что значит векторная вакцина и пептидная

Проблемы пептидных вакцин

В последнее время на рынок было выпущено большое количество вакцин от COVID-19, причём впервые массово применяются векторные и мРНК-вакцины. Часть людей опасается генноинженерных технологий (поверьте, вы их уже не раз использовали, например, в белковых субъединичных вакцинах от гриппа и/или гепатита B) и решают подождать выхода на рынок вакцин, основанных на более традиционных (с их точки зрения) технологиях, как, например, инактивированных вакцин.

Отдельной строкой идут пептидные вакцины, которые успешно маскируются под традиционные (белковые, субъединичные рекомбинантные). Почему это не совсем так и почему эти вакцины теоретически работать могут, но пока что в этом есть обоснованные сомнения? Именно заявленные попытки создания пептидных вакцин побудили написать эту статью: см., например, пост на Habr «Почему об этой вакцине молчат?» [1] о некоей пептидной вакцине Винфрида Штёкера, но в гораздо большей степени – развернувшаяся полемика [2] вокруг вакцины ЭпиВакКорона производства «Вектора» (прим.: это не векторная вакцина).

Для начала нам нужно вернуться к базовым понятиям, к биополимерам. Это нуклеиновые кислоты (РНК и ДНК) и белки. Первые состоят из нуклеотидов (азотистое основание + рибоза + остаток фосфорной кислоты), вторые – из аминокислот. Если мы возьмём некоторое количество аминокислот и соединим их пептидными мостиками, то получим пептид; если большое количество – полипептид, или белок.

что значит векторная вакцина и пептидная. Смотреть фото что значит векторная вакцина и пептидная. Смотреть картинку что значит векторная вакцина и пептидная. Картинка про что значит векторная вакцина и пептидная. Фото что значит векторная вакцина и пептиднаяПептидная связь

Иммунитет реагирует именно на белки, причём не на произвольные белки вируса, а только на те, которые в состоянии увидеть: находящиеся непосредственно на поверхности вируса. Антитела распознают не весь вирус целиком, а конкретные участки (называемые эпитопами), причём площадь контакта весьма мала, порядка 7 кв. нанометров.

Идея пептидных вакцин состоит в том, что можно синтезировать какие-то аминокислотные последовательности, которые присутствуют в реальном вирусе, прицепить их к какому-то носителю (например, на основе N-белка коронавируса SARS-CoV-2) и предоставить в таком виде иммунной системе для распознавания.

Звучит достаточно просто – мы дёргаем аминокислотную последовательность, синтезируем пептид и мы уже на полпути к получению готовой вакцины, так? Нам не нужно синтезировать генноинженерный белок огромных размеров, как в случае субъединичных вакцин; не нужно делать вектор (аденовирус со встроенной в его геном последовательностью, кодирующей белки коронавируса), не нужно изготавливать мРНК с заменой уридина на псевдоуридин.

Однако тут возникают проблемы. Дело в том, что реальные белки существуют не просто как аминокислотные последовательности (первичная структура), у них существует многоуровневая структура организации (вторичная, третичная и четвертичная структуры).

что значит векторная вакцина и пептидная. Смотреть фото что значит векторная вакцина и пептидная. Смотреть картинку что значит векторная вакцина и пептидная. Картинка про что значит векторная вакцина и пептидная. Фото что значит векторная вакцина и пептидная

Фактически, нам необходимо выбрать последовательность так, чтобы она «свернулась» в нужную пространственную конформацию (конформация – взаимное расположение аминокислот, соединённых друг с другом пептидными мостиками на уровне первичной структуры и водородными мостиками на более высоком уровне организации молекулы). Такое в теории возможно, если попасть в гибкий участок без вторичной структуры или концевой домен [3]. Если, конечно, у нашего вируса вообще есть подходящие участки.

На выбранных нами участках также могут находиться сайты гликозилирования (попросту говоря, аминокислота связана с остатком сахара), которые не дадут антителу прикрепиться. И, конечно, никто не может гарантировать, что мы сразу попадём в нужные эпитопы.

Рассмотрим для примера иллюстрированную структуру вакцинного пептида «ЭпиВакКороны» и структуру белка реального вируса SARS-CoV-2.

что значит векторная вакцина и пептидная. Смотреть фото что значит векторная вакцина и пептидная. Смотреть картинку что значит векторная вакцина и пептидная. Картинка про что значит векторная вакцина и пептидная. Фото что значит векторная вакцина и пептиднаяСлева – пептид ЭпиВакКороны, справа – та же последовательность в белке реального вируса. Изображение предоставлено неофициальной гражданской группой «ЭпиВакКорона», https://epivakorona.com/

Несложно заметить, что две данных пространственных конфигурации непохожи друг на друга. В этом случае антитела тоже могут появляться, только вот в том, что они будут нейтрализовать вирус, существуют серьёзные сомнения.

В случае с вышеописанной вакциной Винфрида Штёкера [1] (которую, надеемся, никто не принял всерьёз) достаточно ясно, откуда берётся высокий титр антител: дело в том, что в вакцине используются те же самые пептиды, что и в тестах. То есть проверяется не нейтрализация вируса SARS-CoV-2, а проверяется соответствие абстрактному тесту.

В случае с вакциной «ЭпиВакКорона», которая уже находится в гражданском обороте, сомнения существуют не меньшие, перечислим самые важные пункты:

После вакцинации ЭпиВакКороной в крови вакцинированных появляются некие антитела. При ближайшем рассмотрении они определяются лишь тест-системами, которые были созданы самим Вектором (сравните с предыдущей «вакциной»)

Говорится, что у некоторой доли вакцинированных ЭпиВакКороной были обнаружены антитела, нейтрализующие вирус. Откуда эти антитела появились, сказано не было. Не было также сказано, когда они появились. Возможно, эти люди переболели COVID-19 или были вакцинированы другой вакциной (некоторые участники КИ ЭпиВакКороны действительно прервали участие и вакцинировались Спутником V в рамках общегражданской программы) – не было показано то, что данные антитела появились вследствие вакцинации

Представители Вектора утверждают, что в опытах над вакцинированными животными у тех не наблюдалось поражения лёгких. Хотя в других источниках они утверждали прямо противоположное

Документально зафиксированы случаи КОВИД-пневмонии (подтверждённой результатами тестов, ПЦР+, КТ = матовое стекло, поражение паренхимы, то есть это точно Ковид19-пневмония) у людей, которые принимали участие в тестах ЭпиВакКороны и точно получили не плацебо [2].

Как известно, бремя доказательства лежит на утверждающем. Однако в рецензируемых научных журналах мы не находим ни одной публикации, где бы предоставлялись доказательства эффективности. Таким образом, можно сказать, что таковых доказательств для каких-либо пептидных вакцин на сегодняшний день не существует.

Описанные выше проблемы вакцин этого типа не являются чем-то новым; так, например, они описаны в статье 1982 года. Исследователи пытались получить пептидную последовательность, которая выступала бы в качестве вакцинной для вируса ящура [4]. Если коротко, то в одном случае они получили значимый результат; однако работало это только на одном штамме и для практического применения не годилось (что не умаляет ценности работы в целом).

Благодарности

Инициативной группе добровольцев-исследователей «ЭпиВакКороны» за помощь в подборке материала.

Обновление

После выхода данной публикации вышла статья о вакцине «ЭпиВакКорона» в журнале «Инфекция и иммунитет». Вопросы к данной вакцине остались теми же и возникло много новых (например, у группы плацебо обнаруживаются антитела первые две недели, а затем исчезают, т.е. данные выглядят абсолютно неправдоподобно).

Ссылки

Goding J. W. Monoclonal antibodies: principles and practice. – Elsevier, 1996.

James L. Bittle et al, Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence, Nature, 1982

Источник

Что значит векторная вакцина и пептидная

Пандемия продолжается, а мнения о вакцинации в обществе остаются неоднозначными. Многие опасаются нежелательных эффектов, хоть и отсроченных. Людей волнует, достаточно ли изучены преимущества и возможные побочные действия. Обзор зарегистрированных вакцин против COVID-19 для «МВ» сделал директор Центра экспертиз и испытаний в здравоохранении Дмитрий Гринько.

Генные, или мРНК-вакцины

BioNTech и Pfizer. Вакцина BNT162b2 (BioNTech/Pfizer) первой была зарегистрирована в ЕС. В ее основе находится матричная РНК, кодирующая ген шпилечного (спайкового) S-белка коронавируса.

Преимуществом генных вакцин является то, что в организм человека вводится чистый препарат матричной РНК, которая сама по себе безопасна. Иммунный ответ при этом формируется именно на тот антиген (S-белок), который закодирован в эту мРНК. Он приводит к появлению как нейтрализующих антител, связывающих и подавляющих вирусные частицы, так и цитотоксических Т-лимфоцитов, уничтожающих зараженные клетки и, следовательно, препятствующих распространению вирусной инфекции.

Недостатком мРНК-вакцин можно назвать то, что ранее эта технология не использовалась в здравоохранении для массовой вакцинации. Конечно, с научной точки зрения BNT162b2 безопасна, однако требуются длительные наблюдения за ее фактической безопасностью и эффективностью. Кроме того, липидные наночастицы в составе вакцины могут служить аллергенами и обладать токсичностью, особенно при передозировке. Значительным недостатком также является сверхнизкая температура хранения (-70 °С), что существенно затрудняет ее транспортировку и применение.

Moderna. Вакцина mRNA-1273 по своему составу очень похожа на BioNTech/Pfizer. В ходе клинических исследований участники, по данным производителя и контрольных органов, хорошо переносили прививку. Поствакцинальная реакция была мягкой и непродолжительной. У 9,7 % человек, привитых mRNA-1273, отмечалась общая слабость. Небольшая часть участников исследований испытала аллергическую реакцию, а в единичных случаях — даже паралич лицевого нерва. Однако пока однозначно не доказана непосредственная связь этой реакции с прививкой.

Векторные вакцины

AstraZeneca. Вакцина AZD1222 британско-шведской компании AstraZeneca представляет собой векторную вакцину на основе аденовируса шимпанзе ChAdOx1, несущего ген S-белка коронавируса. Она вызывала у пациентов типичные реакции: болезненность на месте укола, головную и мышечную боль. При этом поствакцинальные реакции у пожилых проявлялись реже и протекали мягче.

Преимущество всех векторных вакцин — они эффективно формируют гуморальный и клеточный иммунитет, поскольку вектор, попадая в клетку, воспринимается организмом как «активный вирус».

Как и в случае мРНК-вакцин, недостаток векторных в том, что ранее эта технология не использовалась в здравоохранении для массовой вакцинации. И опять же, несмотря на продемонстрированную безопасность, необходимо дальнейшее продолжительное наблюдение. Есть вероятность, что у человека уже есть иммунитет против аденовирусов, вызывающих другие заболевания. Он может снизить эффективность вакцины или даже привести к иммунологической реакции.

Именно поэтому AstraZeneca в качестве вектора использовала аденовирус шимпанзе, отличный от аденовирусов человека, что, по мнению ученых, должно снизить риски иммунологических реакций. Вместе с тем при первой иммунизации может выработаться иммунитет против вектора, что способно снизить эффективность при ревакцинациях.

«Спутник V». Первая в мире зарегистрированная векторная вакцина на основе новой технологической платформы — аденовирусов человека Ad26 и Ad5, несущих ген S-белка коронавируса. Разработана в российском НИЦЭМ им. Н. Ф. Гамалеи.

Эффективность вакцины «Спутник V» против тяжелых случаев заболевания COVID-19 составляет 100 %.

Как и в случае с вакциной AstraZeneca, существует шанс, что у пациента уже есть иммунитет против аденовирусов человека. Именно поэтому в состав «Спутника V» входят 2 компонента на основе разных аденовирусов. И шансы на то, что иммунитет есть против обоих векторов, минимальны, а значит хотя бы один из компонентов вакцины сработает в полную силу.

Johnson&Johnson. Главное преимущество вакцины Janssen американской корпорации Johnson & Johnson — однодозное введение. Подавляющее большинство вакцин, которые сейчас разрабатываются и применяются, подразумевают 2 инъекции. Первая приводит к выработке иммунитета, а вторая «закрепляет» и усиливает его. Считается, что иммунитет против COVID-19 после вакцинации сохранится в течение одного года, но пока эти данные неточные.

Другие

«ЭпиВакКорона». Разработана ГНЦВБ «Вектор» Роспотребнадзора России. В ее состав входят 3 синтетических пептида (фрагменты белка 8 коронавируса), которые соединены с крупным белком-носителем и адсорбированы на гидроксиде алюминия (в качестве белка-носителя выступает вирусный нуклеокапсидный белок, соединенный с белком кишечной палочки, способным связывать мальтозу).

Вакцина позиционируется как ареактогенная, то есть не вызывающая сильные побочные иммунологические реакции. Может применяться для пациентов всех возрастов, в том числе страдающих аллергией, а также для реиммунизации.

Однако пептиды в составе «ЭпиВакКороны» вызывают иммунный ответ только на малую часть вируса. Причем на неструктурный белок 8, а не поверхностный шпилечный S-белок, что не приводит к образованию нейтрализующих антител.

«Ковивак». Вакцина, созданная ФНЦИРИП им. М. П. Чумакова РАН, выполнена по традиционной технологии, когда вирус выращивается в биореакторах на клетках Vero, собирается и инактивируется, чтобы он уже не мог вызывать заболевание. Клинические исследования третьей фазы на данный момент не завершены, и полных данных об эффективности и безопасности вакцины нет.

Известно, что наличие целого «убитого» вируса обеспечивает наиболее комплексный иммунный ответ на все вирусные белки. В то же время при производстве вакцины есть риски загрязнения ксеногенным материалом (остатки клеток Vero). Кроме того, из-за сложного состава вакцина может вызывать менее предсказуемый иммунный ответ, сильно отличающийся у пациентов.

Сейчас высказываются опасения, что со временем из-за мутаций изменится структура вирусных белков и они станут менее уязвимыми к антителам. Однако все перечисленные вакцины вырабатывают иммунный ответ на многие вирусные эпитопы, а значит иммунная система в любом случае узнает коронавирус. Таким образом, вакцины сохранят свою эффективность.

что значит векторная вакцина и пептидная. Смотреть фото что значит векторная вакцина и пептидная. Смотреть картинку что значит векторная вакцина и пептидная. Картинка про что значит векторная вакцина и пептидная. Фото что значит векторная вакцина и пептиднаяТаблица. Вакцины, зарегистрированные или одобренные как минимум одним национальным регулятором.

Источник

«ЭпиВакКорона» от центра «Вектор»: Плюсы и минусы пептидной вакцины

У жителей России больше на слуху вакцина «Спутник V», а про препарат новосибирского центра в прессе говорится меньше. Читатели Царьград Новосибирск попросили собрать как можно больше информации о вакцине, разработанной в Кольцово.

Более свежие данные (к 20 марта 2021 года) о вакцине, включая ее критику и защиту, можно найти в новом материале редакции «Царьград Новосибирск».

Премьер-министр России Михаил Мишустин подписал указ о начале постклинических испытаний вакцины «ЭпиВакКорона» с 11 декабря. Глава Роспотребнадзора Анна Попова заявила, что для проведения исследований вакцину отправили в Новосибирск, Ростов-на-Дону, Москву, Санкт-Петербург и Тулу.

На итоговой в 2020 году пресс-конференции губернатор Новосибирской области Андрей Травников заявил, что регион стал единственным субъектом страны, где разрешили провести исследования вакцины «ЭпиВакКорона» на людях старше 65 лет.

Что известно о вакцине «ЭпиВакКорона»

Препарат разработан специалистами новосибирского центра вирусологии и биотехнологий «Вектор». Вакцина предназначена для использования пациентами в возрасте от 18 до 60 лет. Тем не менее, этот возрастной промежуток может быть расширен позже.

Через две недели после появления информации о вспышке коронавируса в Китае, в начале этого года, власти России сообщили о начале разработок вакцины от инфекции. Работу над созданием вакцины начали специалисты новосибирского «Вектора», Центра Гамалеи и Центра Чумакова.

Отличие новосибирской вакцины заключается в том, что она пептидная, то есть не содержит в себе биологический носитель вируса. Вместо этого в вакцине содержится искусственно созданные фрагменты вирусных белков. Организм вакцинированного человека учится распознавать и нейтрализовать вирус.

Состав

Объём одной дозы вакцины «ЭпиВкКорона» составляет 0,5 мл. В неё входят действующие вещества:

Доклинические исследования вакцины «ЭпиВакКорона» длились 4,5 месяца. За это время на шести видах животных – мышах, крысах, кроликах, африканских зеленых мартышках, макаках-резус, морских свинках – была показана её безвредность по общей токсичности, иммуногенности, аллергическим свойствам, мутагенной активности.

На четырёх видах животных – хомяках, хорьках, африканских зеленых мартышках, макаках-резус – была показана специфическая активность: иммуногенность и защитные свойства в отношении нового коронавируса.

Первый этап клинического исследования вакцины «ЭпиВакКорона», начатый в июле 2020 года, проходил в виде открытого исследования – добровольцы знали, какой препарат им вводится.

Второй этап – слепое плацебо-контролируемое исследование, то есть доброволец не знал, что ему вводят: вакцину или плацебо). Второй этап клинических исследований завершился в конце сентября.

На первом этапе исследования участвовали 14 добровольцев, на втором – уже 86. Это были здоровые люди в возрасте от 18 до 60 лет.

Во время проведения клинических испытаний первого и второго этапа у вакцинированных добровольцев в 100% случаев выработались антитела.

За вакцинированными добровольцами в рамках первого и второго этапа клинических исследований специалисты будут наблюдать в течение девяти месяцев.

Вакцина «ЭпиВакКорона» относится к пептидным видам препаратов, в которых отсутствуют биологические носители вируса, что делает её не вызывающей аллергические реакции и безопасной. Привитые добровольцы чувствовали себя хорошо. У нескольких из них была выявлена кратковременная незначительная болезненность в месте укола, которая возникла через сутки после прививки и держалась в течение 1-2 суток. Других нежелательных явлений зафиксировано не было.

В отличие от других вакцин, векторной и инактивированной, в вакцине «ЭпиВакКорона» содержатся только короткие участки вирусного белка – пептиды – необходимые для формирования иммунного ответа.

Регистрация

В рамках клинических исследований вакцины первого добровольца привили 27 июля. К концу сентября клинические исследования завершились, в них приняли участие 100 человек.

К концу декабря этого года будут завершены исследования о влиянии вакцины на внутриутробное развитие плода и репродуктивные функции. Окончательные итоги клинических исследований первой и второй фаз станут известны в мае следующего года – через девять месяцев после прививание последнего добровольца.

Пострегистрационные исследования

В середине октября вакцина получила государственную регистрацию с номером: ЛП-006504. В середине ноября начались пострегистрационные исследования «ЭпиВакКороны». Говорилось, что препарат исследуют на молодых людях в возрасте от 14 до 17 лет (150 человек), возрастной группе от 18 до 60 лет, имеющих неизлечимые заболевания и без таковых (40 тыс. человек), а также людях старше 60 лет (150 человек).

В Роспотребнадзоре сообщили, что пострегистрационные исследования состоятся в Москве, Московской области, Казани, Тюмени, Калининграде и Новосибирской области (исследования пройдут на добровольцах старше 65 лет).

Министр здравоохранения Новосибирской области Константин Хальзов 14 декабря сообщил, что регион получил первую партию «ЭпиВакКороны». Губернатор Андрей Травников заявил, что регион готов начать поставлять в отдалённые районы Новосибирской области вакцинацию медиков, преподавателей и сотрудников бюджетных учреждений.

Условия вакцинации

Перед вакцинацией пациент должен пройти медицинский осмотр. При температуре тела выше 37 градусов Цельсия ставить прививку запрещено. Укол ставят в предплечье или ягодицу. Повторная вакцинация при отсутствии побочных реакций организма проводится через две-три недели. Во время лабораторных исследованиях на животных было установлено, что иммунитет сохраняется минимум в течение полугода.

Противопоказания

В Роспотребнадзоре сообщили, что для участия в постклиничеких испытаниях не допустили людей, имеющих гиперчувствительность к компонентам препаратам, тяжёлые формы аллергических болезней, осложнения после ранее введённых вакцин, острые инфекционные и неинфекционные заболевания, хронические заболевания в стадии обострения, иммунодефицит (первичный), злокачественные заболевания крови и новообразования. Также к испытаниям не допустили женщин в период беременности и грудного вскармливания

Выход в гражданский оборот

В конце ноября премьер-министр России Михаил Мишустин подписал документы о включении вакцины «ЭпиВакКорона» в перечень жизненно важных препаратов, цены на которые регулируются государством.

Вице-премьер Татьяна Голикова 10 декабря заявила, что в ближайшее время 7,8 тыс. доз вакцины поступит в гражданский оборот.

Массовую вакцинация «ЭпиВакКороной» планируется начать в начале 2021 года.

В Роспотребнадзоре уточнили, что вакцина будет бесплатной, вакцинация будет добровольной.

Производство

«Вектор» начал выпускать первые промышленные партии вакцины в октябре 2020 года на лицензированных в соответствии с требованиями GMP собственных производственных площадках. До конца 2020 года будут произведены 50 тысяч доз вакцины.

Ранее гендиректор компании «Вектор-Биальгам» Леонид Никулин говорил ТАСС, что в качестве одной из возможных площадок по производству вакцины станет их компания, расположенная в наукограде Кольцово. В «Векторе» журналистам издания рассказали, что ежегодно центр сможет производить до 5 млн доз препарата.

В октябре представители Роспотребнадзора сообщили, что использование вакцины «Вектора» нежелательно людям, страдающим хроническими заболеваниями в стадии их обострений, иммунодефицит, злокачественные болезни крови и новообразования. Также вакцина противопоказана беременным женщинам и в период грудного вскармливания.

Отличие «ЭпиВакКорона» от других вакцин

В основе «ЭпиВакКорона» лежат пептиды – искусственно синтезированные фрагменты вирусных белков. Иммунная система распознаёт их и учится бороться.

В основе ещё одной отечественной вакцины – «Спутник V» – лежит аденовирус, неспособный развиться в теле человека и вызвать осложнение. В аденовирус встроен ген коронавируса. При попадании в организм человека образуется белок, вызывающий иммунитет.

Вакцина, над которой работают специалисты Центра Чумакова – цельновирионная, то есть создана на основе погибших клеток вируса. Для её создания используют живые клетки коронавируса, нейтрализованные формалином. После этого их вводят в организм человека в качестве вакцины.

Одобрение и критика

В начале октября заведующая кафедрой вирусологии биологического факультета МГУ Ольга Карпова заявила, что из трёх отечественных вакцин больше всего доверяет произведённой «Вектором».

В начале ноября завлабораторией биотехнологии и вирусологии Факультета естественных наук НГУ Сергей Нетёсов объяснил, что самыми безопасными вакцинами от коронавируса для человека являются пептидные. В то же время учёный подчеркнул, что на данный момент человечество не изобрело пептидную вакцину, вырабатывающую длительный стойкий иммунитет.

В то же время вирусолог Федерального исследовательского центра фундаментальной и трансляционной медицины Александр Чепурнов раскритиковал вакцину новосибирских учёных. По его словам, вакцина «работать не может, в принципе», из-за того, что она пептидная. По словам учёного, у «большинства вакцинированных» не выработались антитела.

Источник

Вирусолог Чумаков объясняет, что такое живые, мертвые, мРНК, векторные, белковые и пептидные вакцины

что значит векторная вакцина и пептидная. Смотреть фото что значит векторная вакцина и пептидная. Смотреть картинку что значит векторная вакцина и пептидная. Картинка про что значит векторная вакцина и пептидная. Фото что значит векторная вакцина и пептидная«Новая газета» побеседовала с нашим выдающимся современником, вирусологом-вакцинологом Константином Чумаковым, директором центра Глобальной вирусологической сети, адьюнкт-профессором Университета Джорджа Вашингтона, а также сыном знаменитого советского вирусолога Михаила Чумакова, который привил весь СССР от полиомиелита вакциной Сейбина. Ниже — те мысли, которые у меня возникли после беседы с Константином. И его рекомендация: прививаться, прививаться и прививаться от ковида. В том числе и «Спутником». Риски вакцинации и риск болезни несопоставимы.

Мировая эпидемия ускорила развитие вакцин примерно так же, как мировая война ускорила развитие военной техники. Еще совсем недавно выбор был невелик: вакцины бывали живые и мертвые. Мертвые — из убитого формалином вируса, живые — из вируса аттенуированного, то есть такого, который хитро выращивали в лаборатории до той поры, пока он не потерял способность вызывать болезнь, но сохранил способность стимулировать иммунитет.

Минус живых вакцин в первую очередь в том, что они могли «одичать». Плюс — в том, что они задействовали все разновидности иммунитета, имеющиеся у человека. Константин Чумаков особо подчеркивает, что живые вакцины умеют задействовать неспецифический иммунитет, то есть тот вид иммунитета, который не связан с выработкой специфических к данной болезни антител, а преследует цель уничтожить любого агрессора, вторгшегося в организм.

Вирусолог-вакцинолог Константин Михайлович Чумаков. Фото: соцсети

Организм, грубо говоря, может существовать в нормальном режиме, а может — в защитном: немедленно начинает вырабатываться интерферон, запускаются каскады, приводящие к производству противовирусных белков, а в клетках начинает разрушаться любая РНК, что вирусная, что своя.

Такой неспецифический иммунитет можно сравнить с кнопкой, которую нажимает кассир в банке, чтобы защититься от грабителей.

Немедленно на окнах падают решетки, включается сигнализация, вся деятельность банка останавливается. Вдолгую в таком режиме банк не просуществует, но от грабителей — пока не подоспеют полицейские (специализирующиеся на борьбе с ними антитела) — защитится.

Эти исследования неспецифического иммунитета в свое время проводила известный советский вирусолог Мария Ворошилова, супруга Михаила Чумакова и мать Константина. В 1970-е годы во время сезонной эпидемии гриппа она прививала живой вакциной от полиомиелита рабочих Горьковского автозавода, и та давала защиту 75% — выше, чем вакцина от собственно гриппа. Константин Чумаков и первооткрыватель ВИЧ проф. Роберт Галло предлагали использовать эти свойства живых вакцин для временной защиты от ковида.

Советский вирусолог, член-корреспондент Академии наук СССР, основатель и первый директор Института полиомиелита и вирусных энцефалитов АН СССР Михаил Петрович Чумаков. Фото: Лев Портер / ТАСС

Новые вакцины

В ходе эпидемии в совершенно ударные сроки — меньше года — были созданы, испытаны и запущены в производство два совершенно новых типа вакцин: мРНК-вакцины и вакцины векторные.

Вместо того чтобы доставлять в клетку антиген — т.е. тот белок, к которому вырабатываются антитела, оба этих типа вакцин доставляют в клетку инструкцию по сборке антигена силами самой клетки. Это изящный прием биологического джиу-джитсу. Клетка что умеет делать? Синтезировать белок. Ну пусть и пашет.

В случае мРНК-вакцин это делается с помощью мРНК, потому что мРНК — это и есть инструкция организму по синтезу того или иного белка.

Двумя самыми известными такими вакцинами стали Pfizer-BioNTech (они получили на разработку вакцины 375 млн евро от правительства Германии и на 2 млрд долл. предзаказов от правительства США) и Moderna (1,53 млрд долл. от Operation Warp Speed).

В случае векторных вакцин информация в клетку доставляется с помощью вектора — т.е. репликативно дефектного вируса, вируса-евнуха, в которого вставлен «лишний» кусочек ДНК, содержащий инструкцию по сборке антигена, в данном случае знаменитого S-белка коронавируса. При этом у самого вируса вырублен ген, без которого он не может размножаться. «Этот дефектный вирус может расти только в специальных культурах, в которых этот вырубленный ген экспрессируется», — говорит Константин Чумаков.

Векторные вакцины — это китайская CanSino, наш «Спутник», Оксфордская вакцина и Johnson&Johnson (который вот только что получил разрешение на применение в ЮАР). Все они в качестве вируса-евнуха используют аденовирус — то, что вызывает обычную простуду. Merck (неудачно) пытался использовать вирус кори, еще одна компания использовала вирус везикулярного стоматита.

Плюсы мРНК-вакцин колоссальны.

Первое: они задействуют почти все уровни иммунитета, от антител до Т-киллеров (существовали опасения, что они будут задействовать только антитела).

Второе: для производства мРНК-вакцин не надо выращивать в реакторах вирус, ни живой (и поэтому опасный), ни дефектный (и поэтому довольно сложно размножающийся). мРНК-вакцины могут быть быстро произведены в огромных количествах. Один только Pfizer обещает произвести в 2021 г. невообразимые 2 млрд доз.

Третье. Если вирус мутирует, и прежние антитела не будут на него действовать, то мРНК-вакцину перестроить под новый штамм так же легко, как проапгрейдить компьютер, поменяв карту памяти. Для этого не надо новых долгих трех фаз испытаний. Для этого просто в лаборатории нужно переписать несколько букв в инструкции по сборке, а эффективность быстро проверить в опытах на животных, которые покажут, работает вакцина или нет.

И, наконец, четвертое:

в отличие от векторных (аденовирусных) вакцин, мРНК-вакцины можно вводить неограниченное число раз.

Увы, с векторными вакцинами этот фокус не проходит. Человек, привитый аденовирусной вакциной, получает иммунитет не только к спайк-белку, но и к самому аденовирусу. Если его снова привить той же вакциной, то «местные копы» просто не пустят аденовирус в клетку.

Из этого вытекает вторая неприятная особенность векторных вакцин: если вы уже болели данным типом аденовируса, у вас может не сформироваться сильный иммунитет. Создатели «Спутника» попытались обойти проблему, использовав два разных и редких аденовируса.

Создатели Оксфордской вакцины использовали аденовирус шимпанзе.
Плюсы векторных вакцин по сравнению с мРНК-вакцинами в первую очередь в том, что пока они гораздо дешевле. Минус: производить их гораздо сложнее, особенно если учесть, что растить надо не абы какой вирус, а вирус-евнух. «Спутник», по слухам, испытывает особенно большие проблемы с размножением своего второго компонента.

Проблемы с производством испытывает и «Астра-Зенека», производящая Оксфордскую вакцину. Векторные и мРНК-вакцины — бесспорные победители этой гонки, и обидно понимать, что технология мРНК была известна уже добрых десять лет, но не шла в ход, чтобы абы чего не вышло.

Ведь эти технологии могут использовать в первую очередь даже не для лечения ковида, а, скажем, для лечения рака. Ведь что такое мРНК? Способ доставки в клетку инструкций о синтезе того или иного белка. А теперь представьте себе, что вы доставляете в клетку информацию о синтезе белка, который запускает процесс умирания этой клетки? А эта клетка — раковая.

Белковые вакцины

Есть, однако, и бесспорные лузеры, и первыми из этих лузеров пока кажутся белковые вакцины.

Житель Израиля возле пункта вакцинации. Фото: Anadolu Agency / Getty Images

Здесь вообще следует сделать отступление и напомнить, что Евросоюз — по сравнению с Израилем, Великобританией и США — в деле вакцинации населения позорно провалился. Темпы вакцинации во всех странах ЕС крайне незавидные, потому что страны ЕС делегировали закупку и распределение вакцин Еврокомиссии, а Еврокомиссия, как это обычно бывает с надгосударственной бюрократией, ошиблась везде, где можно.
Одной из самых крупных ошибок Еврокомиссии и кипрского психолога Стеллы Кириакидис, которая 1 декабря 2019 года была назначена на совершенно на тот момент пустую бюрократическую должность комиссара здравоохранения, — стала закупка 300 млн доз вакцины от GlaxoSmithKlein/Sanofi.

Вакцина Sanofi получила от ЕС умопомрачительные 2,1 млрд долл., но недавно объявили о неудачных испытаниях: для людей свыше 60 лет она оказалась попросту не очень эффективна.

Как устроена вакцина Sanofi? Это — белковая вакцина.

Как мы уже говорили, в случае векторной вакцины или мРНК-вакцины в организм вводится инструкция по сборке белка. В случае белковой вакцины в организм вводится сам белок — не весь вирус, живой или мертвый, а только белок, к которому организм и вырабатывает антитела. В данном случае, конечно, вводится знаменитый S-белок коронавируса.
Первые вакцины такого рода появились в конце прошлого века, и это были вакцины от гриппа. Делаются они в реакторе. Встраивают в какой-то крупный вирус (обычно это бакуловирус) ген, который надо экспрессировать, заражают этим вирусом клеточную культуру, а потом очищают белок.

«Двадцать лет назад все радовались такому чистому белку, — говорит Константин Чумаков, — но мне, честно говоря, кажется, что это прошлый век. Мне больше нравятся вакцины живые, или полуживые, или мРНКовые. Вы вводите вакцину, организм синтезирует белок сам, и это сопровождается целым оркестром защитных реакций. А когда вы вводите чистенький белок — это, как правило, менее эффективно».

Грубо говоря: если вы вводите в организм мРНК или вектор, то организм играет общую тревогу. В обороне оказываются задействованы все виды войск: антитела, Т-киллеры.

Организм поднимает танки, самолеты и силы ПВО. А белковая вакцина — это вакцина, которая из всех сил обороны задействует только ОМОН.

Белковые вакцины — очень слабые раздражители, и для того, чтобы организм вообще узнал, что в него попало что-то нехорошее, к этим вакцинам часто требуется добавить адьювант, то есть вещество, которое само по себе не вызывает иммунитета, но вызывает воспаление. Классический адьювант — соли алюминия.

Согласимся — вакцина, которой организм даже не заметит, если вы его дополнительно не расцарапаете, доверия не внушает. К тому же, как напоминает Константин Чумаков, большинство вакцинологов считают, что адьювант повышает риск аутоиммунной реакции. В 1976 году во время пандемии гриппа сделали вакцину с адьювантом — и в результате получили много случаев синдрома Гийяма-Барре.

Суммируя: более мягкие белковые вакцины оказались более сложными в проектировании, чем мРНК и аденовирусные. Они по определению должны давать худший иммунитет. Eсли есть выбор, этим лучше не прививаться. Иммунитет будет слабый, а шансы на осложнения могут возрасти.

Пептидные вакцины

Про белковые вакцины я не случайно так подробно говорю, потому что белковых вакцин от коронавируса еще нет, а вот вакцина новосибирского «Вектора» уже есть. И это даже не белковая вакцина — это пептидная вакцина. И пептидная вакцина — простите уж нахрапистое обобщение дилетанта — представляется сооружением еще более сомнительным, чем вакцина белковая.

Если Sanofi и Novavax пытаются сделать целый большой белок, то пептидная вакцина устроена так: она берет кусочки белка (по научному — «эпитопы»). «Это старая и довольно очевидная идея, — говорит Чумаков, — иммунизировать не всем белком, а только кусочком, который важен».

Однако к практическому воплощению этой идеи Константин Чумаков относится скептически. «Это было последним писком моды в 1980-е годы, но сейчас серьезные вакционологи об этом подходе перестали думать, — говорит он, — хотя у них может быть узкое применение в специальных случаях. А пока их единственное преимущество в том, что они, скорее всего, будут безопасны, но с другой стороны — не слишком эффективны».

Почему «массовая вакцинация» в России так и не началась, а другие страны опережают нас на порядок: исследование «Новой»

На Западе есть несколько маленьких стартапов, которые заявили о том, что работают над пептидной вакциной против ковида. Это Valo Teurapeutics, Generex, Vaxil Bio и пр. Но ни один из них близко не является финалистом гонки и не вошел в призеры Operation Warp Speed.
Поскольку официальным данным об испытаниях вакцин в России доверия нет (мы, к сожалению, его попросту не заслужили), то люди, участвовавшие в России в испытаниях вакцин, сами делали тесты на антитела и делились данными в Telegram, что было, строго говоря, плохо, потому что тем самым эти люди расслеплялись и официальные испытания проваливали.

Тем не менее из групп в Telegram было ясно, что «Спутник» работает (потом это стало ясно и из статьи в Lancet), а вот антител к ковиду после векторовской вакцины не находили.

В «Векторе» на это отвечали, что их эпитопы — такие, которые вызывают не антитела, а Т-клеточный ответ, который измерить куда сложней, чем антитела. «Однако неизвестно, достаточно ли одного Т-клеточного иммунитета для защиты от ковида», — говорит Константин Чумаков. Короче, у «Вектора» такая особая вакцина, что иммунный ответ на нее проверить сложно, но «Вектор» уверяет, что он есть.

А что от вакцины «Вектора» нет побочки — святая правда. От физраствора тоже побочки нет.

Мертвые вакцины

Тут читатель спросит — а куда же делись мертвые вакцины? Вакцины по старинным рецептам, традиционные, как бабушкино варенье? Самая надежная, простая и могучая кувалда, которая имеется против вирусов в арсенале человечества уже без малого век? На Западе среди финалистов Operation Warp Speed их просто нет. Однако мертвую вакцину сделал Китай (Sinovac), и мертвую вакцину вот-вот выпустит институт им. Михаила Чумакова.

Пустые пузырьки из под вакцины Sinovac после вакцинации в Индонезии. Фото: ЕРА

Почему про мертвые вакцины забыли на Западе? (Почему пока нет живых — понятно. Аттенуировать вирус в лаборатории — долгий процесс и большое искусство.)

Ответов, судя по всему, три.

Первый — о котором Константин Чумаков говорит, несколько даже стесняясь, — заключается в том, что ученым интересно делать что-то новое, а шить варежки, как бабушка, неинтересно. И грантов под это больших не получишь.

Второй заключается в том, что для того, чтобы изготовить много мертвой вакцины, нужно, прежде всего, наработать много живого вируса (который потом надо убить). Вирус патогенный, работать с ним опасно. Вовсе не всякий биологический стартап, который без проблем варит у себя в пробирке мРНК, будет связываться с живым патогенным вирусом, для которого нужны лаборатории высокой степени защиты. (Собственно, именно поэтому в России мертвую вакцину предлагает институт им. Чумакова, который собаку съел на размножении патогенных вирусов и у которого подобные мощности есть.)

И, наконец, третье обстоятельство заключается в том, что старая добрая бабушкина варежка (мертвая вакцина) в данном случае не очень хорошо шьется. Почему? Все дело в свойствах S-белка, того самого, с помощью которого коронавирус проникает в клетку.

Напомню, что этот белок — отмычка. И у него есть две конфигурации (конформации, как говорят вирусологи). До того как он пролез в клетку — и после.

Видели когда-нибудь «бешеный огурец», который, созревая, стреляет семенами? Вот примерно то же самое происходит и с S-белком: когда он прикрепляется к рецептору, через который забирается в клетку (вообще-то этот рецептор нужен для регулирования кровяного давления), он сворачивается совсем другим способом.

Пептидная цепочка остается одна и та же, но форма у нее разная, и на нее вырабатываются разные антитела. «Если антитела вырабатываются на ту конформацию, которую S-белок имеет до проникновения в клетку (pre-fusion), то все в порядке, — говорит Константин Чумаков. — А если пост-фьюжн — то такие антитела не только не помогут против инфекции, но, чего доброго, еще сами помогут затащить белок в клетку». (И тогда это будет т.н. АЗУИ – антителозависимое усиление инфекции, самый страшный кошмар вирусологов.)

И вот когда вирус готовится при помощи формалиновой обработки — то S-белок может свернуться. Именно такая печальная история произошла в 1960-х годах с мертвой вакциной от RSV — респираторно-синцитиального вируса.

«Эти белки очень похожие и у коронавируса, и у RSV, и у вируса гриппа. Они нужны для того, чтобы вирус проник в клетку. Прикоснувшись к ней, они быстро сворачиваются, раздвигают клеточную мембрану и позволяют вирусу пролезть внутрь. А если белок свернется в процессе изготовления вакцины, то такая вакцина работать не будет. Поэтому, чтобы S-белок не сворачивался, в мРНК-вакцинах специально поставили два пролина (одна из аминокислот, из которых сделан любой белок. — Ю. Л. ). А в живом вирусе этого сделать нельзя. Эти два пролина являются шарниром, который не позволяет S-белку свернуться, без этого он не может проникнуть в клетку, — говорит Константин Чумаков. — Но если убитую вакцину сделать правильно — то у нее есть все шансы на успех».

„ нет худа без добра, и в результате эпидемии те биотехнологические решения, внедрение которых человечество откладывало десятки лет, за год стали мейнстримом.

Будем надеяться, что США и Евросоюз с такой же скоростью начнут одобрять лекарства против рака.

Ключ к уничтожению противника

Как работают вакцины против COVID-19? Какие самые эффективные, какие безопасные? Чем прививаться? Объясняет микробиолог Константин Северинов

И второе: колитесь, колитесь и колитесь. Риск от вакцины и риск от ковида попросту несопоставимы, а боязнь прививок нельзя объяснить ничем, кроме вопиющей безграмотности. Как гласит жестокая фотожаба: «Те, кто считает, что вакцина от ковида изменит их ДНК, должны рассматривать это как шанс».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *