что значит привести многочлены к стандартному виду

Учимся приводить многочлены к стандартному виду.

Изучая начальные сведения о многочленах, мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду. В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям. В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида, и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду:

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Осталось представить в стандартном виде последний из заданных многочленов что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду. После приведения всех его членов к стандартному виду он запишется как что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду. В нем есть подобные члены, поэтому нужно провести приведение подобных членов:
что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Приведите многочлен что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному видук стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Сначала приводим все члены многочлена к стандартному виду: что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду.

Теперь приводим подобные члены:
что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена, которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Источник

Многочлен стандартного вида

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

Определение многочлена

Многочлен — это сумма одночленов. Получается, что многочлен — не что иное, как несколько одночленов, собранных «под одной крышей».

Одночлен — это частный случай многочлена.

Рассмотрим примеры многочленов:

Если многочлен состоит из двух одночленов, его называют двучленом:

Многочлен — это сумма одночленов, поэтому знак «минус» относится к числовому коэффициенту одночлена. Именно поэтому мы записываем – 3×2, а не просто 3×2.

Этот же многочлен можно записать вот так:

Это значит, что каждый одночлен важно рассматривать вместе со знаком, который перед ним стоит.

Многочлен вида 10x – 3×2 + 7 называется трехчленом.

Линейный двучлен — это многочлен первой степени: ax + b. a и b здесь — некоторые числа, x — переменная.

Если разделить многочлен с переменной x на линейный двучлен x – b (где b — некоторое положительное или отрицательное число) — остаток будет только многочленом нулевой степени. То есть некоторым числом N, которое можно определить без поиска частного.

Если многочлен содержит обычное число — это число является свободным членом многочлена.

Свободный член многочлена не имеет буквенной части. Кроме того, любое числовое выражение — это многочлен. Например, вот такие числовые выражения — тоже многочлены:

Такие выражения состоят из свободных членов.

Многочлен стандартного вида

Недостаточно просто знать, что такое многочлен и что такое одночлен. Это целая алгебраическая экосистема, где у всего есть названия, определения и особенности.

Давайте разберемся, что такое многочлен стандартного вида. Многочленом стандартного вида называют многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов.

Получается, что всякий многочлен можно привести к стандартному виду. Таким образом можно получить многочлен, работать с которым гораздо проще и приятнее.

К стандартному виду многочлен приводится очень просто. Нужно лишь привести в нем подобные слагаемые.

Подобные слагаемые — это подобные члены многочлена. Приведение подобных слагаемых в многочлене — приведение его подобных членов. Тут же возникает резонный вопрос: Что такое подобные члены многочлена? Это члены с одинаковой буквенной частью.

Давайте разберем на примере, как «нестандартный» многочлен приводится к стандартному виду.

Дан красавец многочлен: 3x + 5xy2 + x – xy2

Приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:

Как видите, в получившемся многочлене нет подобных членов. Такой многочлен — это многочлен стандартного вида.

Степень многочлена

Многочлен может иметь степень — имеет на это полное право.

Степень многочлена стандартного вида — это наибольшая из степеней, входящих в него одночленов.

Из определения можно сделать вывод, что степень многочлена возможно определить только после приведения его к стандартному виду.

Рассмотрим на примере:

Дан многочлен 6x + 4xy2 + x + xy2

Сначала приводим многочлен к стандартному виду — для этого приводим подобные слагаемые:

Получаем многочлен стандартного вида 6x + 4xy2 + x + xy2 = 7x + 5xy2.

Отсюда делаем вывод, что многочлен 7x + 5xy2 — многочлен второй степени.

Кроме того, можно сделать вывод, что и исходный многочлен 6x + 4xy2 + x + xy2 — многочлен второй степени, поскольку оба многочлена равны друг другу.

В некоторых случаях необходимо сначала привести к стандартному виду одночлены многочлена, а затем уже и сам многочлен.

Пример:

Получившийся многочлен без труда приводим к стандартному виду. Приводим подобные слагаемые:

Коэффициенты многочлена

Коэффициенты членов многочлена — это числа, которые указаны перед переменными множителями. Если перед переменной нет числа, то коэффициент этого члена = 1.

Иными словами — коэффициенты членов многочлена — это члены многочлена, представленные в виде стандартных одночленов.

Например:

Все одночлены имеют стандартный вид. 2, 5 и 18 — коэффициенты членов данного многочлена.

Кажется, со стандартным видом многочлена все понятно. Чтобы без труда приводить любой многочлен к стандартному виду, нужно потренироваться, ведь в 7 классе только и разговоров, что о многочленах. Давайте разберем несколько примеров. Попробуйте решить их самостоятельно, сверяясь с ответами.

Задание раз. Приведите многочлен к стандартному виду и определите его степень: 4x + 6xy2 + x – xy2.

Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:

Получаем многочлен стандартного вида: 4x + 6xy2 + x – xy2 = 5x + 5xy2.

Ответ: стандартный вид многочлена 5x + 5xy2. Данный многочлен — многочлен второй степени.

Многочлен приведен к стандартному виду.

Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:

Разобраться в многочленах не так-то просто. В этой теме немало нюансов и подводных камней. Чтобы не запутаться в множестве похожих одно на другое определений, побольше практикуйтесь. Чтобы перейти на следующую ступень и начать выполнение арифметических действий с многочленами, важно научиться приводить многочлен к стандартному виду.

Источник

Учимся приводить многочлены к стандартному виду

В изучении темы о многочленах отдельно стоит упомянуть о том, что многочлены встречаются как стандартного, так и не стандартного вида. При этом многочлен нестандартного вида можно привести к стандартному виду. Собственно, этот вопрос и будем разбирать в данной статье. Закрепим разъяснения примерами с подробным пошаговым описанием.

Смысл приведения многочлена к стандартному виду

Немного углубимся в само понятие, действие – «приведение многочлена к стандартному виду».

Многочлены, подобно любым другим выражениям, возможно тождественно преобразовывать. Как итог, мы получаем в таком случае выражения, которые тождественно равны исходному выражению.

Привести многочлен к стандартному виду – означает замену исходного многочлена на равный ему многочлен стандартного вида, полученный из исходного многочлена при помощи тождественных преобразований.

Способ приведения многочлена к стандартному виду

Порассуждаем на тему того, какие именно тождественные преобразования приведут многочлен к стандартному виду.

Согласно определению, каждый многочлен стандартного вида состоит из одночленов стандартного вида и не имеет в своем составе подобных членов. Многочлен же нестандартного вида может включать в себя одночлены нестандартного вида и подобные члены. Из сказанного закономерно выводится правило, говорящее о том, как привести многочлен к стандартному виду:

Примеры и решения

Разберем подробно примеры, в которых приведем многочлен к стандартному виду. Следовать будем правилу, выведенному выше.

Отметим, что иногда члены многочлена в исходном состоянии уже имеют стандартный вид, и остается только привести подобные члены. Случается, что после первого шага действий не оказывается подобных членов, тогда второй шаг пропускаем. В общих случаях необходимо совершать оба действия из правила выше.

5 · x 2 · y + 2 · y 3 − x · y + 1 ,

Необходимо привести их к стандартному виду.

Решение

рассмотрим сначала многочлен 5 · x 2 · y + 2 · y 3 − x · y + 1 : его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.

В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.

Приведем его члены к стандартному виду и получим:

Мы видим, что в составе многочлена имеются подобные члены, произведем приведение подобных членов:

Ответ:

Во многих задачах действие приведения многочлена к стандартному виду – промежуточное при поиске ответа на заданный вопрос. Рассмотрим и такой пример.

Решение

Приведем члены заданного многочлена к стандартному виду:

Следующим шагом приведем подобные члены:

Остается только расположить члены по убывающим степеням переменных. С этой целью мы просто переставим местами члены в полученном многочлене стандартного вида с учетом требования. Таким образом, получим:

Ответ:

Источник

Многочлен стандартного вида

Что такое многочлен стандартного вида? Как привести многочлен к стандартному виду?

Многочлен стандартного вида — это многочлен, в котором каждый член — одночлен стандартного вида и многочлен не содержит подобных членов.

Любой многочлен можно привести к стандартному виду.

Чтобы привести многочлен к стандартному виду, нужно:

1) Каждый член многочлена представить в стандартном виде;

2) Привести подобные члены многочлена.

Представить многочлен в стандартном виде:

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

Удобно подчеркнуть подобные члены многочлена вместе со знаком.

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

Чтобы привести подобные члены многочлена, складываем их коэффициенты и результат умножаем на буквенную часть.

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

Сначала входящие в данный многочлен одночлены приводим к стандартному виду:

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

Теперь приводим подобные члены многочлена:

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

что значит привести многочлены к стандартному виду. Смотреть фото что значит привести многочлены к стандартному виду. Смотреть картинку что значит привести многочлены к стандартному виду. Картинка про что значит привести многочлены к стандартному виду. Фото что значит привести многочлены к стандартному виду

В алгебре принято многочлены всегда приводить к стандартному виду.

Источник

Многочлены. Действия с многочленами.

теория по математике 📈 алгебраические выражения

Многочлен – это сумма одночленов. Одночлены, которые составляют многочлен, называют членами данного многочлена. Если многочлены состоят из двух или трех слагаемых, то их можно называть двучленами или трехчленами соответственно.

Стандартный вид многочлена

Многочлен называется приведенным к стандартному виду, если он не имеет подобных слагаемых, и каждый его член имеет также стандартный вид.

Вспомним, что слагаемые, содержащие одинаковую буквенную часть или не имеющие буквенной части называют подобными. Если такие слагаемые есть, то их нужно сложить или вычесть, это действие называют приведением подобных слагаемых.

13х 2 –6х+ 11х 2

13х 2 –6х+11х 2 =24х 2 –6х

6а 3 с 4 + 32х –9а 3 с 4 + 45х –16

Данный многочлен имеет две группы подобных слагаемых, одна выделена красным цветом, вторая синим цветом, слагаемое –16 не имеет подобных, поэтому его просто перепишем. Приводим подобные слагаемые и получаем многочлен стандартного вида:

6а 3 с 4 + 32х –9а 3 с 4 + 45х –16= –3а 3 с 4 +77х–16

Степень многочлена

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. При этом многочлен должен быть записан в стандартном виде. Рассмотрим на примерах, как определить степени многочленов.

4с 6 +7а 9 –18х

Степень многочлена, записанного в стандартном виде, равна 9, так как одночлен 7а 9 имеет степень равную 9 и она наибольшая по сравнению со степенями одночленов 4с 6 и –18х. Пример №5.

13х 4 у 7 +12х 3 у 6 –13

степень данного многочлена стандартного вида находим по наибольшей степени каждого одночлена: одночлен 13х 4 у 7 имеет 11 степень, так как складываем показатели 4 и 7; одночлен 12х 3 у 6 имеет соответственно 9 степень, а –13 имеет степень равную нулю (не содержит переменных). Таким образом, получается, что наибольшая степень равна 11, значит и степень всего многочлена равна 11.

6а 5 +8ас+2а 5 –11ас

Данный многочлен не является многочленом стандартного вида, поэтому сначала приведем подобные слагаемые, получим 6а 5 +8ас+2а 5 –11ас=8а 5 –3ас. Теперь найдем степень у каждого одночлена: у 8а 5 пятая степень, у 3ас – вторая (каждая переменная имеет первую степень). Значит, у многочлена 6а 5 +8ас+2а 5 –11ас степень равна 5.

Сложение и вычитание многочленов

Многочлены можно как складывать, так и вычитать. То есть сумму или разность многочленов можно представить в виде многочлена стандартного вида. Рассмотрим на примерах сложение и вычитание многочленов.

Пример №7. Выполним сложение многочленов:

6х 2 +8х–11 и –9х 2 +3х+19

Сначала составим их сумму (6х 2 +8х–11) + (–9х 2 +3х+19), теперь раскроем скобки, помня о том, что, если перед скобками стоит знак «плюс», то знаки у слагаемых в скобках не изменяются:

6х 2 +8х–11–9х 2 +3х+19

Теперь приведем подобные слагаемые и получим многочлен стандартного вида:

Пример №8. Выполним вычитание многочленов:

7х 5 +12х 3 –24 и 2х 5 +36х 3 –11

Составим разность многочленов (7х 5 +12х 3 – 24) – (2х 5 +36х 3 –11), раскроем скобки, помня о том, что, если перед скобками стоит «минус», то надо изменить знаки у слагаемых в скобках на противоположные:

7х 5 +12х 3 – 24 – 2х 5 –36х 3 +11

Приведем подобные слагаемые и получим многочлен:

Умножение одночлена на многочлен

Чтобы умножить одночлен на многочлен, нужно умножить этот одночлен на каждый член многочлена.

Пример №9. Умножим одночлен 7х на многочлен 6х 2 +3х–5. Запишем в виде произведения:

выполним умножение 7х на каждое слагаемое в скобках: 7х•6х 2 +7х•3х–7х•(–5) и получим:

Запись данного выражения можно делать короче, выполняя промежуточные действия устно:

7х•(6х 2 +3х–5)= 42х 3 +21х 2 +35х

92с(–2с+10а 6 )= –184с 2 +920са 6

Здесь выполнение умножения одночлена на многочлен выполнено без записи промежуточных действий умножения.

Умножение многочлена на многочлен

Чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена.

Пример №11. Умножим многочлен (а+с) на многочлен (х+с).

Составим произведение (а+с)(х+с); умножим сначала а на (х+с), затем с на (х+с); получим:

Получили многочлен в стандартном виде. Здесь были даны простые многочлены, не содержащие степеней. Запись выражения выглядит так:

Пример №12. Умножим многочлен 8х 3 –12х на многочлен 3х 5 –10х. Имеем:

(8х 3 –12х)(3х 5 –10х)=8х 3 •3х 5 +8х 3 •(–10х)–12х•3х 5 –12х•(–10х)=24х 8 –80х 4 –36х 6 +120х 2

Здесь были даны многочлены, содержащие степень, поэтому промежуточное решение лучше расписывать, чтобы не допустить ошибок.

Разложение многочлена на множители

Существуют такие способы для разложения многочлена на множители, как вынесение общего множителя за скобки и разложение на множители способом группировки.

Способ №1. Вынесение общего множителя за скобки.

Вынесение общего множителя за скобки – это представление многочлена в виде произведения одночлена и многочлена.

6х 4 – 20х 2 =2х 2 (3х 2 –10)

При вынесении за скобки степеней помним правило, что при делении степеней с одинаковым основанием показатели вычитаем, а основание оставляем прежним.

Пример №14. Разложим на множители многочлен:

12с 5 х 7 –36с 6 х 2 +72асх 3

12с 5 х 7 –36с 6 х 2 +72асх 3 =12сх 2 (с 4 х 5 –3с 5 +6ах)

Сделаем вывод, что вынесение общего множителя за скобки – это выполнение действия деления каждого члена многочлена на его общий делитель.

Способ №2. Способ группировки.

Чтобы выполнить разложение на множители способом группировки необходимо следовать определенному алгоритму (ключевое слово в данном способе – группировка). Группировка слагаемых выполняется таким образом, чтобы в каждой группе можно было выполнить вынесение общего множителя за скобки, а в скобках оставались одинаковые выражения, это обычно определяется устно.

Пример №15. Разложим на множители многочлен:

Сгруппируем, например, слагаемые первое с последним, а второе с третьим (можно было первое с третьим, а второе с последним):

Теперь видим, что в каждой группе есть множитель, который можно вынести за скобки:

В полученном выражении видно, что в обеих скобках есть сумма х и d, вынесем эту сумму снова за скобки:

Таким образом, мы получили произведение двух выражений, то есть разложили данный многочлен на множители.

Пример №16. Разложим на множители многочлен:

Сгруппируем по порядку, чтобы знаки у слагаемых в скобках были одинаковые:

Вынесем общий множитель в каждой группе:

Вынесем за скобки одинаковые выражения:

Пример №17. Разложим на множители многочлен:

Сгруппируем по порядку, обращая внимание на знак перед х 2 :

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)

Если перед первым слагаемым, которое мы заключаем в скобки, стоит знак «минус», то мы ставим его перед скобкой, а знаки у слагаемых в скобках изменяем на противоположные. Тогда у нас в обеих скобках получатся одинаковые знаки.

Выносим за скобки общий множитель. В данном случае он есть только в первых скобках:

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)= х 3 (х 2 –1)–(х 2 –1)

Выносим за скобки одинаковые выражения, обращая внимание на то, что перед второй скобкой не записан общий множитель, значит, он равен 1:

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)= х 3 (х 2 –1)–(х 2 –1)=(х 2 –1)(х 3 –1)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *