвуку оказался тернистым. В 1946-1947 годах он испытывает модели Ла-150, Ла-152, Ла-154 и Ла-156 с турбореактивным двигателем РД-10 и высоко расположенным прямым крылом, применяет тонкие крылья с профилем ламинарного обтекания и внутренней компенсацией элеронов. Уже на Ла-150Ф был установлен форсированный двигатель РД-10Ф (с дожиганием топлива в реактивном сопле) и получена скорость 950 км/ч. Но большего выжать не удавалось. И тогда Лавочкин понял, что плывёт по течению, что нужен прорыв.
Однако лётчик-испытатель Иван Фёдоров провёл полёт блестяще. После чего на лётно-испытательной станции закипела напряжённая работа: изучались особенности и возможности крыла непривычной формы. Каждый день приносил новые штрихи в его поведении на высоких скоростях, раскрывал новые нюансы аэродинамической компоновки. И в один из дней Ла-160 «догнал» Ме.262, пролетев со скоростью 1.050 км/ч (М=0,92). Впервые в СССР была перекрыта «тысячная отметка». Однако при дальнейшем увеличении скорости наступала тряска, которая стеной стала на пути к скорости звука.
Конструктор Лавочкин считал, что знаком с законами аэродинамики, но стоило истребителю приблизиться к заветной скорости, как его представления перевернулись с ног на голову: воздух, сгущаясь до плотности водяной струи, начал скручивать металл там, где раньше его обтекал.
В итоге, поскольку знаний у авиастроителей ещё не хватало, стреловидный Ла-160 так и не одолел сверхзвук. Но он стал законодателем «моды» на стреловидное крыло, которым буквально в считанные месяцы вооружились истребители всех трёх соперничающих конструкторских бюро.
Поиски наилучшей аэродинамической компоновки привели к тому, что крыло истребителя Ла-174 оказалось на два с лишним градуса загнутым круче, чем у предшественников, и эксперимент продолжился. Но шёл он трудно. В одном из полётов на высоте 8.000 метров, когда самолёт разогнался до максимальной скорости, неожиданно возникли самовозбуждающиеся и быстро нарастающие колебания, грозившие разрушением фюзеляжа. Машина стала неуправляемой. С большим трудом удерживая ручку управления, Иван Фёдоров убрал газ, и тряска прекратилась, но истребитель по-прежнему оставался неуправляемым. Когда пилот покинул машину, воздушный поток намертво «приклеил» его к плоскости. Только на высоте 3.000 метров не потерявший самообладания Фёдоров выбрал удачный момент, раскрыл парашют и благополучно приземлился. А следом, словно в насмешку, спланировав, почти без повреждений приземлился и сам Ла-174, что дало возможность выяснить причину «поведения» истребителя и устранить конструктивные просчёты. В результате самолёт был принят на вооружение под обозначением Ла-15. Кстати, именно на этом истребителе впервые в отечественном самолётостроении была применена герметичная кабина.
По такой же схеме, но с более мощным двигателем, в 1948 году был успешно испытан фронтовой истребитель Ла-168, летавший со скоростью М=0,982. В серию всё же он не пошёл, потому что его опередил легендарный МиГ-15, разработанный в ОКБ Микояна и Гуревича. Но Семён Лавочкин продолжил штурм скорости звука. В том же 1948 году был создан Ла-176 со стреловидностью крыла, увеличенной до 45 градусов. В то время такого «загиба» не было ни у одного отечественного истребителя.
Первые полёты в таком режиме выполнил Иван Фёдоров. Ему и слово:
Доказанному верить
И не поверили. Авиационный инженер Михаил Арлазоров, один из исследователей «творчества» Семёна Лавочкина, опросил свидетелей рекордных полётов и пришёл к выводу: «То, что Фёдоров первым летал на Ла-176, это точно. Но преодолел ли он первым звуковой барьер? Правда, приборы записали, что в полётах Фёдорова «число М» перевалило за единицу, но мы не могли им верить. Приборы были инерционные, не способные точно фиксировать быстротечные неустановившиеся процессы. И хотя все материалы фёдоровских полётов показали превышение звуковой скорости, верить этим цифрам полностью нельзя».
Здесь ещё раз выяснилось, что трубка (приёмник воздушного давления), измеряющая скорость на сверхзвуковых режимах в аэродинамической трубе даёт существенные погрешности. Наум Хейфиц срочно вылетает в Москву и возвращается со специальной сверхзвуковой трубкой, которая, как позже выяснилось, не завышала, а занижала показатель скорости.
Справка
Эра сверхвысоких скоростей
Ла-176 прожил бурную, но короткую жизнь. И не безупречную. На большой высоте во время одного из очередных полётов, когда в кабине находился капитан Олег Соколовский, неожиданно сработали замки аварийного сброса остекления фонаря. Лётчик погиб вместе с самолётом. Но его дело продолжили другие.
Звуковой барьер на МиГ-15 при пологом пикировании 24 сентября 1949 года преодолел лётчик-испытатель Анатолий Тютерев. В феврале 1950 года лётчик-испытатель подполковник Иван Иващенко на первом экземпляре нового фронтового истребителя МиГ-17 (СИ-01), при создании которого использовались как опыт работы со стреловидным крылом в 45 градусов, так и результаты эксплуатации МиГ-15, покорил скорость 1.114 км/ч (М=1,03), причём в горизонтальном полёте, без всякого «прижима». Одновременно на те же лётные режимы вышел и яковлевский Як-50.
К сожалению, в марте полёты первого экземпляра МиГ-17 также окончились катастрофой (подполковник Иван Иващенко погиб), и потребовалось больше года, чтобы второй экземпляр встал на крыло и в итоге был принят на вооружение. А 27 мая 1952 года стартовал новый фронтовой истребитель МиГ-19, который в горизонтальном полёте показал скорость М=1,1 и получил титул первого серийного сверхзвукового самолёта в мире. Так и наступила эра сверхвысоких скоростей.
Военно-воздушные силы многих государств не одно десятилетие эксплуатировали МиГ-19, но при этом отдадим должное сверхзвуковому первенцу Ла-176 и его создателю конструктору Семёну Лавочкину.